Golf ball having cross-core hardness differential and method for making it

Information

  • Patent Grant
  • 8764586
  • Patent Number
    8,764,586
  • Date Filed
    Tuesday, November 8, 2011
    13 years ago
  • Date Issued
    Tuesday, July 1, 2014
    10 years ago
Abstract
A golf ball core that includes a center point having a first hardness value and/or first specific gravity value, and a surface having a second hardness value and/or second specific gravity value. The first hardness value, or first specific gravity value, is different from the second hardness value, or second specific gravity value, respectively.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to compositions for use in making golf ball cores. In particular, the invention relates to such golf ball cores having a difference in hardness between the core's surface and the core's center point. The present invention also relates to methods for manufacturing these golf ball cores.


2. Description of Related Art


Golf balls generally include a core and at least one cover layer surrounding the core. Material characteristics of the compositions used in the core, and the resulting mechanical properties of the core, are important in determining the golf ball's performance. For example, the core's composition affects the golf ball's coefficient of restitution (C.O.R.), i.e., the ratio of the ball's post-impact speed to pre-impact speed. The C.O.R. affects the ball's speed and distance when hit. The core's composition also affects the ball's compression, i.e., a measure of the deflection of the ball when a standard force is applied to the ball. Cores exhibiting low compression provide for improved ball feel, but also tend to exhibit reduced C.O.R., which results in reduced ball flight distance.


Golf ball cores generally incorporate polybutadiene rubbers cross-linked with sulfur compounds, or peroxides, and a metal salt of an acrylate, such as zinc diacrylate (“ZDA”) or zinc dimethacrylate (“ZDMA”). These compositions provide for improved properties; however, despite years of continual improvements in rubber core formulations, ideal properties have not yet been achieved for golf balls. Increasing the loading levels of sulfur compounds, peroxides, or acrylate metal salts in the polybutadiene rubber used for a core composition is known to increase C.O.R. However, this also leads to increased compression, resulting in poorer ball feel and increased driver spin rate, which results in reduced flight distance. This relationship between C.O.R. and compression can be adjusted only to a limited extent using known accelerators, cross-linking agents, and co-cross-linking agents.


In view of the above, it is apparent that improved golf ball cores that result in golf balls having optimal performance, e.g., spin rate value, hit-feel characteristics, and durability, while demonstrating ease of manufacture, as well as methods for making these cores are needed. The present invention fulfills these needs and provides further related advantages.


SUMMARY OF THE INVENTION

Embodiments of the present invention include golf balls having improved golf ball cores that result in the golf balls having improved spin rate values, hit-feel characteristics, and durability. An exemplary golf ball core that embodies the invention includes a center point having a first hardness value, and a surface having a second hardness value. The first hardness value is different from the second hardness value.


In other, more detailed features of the invention, the second hardness value is greater than the first hardness value, or the second hardness value is less than the first hardness value. Also, a gradient in hardness value between the first hardness value and the second hardness value across a radius of the golf ball core occurs in discrete increments.


In other, more detailed features of the invention, the golf ball core further includes regions of the golf ball core having discrete hardness values that are arranged concentrically about the center point. When a colorant is dispersed throughout the golf ball core, the resulting golf ball core can include visually distinguishable regions, each having discrete hardness values.


In other, more detailed features of the invention, the golf ball core is formed from a single compression molding step. Also, the golf ball core can be formed from one slug of material.


In other, more detailed features of the invention, the golf ball core has a point along a radius between the center point and the surface that has a third hardness value that is different in value from the first hardness value and the second hardness value. The third hardness value can be between the first hardness value and the second hardness value. Also, the third hardness value can be greater than the first hardness value. In addition, the third hardness value can be greater than both the first hardness value and the second hardness value.


In other, more detailed features of the invention, the golf ball core includes an unsaturated polymer and a peptizer. The unsaturated polymer can be selected from the group consisting of 1,2-polybutadiene, cis-1,4-polybutadiene, trans-1,4-polybutadiene, cis-polyisoprene, trans-polyisoprene, polychloroprene, polybutylene, styrene-butadiene rubber, block copolymer of styrene and butadiene, block copolymer of styrene and isoprene, nitrile rubber, silicone rubber, polyurethane, and mixtures thereof. Also, the golf ball core can include greater than about 0.1 part by weight of the peptizer per 100 parts by weight of the unsaturated polymer. The peptizer can be selected from the group consisting of pentachlorothiophenol, a metal salt of pentachlorothiophenol, a non-metal salt of pentachlorothiophenol, and dibenzamido diphenyldisulfide.


In other, more detailed features of the invention, the golf ball core further includes an accelerator. The golf ball core can include greater than about 0.1 part by weight of the accelerator per 100 parts by weight of the unsaturated polymer. Also, the accelerator can be selected from the group consisting of mercapto-accelerator, sulfenamide-accelerator, thiuram accelerator, dithiocarbamate accelerator, dithiocarbamylsulfenamide accelerator, xanthate accelerator, guanidine accelerator, amine accelerator, thiourea accelerator, and dithiophosphate accelerator.


In other, more detailed features of the invention, the golf ball core further includes a cross-linking agent. The cross-linking agent can be an organic peroxide. The cross-linking agent can be selected from the group consisting of diacetyl peroxide, di-tert-butyl peroxide, dibenzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di-(benzoylperoxy)hexane, 1,4-bis-(t-butylperoxyisopropyl)benzene, t-butylperoxybenzoate, 2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3,1,1-bis-(t-butylperoxy)-3,3,5-trimethylcyclohexane, di-(2,4-dichlorobenzoyl)peroxide, and mixtures thereof. The golf ball core can include greater than about 0.1 part per hundred of the cross-linking agent per 100 parts by weight of the unsaturated polymer. The cross-linking agent can be a mixture of organic peroxides, with each organic peroxide having a different activation temperature.


In other, more detailed features of the invention, the golf ball core further includes a constituent selected from the group consisting of an initiator, a co-cross-linking agent, an anti-oxidant, a filler, a colorant, and a processing aid. The constituent can be a filler that when added to the unsaturated polymer adjusts the density of the golf ball core. The filler can be selected from the group consisting of zinc oxide, tungsten, and barium sulfate. The core can include from about 10 parts to about 100 parts by weight of the filler per 100 parts per hundred of the unsaturated polymer.


In other, more detailed features of the invention, the golf ball core further includes a nanofiller. The nanofiller can be present in an amount between about 0.1% and about 20% by weight, between about 0.1% and about 15% by weight, between about 0.1% and about 10% by weight, and between about 0.5% and about 5% by weight. Also, the unsaturated polymer in the golf ball core can used to form a matrix polymer. In addition, the nanofiller can be intercalated with the matrix polymer. In addition, the nanofiller can be exfoliated with the matrix polymer.


In other more detailed features of the invention, the nanofiller includes particles of inorganic material, where each particle of inorganic material has a largest dimension that is about one micron or less, and the largest dimension of the particle of inorganic material is at least one order of magnitude greater than a smallest dimension of the particle of inorganic material. In other embodiments, the nanofiller is clay, and the clay can be selected from the group consisting of hydrotalcite, montmorillonite, phyllosilicate, saponite, hectorite, beidellite, stevensite, vermiculite, halloysite, mica, micafluoride, and ostosilicate.


Another exemplary golf ball core that embodies the invention includes a center point having a first specific gravity value, and a surface having a second specific gravity value. The first specific gravity value is different from the second specific gravity value.


In other, more detailed features of the invention, the second specific gravity value is greater than the first specific gravity value. Also, a gradient in the specific gravity value between the first hardness value and the second hardness value across a radius of the golf ball core can occur in discrete increments. In addition, the golf ball core can further include regions of the golf ball core having discrete specific gravity values that are arranged concentrically about the center point.


In other, more detailed features of the invention, a discrete specific gravity value for a region of the golf ball core is determined based on the equation Y=0.03*X+B, where: Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3; X is a distance of the region from the center point of the golf ball core, X is greater than about 1 inch, and X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; and B is greater than about 0.95, and B is less than about 1.27. Also, a discrete specific gravity value for a region of the golf ball core can be determined based on the equation Y=0.04*X+B, where: Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3; X is a distance of the region from the center point of the golf ball core, X is greater than about 1 inch, and X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; and B is greater than about 0.935, and B is less than about 1.26. In addition, a discrete specific gravity value for a region of the golf ball core can be determined based on the equation Y=0.05*X+B, where: Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3; X is a distance of the region from the center point of the golf ball core, X is greater than about 1 inch, and X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; B is greater than about 0.919, and B is less than about 1.25.


In other more detailed features of the invention, a colorant is dispersed throughout the golf ball core resulting in visually distinguishable regions each having discrete specific gravity values. Also, the golf ball core includes a point along a radius between the center point and the surface that has a third specific gravity value that is different in value from the first specific gravity value and the second gravity value.


An exemplary golf ball that embodies the invention includes a golf ball core having a center point with a first hardness value, and a surface with a second hardness value; and one or more layers that enclose the golf ball core. The first hardness value is different from the second hardness value.


In other, more detailed features of the invention, the one or more layers that enclose the golf ball core include an outermost layer. The outermost layer can include a polymer selected from the group consisting of thermoplastic elastomer, thermoset elastomer, synthetic rubber, thermoplastic vulcanizate, copolymeric ionomer, terpolymeric ionomer, polycarbonate, polyolefin, polyamide, copolymeric polyamide, polyesters, polyvinyl alcohols, acrylonitrile-butadiene-styrene copolymers, polyarylate, polyacrylate, polyphenylene ether, impact-modified polyphenylene ether, high impact polystyrene, diallyl phthalate polymer, metallocene catalyzed polymers, styrene-acrylonitrile (SAN) (including olefin-modified SAN and acrylonitrile-styrene-acrylonitrile), styrene-maleic anhydride (S/MA) polymer, styrenic copolymer, functionalized styrenic copolymer, functionalized styrenic terpolymer, styrenic terpolymer, cellulose polymer, liquid crystal polymer (LCP), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymers (EVA), ethylene-propylene copolymer, ethylene vinyl acetate, polyurea, polysiloxane, and any metallocene-catalyzed polymers of these species. Also, the outermost layer can include an ionomeric polymer selected from the group consisting of α-olefin/unsaturated carboxylic acid, copolymer-type ionomeric resin, and terpolymer-type ionomeric resin.


In other, more detailed features of the invention, the one or more layers that enclose the golf ball core includes an intermediate layer located between the outermost layer and the golf ball core. The intermediate layer can include a polymer selected from the group consisting of thermoplastic elastomer, thermoset elastomer, synthetic rubber, thermoplastic vulcanizate, copolymeric ionomer, terpolymeric ionomer, polycarbonate, polyolefin, polyamide, copolymeric polyamide, polyesters, polyvinyl alcohols, acrylonitrile-butadiene-styrene copolymers, polyarylate, polyacrylate, polyphenylene ether, impact-modified polyphenylene ether, high impact polystyrene, diallyl phthalate polymer, metallocene catalyzed polymers, styrene-acrylonitrile (SAN) (including olefin-modified SAN and acrylonitrile-styrene-acrylonitrile), styrene-maleic anhydride (S/MA) polymer, styrenic copolymer, functionalized styrenic copolymer, functionalized styrenic terpolymer, styrenic terpolymer, cellulose polymer, liquid crystal polymer (LCP), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymers (EVA), ethylene-propylene copolymer, ethylene vinyl acetate, polyurea, polysiloxane, and any metallocene-catalyzed polymers of these species. Also, the intermediate layer can include an ionomeric polymer selected from the group consisting of α-olefin/unsaturated carboxylic acid, copolymer-type ionomeric resin, and terpolymer-type ionomeric resin.


In other, more detailed features of the invention, the intermediate layer and or outermost layer can include the nanofiller, as discussed previously.


Another exemplary golf ball that embodies the invention includes a golf ball core having a center point with a first specific gravity value, and a surface with a second specific gravity value; and one or more layers that enclose the golf ball core. The first specific gravity value is different from the second specific gravity value.


An exemplary method for processing a golf ball core according to the invention includes the steps of providing a material that includes an unsaturated polymer and a peptizer, and molding the material into the golf ball core that has a center point and a surface. After processing the golf ball core, the center point has a first hardness value and the surface has a second hardness value, where the first hardness value is different from the second hardness value.


In other, more detailed features of the invention, the step of providing the material includes the addition of a colorant to the material. Also, the step of providing the material can include the addition of an accelerator to the material. In addition, the step of providing the material can include the addition of a cross-linking agent to the material.


In other, more detailed features of the invention, the step of providing the material includes the addition of a constituent selected from the group consisting of an initiator, a co-cross-linking agent, an anti-oxidant, a filler, a colorant, and a processing aid. Also, the step of providing the material can include the mixing of the material. In addition, the material can be molded in a single compression molding step. Also, the method can further include the step of applying energy selected from the group consisting of thermal energy and radiational energy to the material to induce cross-linking.


Another exemplary method for processing a golf ball core according to the invention includes the step of providing a material that includes an unsaturated polymer and a peptizer, and molding the material into the golf ball core that has a center point and a surface. After processing the golf ball core, the center point has a first specific gravity value and the surface has a second specific gravity value, where the first specific gravity value is different from the second specific gravity value.


Another exemplary golf ball that embodies the invention includes a golf ball core, a cover layer that encloses the golf ball core, and one or more intermediate layer(s) located between the cover layer and the golf ball core. The golf ball core includes a core center piece that, in turn, includes a center point, and one or more core layer(s) that enclose the core center piece and include a surface. The core center point has a first hardness value and/or first specific gravity value, and the surface has a second hardness value and/or second specific gravity value. The first hardness value, or first specific gravity value, is different from the second hardness value, or second specific gravity value, respectively.


For purposes of summarizing the invention and the advantages achieved over the prior art, certain advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following description of the preferred embodiments and drawings, the invention not being limited to any particular preferred embodiment(s) disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a two-piece golf ball.



FIG. 2 is a cross-sectional view of a two-piece golf ball core.



FIG. 3 is a cross-sectional view of a three-piece golf ball core.



FIG. 4 is a cross-sectional view of a three-piece golf ball.



FIG. 5 is a cross-sectional view of a four-piece golf ball.



FIG. 6 is a cross-sectional view of a five-piece golf ball.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS AND METHODS

Referring to the cross-sectional view of a golf ball illustrated in FIG. 1, the present invention is embodied in golf balls 10, each having a core 12. The core includes a core outer surface 14 where a surface hardness value can be measured that is different in value from the hardness value measured at the center point 16 of the core, the center hardness value. Likewise, a surface specific gravity value can be measured on the core's surface that is different in value from a center specific gravity value measured at the center point. For example, the surface hardness value, or the surface specific gravity value, can be greater than, or less than, the center hardness value, or the center specific gravity value, respectively. The change in hardness value and specific gravity value between the surface and center point across a radius of the golf ball core results in a hardness gradient and a specific gravity gradient, respectively, that can occur in discrete increments, which can result in regions (not shown) of the core having discrete hardness and specific gravity values that are concentrically arranged about the core's center point.


Also, the golf ball core 12 can include a point (not shown) along a radius (not shown) between the center point 16 and the surface 14 of the core that has an additional hardness value and specific gravity value that are different from the surface hardness and specific gravity values, respectively, and the center hardness and specific gravity values, respectively. These additional hardness and specific gravity values can have the following: a value between the value measured at the surface and the value measured at the center point; a value greater than the value measured at the center point; or greater than both the value measured at the center point and the value measured at the surface.


The golf ball core 12 can include regions (not shown) that have discrete hardness value and/or specific gravity values, which are arranged concentrically about the center point 16 of the core. In particular, a discrete specific gravity value for a region of the golf ball core can be determined based on the equation Y=0.03*X+B, where:

    • a. Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3;
    • b. X is a distance of the region from the center point of the golf ball core, X is greater than about 1 inch, X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; and
    • c. B is greater than about 0.95, and B is less than about 1.27.


More preferably, a discrete specific gravity value for a region (not shown) of the golf ball core 12 can be determined based on the equation Y=0.04*X+B, where:

    • a. Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3;
    • b. X is a distance of the region from the center point 16 of the golf ball core, X is greater than about 1 inch, X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; and
    • c. B is greater than about 0.935, and B is less than about 1.26.


Most preferably, a discrete specific gravity value for a region (not shown) of the golf ball core 12 can be determined based on the equation Y=0.05*X+B, where:

    • a. Y is the specific gravity value of the region of the golf ball core, Y is greater than about 1, and Y is less than about 1.3;
    • b. X is a distance of the region from the center point 16 of the golf ball core, X is greater than about 1 inch, X is less than about 1.62 inches, and the value of X can vary in value plus or minus 0.02 inch; and
    • c. B is greater than about 0.919, and B is less than about 1.25.


The golf ball core 12 can include more than one piece. For example, referring to FIG. 2, the golf ball core can include two pieces; a core center piece 18 and a core layer 20, which surrounds the core center piece. In other embodiments, referring to FIG. 3, the golf ball core can include three pieces; a core center piece and two core layer(s). While FIGS. 1, 2, and 3 show golf ball cores made up a single piece, two pieces, and three pieces, respectively, embodiments of the golf ball core can include more than three pieces.


The golf ball 10 also includes a golf ball cover layer 22, the outermost layer, that surrounds the core 12, and can include, as shown in FIGS. 4 and 5, one or more golf ball intermediate layer(s) 24, which are located between the golf ball's cover layer and the golf ball's core. The golf ball components, i.e., the golf ball core, including the core center piece 18 and core layer(s) 20; intermediate layer(s); and cover layer are not drawn to scale in FIGS. 1-5. The diameters or thicknesses of each of the golf ball components can take on a wide range of values.


The difference in hardness and specific gravity between the core's surface 14 and the center point 16 is correlated to optimal performance characteristics for the golf ball 10. More specifically, in the present invention, the difference between the surface hardness and the center hardness, or the surface specific gravity and the center specific gravity, can be adjusted during fabrication to affect overall ball properties, e.g., hit-feel characteristics, C.O.R. value, compression value, and durability.


The difference in hardness and specific gravity between the surface 14 and center point 16 of the core 12, or between other points in the core, is obtained when the cross-linking density and/or chain length between cross-linked junctions measured at the one point in the core is different from another point in the core. This difference can be controlled by changing the density of the rubber in the core and/or changing the cross-linking conditions, e.g., the cross-linking temperature and/or the cross-linking time during fabrication of the core. Decreasing the cross-linking temperature and/or increasing the cross-linking time during fabrication of the core will lower the difference in hardness and specific gravity between the core's surface and the center point of the core. Another factor affecting the difference in hardness and specific gravity between the surface and center point of the core, or other parts of the core is the cooling rate of the core. The difference in hardness and specific gravity increases in value when the cooling rate of the core is increased.


When a dye, colorant, is added to a material that makes up the core 12, regions (not shown) of the core are visually distinguishable from other regions of the core that have a different density, and thus, a different hardness value and specific gravity value. In particular, a region of the core that has a higher density, and thus, a higher hardness value and specific gravity value will include more colorant than a region of the core that has a lower density, and thus, a lower hardness value and specific gravity value. Therefore, the use of the colorant in the core can result in visually distinct regions in the core that have discrete hardness and specific gravity values. In particular, because regions in the core that have discrete hardness and specific gravity values tend to form concentrically about the core's center point 16, the use of colorant in the core typically results in visually distinct concentric regions (not shown) about the core's center point.


The golf ball cores 12 of the present invention incorporate a composition that includes an unsaturated polymer and a peptizer. The golf ball composition can also include an accelerator. The core compositions can be cured by a single organic peroxide or a mixture of organic peroxides having different activation temperatures. The composition of the unsaturated polymer, with the peptizer, and with or without the accelerator, allows for the adjustment of the difference in hardness and specific gravity between the golf ball core's center point 16 and surface 14 during manufacturing, while providing for increased C.O.R. and compression. The present invention also resides in methods of manufacture for the golf ball cores. These golf ball cores are easy to prepare, and they can tailored to meet a wide range of specifications and preferred performance.


Unsaturated polymers suitable for use in the golf ball cores 12 of the present invention include any polymeric material having an unsaturation, either hydrocarbon or non-hydrocarbon, capable of participating in a cross-linking reaction initiated thermally, chemically, by irradiation, or by a combination of these methods. Non-limiting examples of suitable unsaturated polymers include 1,2-polybutadiene, cis-1,4-polybutadiene, trans-1,4-polybutadiene, cis-polyisoprene, trans-polyisoprene, polychloroprene, polybutylene, styrene-butadiene rubber, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, nitrile rubber, silicone rubber, polyurethane, as well as functionalized equivalents and mixtures of these.


The base rubber used herein can be any rubber commonly used in golf ball cores 12. Polybutadiene rubbers, especially 1,4-polybutadiene rubbers containing at least 40 mol %, and more preferably 80 to 100 mol % of cis-1,4 bonds, are preferred because of their high rebound resilience, extrusion moldability, and high strength after vulcanization. The 1,4-polybutadiene rubbers can be blended with natural rubber, polyisoprene rubber, styrene-butadiene rubber, or the like. At least 80% by weight of 1,4-polybutadiene rubber should be present in the base rubber, because base rubbers containing less 1,4-polybutadiene rubber often fail to take advantage of the rebound resilience of the polybutadiene rubber.


Many different types of 1,2-polybutadienes exist, having widely varying physical properties as a result of their differing tacticity, crystallinity, and molecular weight. Examples of 1,2-polybutadienes having differing tacticity, all of which are suitable as unsaturated polymers for use in the present invention, are atactic 1,2-polybutadiene, isotactic 1,2-polybutadiene, and syndiotactic 1,2-polybutadiene. Syndiotactic polymers include alternating base units that are enantiomers of each other. These 1,2-polybutadienes are also differentiated by their crystallinity, which ranges from amorphous 1,2-polybutadiene that essentially lacks crystallinity to semi-crystalline 1,2-polybutadiene that has different crystalline structures. The molecular weights of these 1,2-polybutadienes vary greatly. The various combinations of tacticity, crystallinity, and molecular weight provide for many different types of 1,2-polybutadienes having very different processability, as well as other chemical, thermal, mechanical, and rheological properties.


Syndiotactic 1,2-polybutadiene having a crystallinity suitable for use as an unsaturated polymer in compositions within the scope of the present invention are polymerized from a 1,2-addition of butadiene. Golf ball cores 12 within the scope of the present invention include syndiotactic 1,2-polybutadiene having crystallinity and greater than about 70% of 1,2-bonds, more preferably greater than about 80% of 1,2-bonds, and most preferably greater than about 90% of 1,2-bonds. Also, golf ball cores within the scope of the present invention include syndiotactic 1,2-polybutadiene having crystallinity between about 5% and about 50%, more preferably between about 10% and about 40%, and most preferably between about 15% and about 30%. In addition, golf ball cores within the scope of the present invention include syndiotactic 1,2-polybutadiene having crystallinity and a mean molecular weight between about 10,000 and about 350,000, more preferably between about 50,000 and about 300,000, more preferably between about 80,000 and about 200,000, and most preferably between about 100,000 and about 150,000. An example of a suitable syndiotactic 1,2-polybutadiene having crystallinity for use in golf ball cores within the scope of the present invention is sold under the trade name RB810, RB820, and RB830 by JSR Corporation of Tokyo, Japan. These have more than 90% 1,2 bonds, a mean molecular weight of approximately 120,000, and a crystallinity between about 15% and about 30%.


Peptizers can be defined as chemicals that inhibit cross-linking during the processing of unsaturated polymers, and then further participates in the cross-linking of the unsaturated polymer when cross-linking does begin. The peptizer comprises an organic sulfur compound and/or its metal or non-metal salt. Examples of the organic sulfur compound include: thiophenols, such as pentachlorothiophenol and its metal and non-metal salts, 4-butyl-o-thiocresol, 4 t-butyl-p-thiocresol, and 2-benzamidothiophenol; thiocarboxylic acids, such as thiobenzoic acid; 4,4′ dithio dimorpholine; sulfides, such as dixylyl disulfide, dibenzoyl disulfide; dibenzothiazyl disulfide; di(pentachlorophenyl) disulfide; dibenzamido diphenyldisulfide (DBDD); and alkylated phenol sulfides, such as VULTAC marketed by Atofina Chemicals, Inc. of Philadelphia, Pa. Examples of the metal salts of an organic sulfur compound include zinc salts of the above-mentioned thiophenols and thiocarboxylic acids. Examples of non-metal salts of an organic sulfur compound include the amine or ammonium salts of the above-mentioned thiophenols and thiocarboxylic acids. Preferred peptizers include pentachlorothiophenol, its metal salts and its non-metal salts, and dibenzamido diphenyldisulfide. Peptizers can be used alone or in an admixture of two or more peptizers. When the golf ball core composition includes a peptizer, the composition has greater than about 0.1 part by weight of the peptizer per 100 parts the unsaturated polymer.


Accelerators, which can be defined as chemicals that increase the vulcanization rate and/or decrease the vulcanization temperature of the unsaturated polymers, can be of any class known for rubber processing including mercapto-, sulfenamide-, thiuram, dithiocarbamate, dithiocarbamylsulfenamide, xanthate, guanidine, amine, thiourea, and dithiophosphate accelerators. Specific commercial accelerators include 2-merpatobenzothiazole and its metal or non-metal salts such as Vulkacit Mercapto C, Mercapto MGC, Mercapto ZM-5, and ZM marketed by Bayer AG of Leverkusen, Germany; Nocceler M, Nocceler MZ, and Nocceler M-60 marketed by Ouchisinko Chemical Industrial Company, Ltd. of Tokyo, Japan; and MBT and ZMBT marketed by Akrochem Corporation of Akron, Ohio. A more complete list of commercially available accelerators is given in The Vanderbilt Rubber Handbook: 13th Edition (1990, R.T. Vanderbilt Co.), pp. 296-330, the Encyclopedia of Polymer Science and Technology, Vol. 12 (1970, John Wiley & Sons), pp. 258-259, and the Rubber Technology Handbook (1980, Hanser/Gardner Publications), pp. 234-236. Preferred accelerators include 2-mercaptobenzothiazole (MBT) and its salts. The golf ball core composition can incorporate greater than about 0.1 part by weight of the accelerator per 100 parts by weight of the unsaturated polymer.


Suitable cross-linking agents for use in the golf ball cores 12 of the present invention include any sulfur compounds, peroxides, or other known chemical cross-linking agents, as well as mixtures of these. Non-limiting examples of suitable cross-linking agents include primary, secondary, or tertiary aliphatic or aromatic peroxides. Peroxides containing more than one peroxy group can be used, such as 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane and 1,4-di-(2-tert-butyl peroxyisopropyl)benzene. Both symmetrical and asymmetrical peroxides can be used, for example, tert-butyl perbenzoate and tert-butyl cumyl peroxide. Peroxides incorporating carboxyl groups also are suitable. The cross-linking agent can be an organic peroxide, or a mixture of organic peroxides. When the golf ball core includes a mixture of organic peroxides, each organic peroxide can have a different activation temperature. The decomposition of peroxides used as cross-linking agents in the present invention can be brought about by applying thermal energy, shear, irradiation, reaction with other chemicals, or any combination of these.


Both homolytically and heterolytically decomposed peroxide can be used in the golf ball cores 12 of the present invention. Non-limiting examples of suitable peroxides include: diacetyl peroxide; di-tert-butyl peroxide; dibenzoyl peroxide; dicumyl peroxide; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane; 1,4-bis-(t-butylperoxyisopropyl)benzene, t-butylperoxybenzoate; 2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3; 1,1-bis(t-butylperoxy)-3,3,5 tri-methylcyclohexane, such as Varox 231-XL, marketed by R.T. Vanderbilt Co., Inc. of Norwalk, Conn.; di-(2,4-dichlorobenzoyl)peroxide; and mixtures thereof. The cross-linking agent can be blended in amounts greater than about 0.1 part per hundred of the cross-linking agent per 100 parts by weight of the unsaturated polymer.


The metal salt of unsaturated carboxylic acid can be blended with the rubber of the golf ball core 12 as a co-cross-linking agent. Examples of these include zinc and magnesium salts of unsaturated fatty acids having 3 to 8 carbon atoms, such as acrylic acid, methacrylic acid, maleic acid, palmitic acid, and fumaric acid, with the zinc salts of acrylic and methacrylic acid being most preferred. The unsaturated carboxylic acid metal salt can be blended in a rubber either as a preformed metal salt, or by introducing an α,β-unsaturated carboxylic acid and a metal oxide or hydroxide into the rubber composition, and allowing them to react in the rubber composition to form a metal salt. The unsaturated carboxylic acid metal salt can be blended in any desired amount, but preferably in amounts of about 20 parts to about 60 parts by weight of the unsaturated carboxylic acid per 100 parts by weight of the unsaturated polymer.


Besides the use of chemical cross-linking agents, exposure of the golf ball core composition to radiation also can serve as a cross-linking agent, with or without a chemical cross-linking agent. Radiation can be applied to the unsaturated polymer and peptizer mixture, with or without a chemical cross-linking agent, by any known method, including using microwave or gamma radiation, or an electron beam device.


Golf ball cores 12 within the scope of the present invention also can include, in suitable amounts, one or more additional ingredients generally employed in golf ball compositions. Agents provided to achieve specific functions, such as additives and stabilizers, can be present. Suitable ingredients include initiators, colorants, UV stabilizers, photo stabilizers, antioxidants, dispersants, mold releasing agents, processing aids, fillers, and fibers. The golf ball core compositions can incorporate, for example, inorganic fillers, such as titanium dioxide, calcium carbonate, zinc sulfide, or zinc oxide. Additional fillers can be chosen to adjust the density of the golf ball core composition, such as zinc oxide, barium sulfate, tungsten, or any other metallic powder having a density higher than that of the base polymeric resin. Any organic, inorganic, or metallic fibers, either continuous or non-continuous, also can be in the composition. An example of these is silica-containing filler, which preferably is selected from finely divided, heat-stable minerals, such as fumed and precipitated forms of silica, silica aerogels, and titanium dioxide having a specific surface area of at least about 10 m2/gram. Preferred examples of fillers include metal oxides, such as zinc oxide and magnesium oxide. The filler can be blended in amounts of about 10 parts by weight per 100 parts by weight of the unsaturated polymer. If desired, the rubber composition can additionally contain a plasticizer, an antioxidant, and any other additives generally employed in the preparation of one-piece balls or the cores of multi-layered balls. The appropriate amounts for these materials can be readily determined without undue experimentation.


In yet another more detailed feature of this invention, the composition of the core 12 or core components, i.e., the core center piece 18 and the core layer(s) 20, can include one or more nanofillers in the thermoplastic or thermoset matrix polymer. Nanofiller includes particles of inorganic material having a largest dimension that is about one micron or less, and the largest dimension is at least an order of magnitude greater than the particle's smallest dimension. Inorganic nanofiller material generally is made of clay, such as hydrotalcite, phyllosilicate, saponite, hectorite, beidellite, stevensite, vermiculite, halloysite, mica, montmorillonite, micafluoride, or octosilicate. Examples of commercial nanofillers include various Cloisite grades including 10 A, 15 A, 20 A, 25 A, 30 B, and NA+ from Southern Clay Products of Gonzales, Tex.; and the Nanomer grades including 1.24TL and C.30EVA from Nanocor, Inc. of Arlington Heights, Ill. The nanofiller is present in the thermoplastic or thermoset polymer in an amount of about 0.1% to about 20%, more preferably from about 0.1% to about 15%, even more preferably from about 0.1% to about 10%, and most preferably from about 0.5% to about 5% by weight.


The nanofiller material can be incorporated into the polymer either by dispersion into the particular monomer or oligomer prior to polymerization, or by melt compounding of the particles into the matrix polymer. The nanofiller can be dispersed in the thermoplastic or thermoset matrix polymer in an intercalated or exfoliated manner. To facilitate incorporation of the nanofiller material into the polymer material, either during the preparation of the nanocomposite materials or during the preparation of the polymer-based golf ball compositions, the nanofiller particles, e.g., particles of clay, generally are coated or treated by a suitable compatibilizing agent. The compatibilizing agent allows for superior linkage between the inorganic and organic material, and it also can account for the hydrophilic nature of the inorganic nanofiller material and the possibly hydrophobic nature of the polymer. Compatibilizing agents can exhibit a variety of different structures depending upon the nature of both the inorganic nanofiller material and the target matrix polymer. Non-limiting examples of compatibilizing agents include hydroxy-, thiol-, amino-, epoxy-, carboxylic acid-, ester-, amide-, and siloxy-group containing compounds, oligomers, or polymers.


As mentioned above, the nanofiller particles have an aggregate structure with the aggregate particle's size in the micron range and above. These aggregates have a stacked plate structure, with the individual platelets being roughly 1 nanometer (“nm”) thick and 100 nm to 1000 nm across. As a result, nanofillers can have extremely large values of surface area, resulting in high reinforcement efficiency to the material at low loading levels of the particles. The sub-micron-sized particles enhance the stiffness of the material, without increasing its weight or opacity, and without reducing the material's low-temperature toughness.


Nanofillers can be mixed into a matrix polymer in three ways. In one type of mixing there is dispersion of the aggregate structures within the matrix polymer, but, during mixing, no interaction of the matrix polymer with the aggregate platelet structure occurs. Thus, the stacked platelet structure is essentially maintained. This type of mixing is referred to as “undispersed.”


However, if the nanofiller material is selected correctly, the matrix polymer chains can penetrate into the aggregates, and separate the platelets. Thus, when viewed by transmission electron microscopy (“TEM”) or x-ray diffraction, the aggregates of platelets are expanded. When this occurs, the nanofiller is said to be substantially evenly dispersed within, and reacted into, the structure of the matrix polymer. This level of expansion can occur to differing degrees. If small amounts of the matrix polymer are layered between the individual platelets then, this type of mixing is referred to as “intercalation.”


In some cases, further penetration of the matrix polymer chains into the aggregate structure separates the platelets, and leads to a complete breaking up of the platelet's stacked structure in the aggregate. Thus, when viewed by a TEM, the individual platelets are mixed thoroughly throughout the matrix polymer. This type of mixing is referred to as “exfoliated.” The platelets of an exfoliated nanofiller are dispersed fully throughout the polymer matrix. Preferably the platelets are dispersed evenly throughout the polymer matrix, however, the platelets can be dispersed unevenly.


While not wishing to be limited to any theory, one possible explanation of the differing degrees of dispersion of such nanofillers within the matrix polymer structure is the effect of the compatibilizer surface coating on the interaction between the nanofiller platelet structure and the matrix polymer. By careful selection of the nanofiller it is possible to vary the penetration of the matrix polymer into the platelet structure of the nanofiller on mixing. Thus, the degree of interaction and intrusion of the polymer matrix into the nanofiller controls the separation and dispersion of the individual platelets of the nanofiller within the polymer matrix. This interaction of the polymer matrix and the platelet structure of the nanofiller is referred to as the nanofiller “reacting into the structure of the polymer,” and the subsequent dispersion of the platelets within the polymer matrix is referred to as the nanofiller “being substantially evenly dispersed” within the structure of the polymer matrix.


If no compatibilizer is present on the surface of a filler, e.g., a clay, or if an attempt is made to coat the filler with the compatibilizer after its addition to the polymer matrix, then the penetration of the matrix polymer into the nanofiller is much less efficient. In these instances, very little separation, and no dispersion, of the individual platelets occurs within the matrix polymer.


The physical properties of the polymer change with the addition of a nanofiller, and the physical properties of the polymer are expected to improve even more as the nanofiller is dispersed into the polymer matrix to form a nanocomposite. Materials incorporating nanofiller materials can provide these property improvements at much lower densities than materials incorporating conventional fillers. For example, a nylon-6 nanocomposite material manufactured by RTP Corporation of Wichita, Kans. uses a 3% to 5% clay loading, and has a tensile strength of 11,800 psi and a specific gravity of 1.14. In contrast, a conventional 30% mineral-filled material has a tensile strength of 8,000 psi and a specific gravity of 1.36. Because the use of nanocomposite materials with lower loadings of inorganic materials than conventional fillers provides the same or similar properties, the use of nanofillers allows products to be lighter than those incorporating conventional fillers, while maintaining those same properties.


Nanocomposite materials are materials that include from about 0.1% to about 20%, preferably from about 0.1% to about 15%, and most preferably from about 0.1% to about 10% of nanofiller reacted into, and substantially dispersed through intercalation or exfoliation into, the structure of an organic material, such as a polymer, to provide strength, temperature resistance, and other property improvements to the resulting composite. Descriptions of particular nanocomposite materials and their manufacture can be found in U.S. Pat. No. 5,962,553 to Ellsworth, U.S. Pat. No. 5,385,776 to Maxfield et al., and U.S. Pat. No. 4,894,411 to Okada et al. Examples of nanocomposite materials currently marketed include M1030D manufactured by Unitika Limited, of Osaka, Japan, and 1015C2 manufactured by UBE America of New York, N.Y.


When nanocomposites are blended with other polymer systems, the nanocomposite can be considered a type of nanofiller concentrate. However, in general, a nanofiller concentrate can be considered a polymer into which nanofiller is mixed. A nanofiller concentrate does not require that the nanofiller has been reacted and/or dispersed evenly into the carrier polymer.


The above described golf ball core composition can be used in the core of two-piece, three-piece, and multi-layered golf balls 10. The golf ball intermediate layer(s) 24 and golf ball cover layer 22 can incorporate one or more polymers. Examples of suitable additional polymers for use in the intermediate layer(s) and/or cover layer of the present invention include, but are not limited to, the following: thermoplastic elastomer, thermoset elastomer, synthetic rubber, thermoplastic vulcanizate, copolymeric ionomer, terpolymeric ionomer, polycarbonate, polyolefin, polyamide, copolymeric polyamide, polyesters, polyvinyl alcohols, acrylonitrile-butadiene-styrene copolymers, polyarylate, polyacrylate, polyphenylene ether, impact-modified polyphenylene ether, high impact polystyrene, diallyl phthalate polymer, metallocene catalyzed polymers, styrene-acrylonitrile (SAN) (including olefin-modified SAN and acrylonitrile-styrene-acrylonitrile), styrene-maleic anhydride (S/MA) polymer, styrenic copolymer, functionalized styrenic copolymer, functionalized styrenic terpolymer, styrenic terpolymer, cellulose polymer, liquid crystal polymer (LCP), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymers (EVA), ethylene-propylene copolymer, ethylene vinyl acetate, polyurea, and polysiloxane or any metallocene-catalyzed polymers of these species.


Suitable polyamides for use as an additional material in the golf ball's intermediate layer(s) 24 and/or cover layer 22 within the scope of the present invention also include resins obtained by: (1) polycondensation of (a) a dicarboxylic acid, such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, or 1,4-cyclohexanedicarboxylic acid, with (b) a diamine, such as ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, or decamethylenediamine, 1,4-cyclohexyldiamine, or m-xylylenediamine; (2) a ring-opening polymerization of cyclic lactam, such as s-caprolactam or ω-laurolactam; (3) polycondensation of an aminocarboxylic acid, such as 6-aminocaproic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, or 12-aminododecanoic acid; or (4) copolymerization of a cyclic lactam with a dicarboxylic acid and a diamine. Specific examples of suitable polyamides include Nylon 6, Nylon 66, Nylon 610, Nylon 11, Nylon 12, copolymerized Nylon, Nylon MXD6, and Nylon 46.


Other preferred materials suitable for use as an additional material in golf ball compositions included in the intermediate layer(s) 24 and/or cover layer 22 within the scope of the present invention include polyester elastomers marketed under the tradename SKYPEL by SK Chemicals of South Korea, or diblock or triblock copolymers marketed under the tradename SEPTON by Kuraray Corporation of Kurashiki, Japan, and KRATON by Kraton Polymers Group of Companies of Chester, United Kingdom.


Silicone materials also are well suited for blending into the compositions of the intermediate layer(s) 24 and/or cover layer 22 within the scope of the present invention. These may be monomers, oligomers, prepolymers, or polymers, with or without additional reinforcing filler. One type of silicone material that is suitable can incorporate at least 1 alkenyl group having at least 2 carbon atoms in their molecules. Examples of these alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, hexenyl, and decenyl. The alkenyl functionality may be located at any location of the silicone structure, including one or both terminals of the structure. The remaining (i.e., non-alkenyl) silicon-bonded organic groups in this component are independently selected from hydrocarbon or halogenated hydrocarbon groups that contain no aliphatic unsaturation. Non-limiting examples of these include: alkyl groups, such as methyl, ethyl, propyl, butyl, pentyl, and hexyl; cycloalkyl groups, such as cyclohexyl and cycloheptyl; aryl groups, such as phenyl, tolyl and xylyl; aralkyl groups, such as benzyl and phenethyl; and halogenated alkyl groups, such as 3,3,3-trifluoropropyl and chloromethyl.


Another type of silicone material suitable for use in the present invention is one having hydrocarbon groups that lack aliphatic unsaturation. Specific examples of suitable silicones for use in making compositions of the present invention include the following: trimethylsiloxy-endblocked dimethylsiloxane-methylhexenylsiloxane copolymers; dimethylhexenlylsiloxy-endblocked dimethylsiloxane-methylhexenylsiloxane copolymers; trimethylsiloxy-endblocked dimethylsiloxane-methylvinylsiloxane copolymers; trimethylsiloxy-endblocked methylphenylsiloxane-dimethylsiloxane-methylvinylsiloxane copolymers; dimethylvinylsiloxy-endblocked dimethylpolysiloxanes; dimethylvinylsiloxy-endblocked dimthylsiloxane-methylvinlysiloxane copolymers; dimethylvinylsiloxy-endblocked methylphenylsiloxane-dimethylsiloxane-methylvinylsiloxane copolymers; and, the copolymers listed above, in which at least one end group is dimethylhydroxysiloxy. Commercially available silicones suitable for use in compositions within the scope of the present invention include Silastic by Dow Corning Corp. of Midland, Mich., Blensil by GE Silicones of Waterford, N.Y., and Elastosil by Wacker Silicones of Adrian, Mich.


Other types of copolymers also may be added to the compositions of the golf ball's intermediate layer(s) 24 and/or cover layer 22 within the scope of the present invention. Examples of copolymers comprising epoxy monomers and which are suitable for use within the scope of the present invention include styrene-butadiene-styrene block copolymers, in which the polybutadiene block contains an epoxy group, and styrene-isoprene-styrene block copolymers, in which the polyisoprene block contains epoxy. Commercially available examples of these epoxy functional copolymers include ESBS A1005, ESBS A1010, ESBS A1020, ESBS AT018, and ESBS AT019 marketed by Daicel Chemical Industries, Ltd.


Ionomers also are well suited for blending into the compositions of the intermediate layer(s) 24 and/or cover layer 22 within the scope of the present invention. Suitable ionomeric polymers (i.e., copolymer- or terpolymer-type ionomers) include α-olefin/unsaturated carboxylic acid copolymer-type ionomeric or terpolymer-type ionomeric resins. Copolymeric ionomers are obtained by neutralizing at least a portion of the carboxylic groups in a copolymer of an α-olefin and an α,β-unsaturated carboxylic acid having 3 to 8 carbon atoms, with a metal ion. Examples of suitable α-olefins include ethylene, propylene, 1-butene, and 1-hexene. Examples of suitable unsaturated carboxylic acids include acrylic, methacrylic, ethacrylic, α-chloroacrylic, crotonic, maleic, fumaric, and itaconic acid. Copolymeric ionomers include ionomers having varied acid contents and degrees of acid neutralization, neutralized by monovalent or bivalent cations discussed above.


Terpolymeric ionomers are obtained by neutralizing at least a portion of the carboxylic groups in a terpolymer of an α-olefin, and an α,β-unsaturated carboxylic acid having 3 to 8 carbon atoms and an α,β-unsaturated carboxylate having 2 to 22 carbon atoms with metal ion. Examples of suitable α-olefins include ethylene, propylene, 1-butene, and 1-hexene. Examples of suitable unsaturated carboxylic acids include acrylic, methacrylic, ethacrylic, α-chloroacrylic, crotonic, maleic, fumaric, and itaconic acid. Terpolymeric ionomers include ionomers having varied acid contents and degrees of acid neutralization, neutralized by monovalent or bivalent cations as discussed above. Examples of suitable ionomeric resins include those marketed under the name SURLYN manufactured by E.I. du Pont de Nemours & Company of Wilmington, Del., and IOTEK manufactured by Exxon Mobil Corporation of Irving, Tex.


Other types of copolymers also can be added to compositions within the scope of the present invention. Examples of copolymers comprising epoxy monomers and which are suitable for use within the scope of the present invention include styrene-butadiene-styrene block copolymers, in which the polybutadiene block contains an epoxy group, and styrene-isoprene-styrene block copolymers, in which the polyisoprene block contains epoxy. Commercially available examples of these epoxy functional copolymers include ESBS A1005, ESBS A1010, ESBS A1020, ESBS AT018, and ESBS AT019 marketed by Daicel Chemical Industries, Ltd. of Osaka, Japan.


The composition of the intermediate layer(s) 24 and/or the cover layer 22 can include one or more so-called “modified ionomers,” examples of which are described in U.S. Pat. Nos. 6,100,321, 6,329,458, and 6,616,552, and in U.S. Patent Application Publication No. 2003/0158312, the entire contents of these patents and patent application publication are incorporated by reference herein.


More specifically, the composition of the intermediate layer(s) 24 and/or the cover layer 22 includes one or more modified ionomeric polymers that are prepared by mixing the following:

    • a. an ionomeric polymer comprising ethylene, 5 to 25 weight percent (meth)acrylic acid, and 0 to 40 weight percent of a C1-C8 (meth)acrylate monomer, where the ionomeric polymer is neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof; and
    • b. one or more fatty acids, or metal salts of a fatty acid, where the metal is selected from the group consisting of calcium, sodium, zinc, lithium, barium, and magnesium, and where the fatty acid preferably is stearic acid.


The fatty or waxy acid salts utilized in the composition of the intermediate layer(s) 24 and/or the cover layer 22 are composed of a chain of alkyl groups containing about 4 to about 75 carbon atoms (usually even numbered) and characterized by a —COOH terminal group. The generic formula for all fatty and waxy acids above acetic acid is CH3(CH2)X COOH, where the carbon atom count includes the carboxyl group. The fatty or waxy acids utilized to produce the fatty or waxy acid salts that are incorporated into the composition of the intermediate layer(s) and/or the cover layer can be saturated or unsaturated, and they can be present in either solid, semi-solid, or liquid form.


Examples of suitable saturated fatty acids, i.e., fatty acids in which the carbon atoms of the alkyl chain are connected by single bonds, include, but are not limited to, stearic acid (C18, i.e., CH3(CH2)16COOH), palmitic acid (C16, i.e., CH3(CH2)14COOH), pelargonic acid (C9, i.e., CH3(CH2)7COOH), and lauric acid (C12, i.e., CH3(CH2)10COOH). An example of a suitable unsaturated fatty acids, i.e., a fatty acid having one or more double bonds between the carbon atoms in the alkyl chain, includes, but is not limited to, oleic acid (C13, i.e., CH3 (CH2)7CH:CH(CH2)7COOH).


The source of the metal ions used to produce the metal salts of the fatty or waxy acid salts that can be incorporated into the invention are generally metal salts that provide metal ions capable of neutralizing, to various extents, the carboxylic acid groups of the fatty acids. Example metal salts include the sulfate, carbonate, acetate, and hydroxylate salts of zinc, barium, calcium, and magnesium. Because the fatty acid salts utilized in the invention include various combinations of fatty acids neutralized with a large number of different metal ions, several different types of fatty acid salts can be utilized in the invention, including metal stearates, laureates, oleates, and palmitates, with calcium, zinc, sodium, and magnesium stearate being preferred, and with calcium and sodium stearate being most preferred.


The fatty or waxy acid, or metal salt of the fatty or waxy acid, is present in the modified ionomeric polymers in an amount in the range of preferably about 5 to about 45 weight percent (based on the total weight of the modified ionomeric polymer), more preferably about 7 to about 35 weight percent, and most preferably about 8 to about 20 weight percent. As a result of the addition of the one or more metal salts of a fatty or waxy acid, preferably about 40 to 100 percent, more preferably about 50 to 100 percent, and most preferably about 70 to 100 percent of the acidic groups in the final modified ionomeric polymer composition are neutralized by a metal ion. An example of such a modified ionomer polymer is DuPont® HPF-1000, available from E.I DuPont de Nemours and Co. Inc.


Other examples of modified ionomeric polymers for use in the composition of the intermediate layer(s) 24 and/or the cover layer 22 are those prepared by modifying (again with one or more metal salts of a fatty or waxy acid) ionomers based on the so-called bimodal ethylene/carboxylic acid polymers, as described in U.S. Pat. No. 6,562,906, the entire contents of which are incorporated by reference herein. These polymers are bimodal, because they result from the blending of two polymers having different molecular weights. The modified bimodal ionomeric polymers comprise:

    • a. a high molecular weight component having a molecular weight of about 80,000 to about 500,000, and including one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers, and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers; where the high molecular weight component is partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof;
    • b. a low molecular weight component having a molecular weight of about 2,000 to about 30,000, and including one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers; where the low molecular weight component is partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof; and
    • c. about 5 to about 45 weight percent (based on the total weight of the modified ionomeric polymer) of one or more fatty acids, or metal salts of a fatty acid, where the metal is selected from the group consisting of calcium, sodium, zinc, lithium, barium, and magnesium, and where the fatty acid preferably is stearic acid.


Again, the fatty or waxy acid salts utilized in the modified bimodal ionomeric polymers are composed of a chain of alkyl groups containing about 4 to about 75 carbon atoms (usually even numbered) and characterized by a —COOH terminal group. The generic formula for all fatty or waxy acids above acetic acid is CH3(CH2)X COOH, where the carbon atom count includes the carboxyl group. The fatty or waxy acids utilized to produce the fatty or waxy acid salts incorporated into the invention may be saturated or unsaturated, and they may be present in either solid, semi-solid, or liquid form.


Examples of suitable saturated fatty acids, i.e., fatty acids in which the carbon atoms of the alkyl chain are connected by single bonds, include, but are not limited to, stearic acid (C18, i.e., CH3(CH2)16COOH), palmitic acid (C16, i.e., CH3(CH2)14COOH), pelargonic acid (C9, i.e., CH3(CH2)7COOH), and lauric acid (C12, i.e., CH3(CH2)10COOH). An example of a suitable unsaturated fatty acid, i.e., a fatty acid having one or more double bonds between the carbon atoms in the alkyl chain, includes, but is not limited to, oleic acid (C13, i.e., CH3(CH2)7CH:CH(CH2)7COOH).


The source of the metal ions used to produce the metal salts of the fatty or waxy acid salts that are incorporated into the invention generally are metal salts that provide the metal ions capable of neutralizing, to various extents, the carboxylic acid groups of the fatty acids. Example metal salts include the sulfate, carbonate, acetate, and hydroxylate salts of zinc, barium, calcium, and magnesium. Because the fatty or waxy acid salts utilized in the invention include various combinations of fatty or waxy acids that are neutralized with a large number of different metal ions, several different types of fatty acid salts can be utilized in the invention, including metal stearates, laureates, oleates, and palmitates, with calcium, zinc, sodium, and magnesium stearate being preferred, and with calcium and sodium stearate being most preferred.


The fatty or waxy acid, or metal salt of the fatty or waxy acid, in the modified bimodal ionomeric polymers is present in an amount of preferably about 5 to about 45 weight percent (based on the total weight of the modified ionomeric polymer), more preferably about 7 to about 35 weight percent, and most preferably about 8 to about 20 weight percent. Again, as a result of the addition of the fatty or waxy acids, or one or more metal salts of a fatty or waxy acid, preferably about 40 to 100 percent, more preferably about 50 to 100 percent, and most preferably about 70 to 100 percent of the acidic groups in the final modified bimodal ionomeric polymer composition are neutralized by a metal ion.


Another example of a preferred ionomeric resin that can be included in the composition of the intermediate layer(s) 24 and/or the cover layer 22 is a blend including the reaction product of three components, (A), (B) and (C), which are characterized as follows:

    • a. Component (A) is a polymer comprising ethylene and/or an alpha olefin; and one or more α,β-ethylenically unsaturated C3-C20 carboxylic acids, sulfonic acids, or phosphoric acids.
    • b. Component (B) is a compound having a general formula (R2N)m—R′—(X(O)nORy)m, where R is either hydrogen, one or more C1-C20 aliphatic systems, one or more cycloaliphatic systems, one or more aromatic systems, or a combination thereof. Also R′ is a bridging group including one or more unsubstituted C1-C20 straight chain or branched aliphatic or alicyclic groups, one or more substituted straight chain or branched aliphatic or alicyclic groups, one or more aromatic groups, or one or more oligomers each containing up to 12 repeating units. X can be C or S or P, and m can be 1, 2, or 3. For example, when X is C, n can be 1, and y can be 1; and when X is S, n can be 2 and y can be 1; and when X is P, n can be 2, and y can be 2.
    • c. Finally, component (C) is a basic metal ion salt, which has the capacity to neutralize some, or all of the acidic group present in the blend of components (A) and (B).


In particular embodiments, component (A) is an ethylene/α,β-ethylenically unsaturated C3-C20 carboxylic acid copolymer or an ethylene/α,β-ethylenically unsaturated C3-C20 carboxylic acid/α,β-ethylenically unsaturated C3-C20 carboxylic acid ester terpolymer. Component (B) is present in an amount from about 0.1 to about 40 phr, and Component (C) is a basic metal ion salt having a cation selected from the group consisting of Li+, Na+, K+, Zn2+, Ca2+, Co2+, Ni2+, Cu2+, Pb2+, and Mg2+.


In more specific embodiments, component (A) is a unimodal ethylene/(meth)acrylic acid copolymer or ethylene/(meth)acrylic acid/(meth)acrylate terpolymer; or a bimodal polymer blend composition. The bimodal polymer blend can include a high molecular weight component having molecular weight of about 80,000 to about 500,000, and comprising one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers; which is partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and combinations thereof. The bimodal polymer blend also can include a low molecular weight component having a molecular weight from about 2,000 to about 30,000, and comprise one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers; the low molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and combinations thereof. Also, component (B) can be present in an amount from about 1 to about 20 phr, and can be selected from the group consisting of amino acids, polypeptides, carbamic acids, oxamic acids, anthranillic acids, and combinations thereof. Finally, component (C) can be a basic metal ion salt having a cation selected from the group consisting of Li+, Na+, K+, Zn2+, and Mg2+, and combinations thereof.


In a more detailed feature of the invention, component (A) can be a unimodal ethylene/(meth)acrylic acid copolymer or ethylene/(meth)acrylic acid/(meth)acrylate terpolymer. Also, component (B) can be present in an amount from about 1 to about 15 phr, and can be either 4,4′-methylene-bis-(cyclohexylamine)carbamate, 11-aminoundecanoicacid, 12-aminododecanoic acid, epsilon-caprolactam, omega-caprolactam, or combination thereof. Finally, component (C) can be either a metal formate, metal acetate, metal nitrate, metal carbonate, metal bicarbonate, metal oxide, metal hydroxide, metal alkoxides, or combinations thereof.


In other embodiments, one or more of the previously discussed nanofillers are included in the thermoplastic or thermoset matrix polymer of the golf ball intermediate layer(s) 24 or golf ball cover layer 22.


The golf ball core composition according to the present invention can be mixed together, with or without melting the components of the composition. Mixing equipment, such as a tumble mixer, V-blender, ribbon blender, or two-roll mill, can be used to mix the composition. The golf ball core compositions can be mixed using a mill, internal mixer, extruder, or combinations of these, with or without application of thermal energy to produce melting. The unsaturated polymer, peptizer, and/or accelerator can be mixed together with a cross-linking agent, or each additive can be added in an appropriate sequence to the unsaturated polymer, e.g., peptizer, then accelerator, and then cross-linking agent. In another method of manufacture of these compositions, the peptizer, accelerator, and/or cross-linking agent can be added to the unsaturated polymer as part of a concentrate using dry blending, roll milling, or melt mixing. If radiation is the cross-linking agent, then the mixture comprising the unsaturated polymer and peptizer, with or without any additional chemical cross-linking agent, can be irradiated following mixing, during forming the golf ball core 12, or after forming.


The manufacture of the golf ball cores 12 according to the present invention can be in accord with conventional methods and conditions of manufacture. A preferred method for making golf ball cores within the scope of the present invention includes rubber compounding with a two-roll mill; followed by extrusion, resulting in a single slug of material; and then followed by compression molding, preferably in a single compression molding step, to induce cross-linking of the core material. Additional steps that can be included in the process for making the golf ball cores within the scope of the present invention include the following steps: preparing the core composition using an extruder; injection molding the core composition in a heated mold to induce partial or full cross-linking of the core material; and/or using additional cross-linking methods, for example, thermal energy, e.g., a post-cure of the core; or radiational energy, e.g., irradiation of the core.


EXAMPLES
Example 1

Twelve batches of golf ball cores 12 having diameters of 1.48 inches or 1.58 inches, and suitable for use in golf balls 10 within the scope of the present invention, were prepared and tested for C.O.R.; compression (“C.C.”); and Shore D hardness and specific gravity, which were measured at the core's surface 14 and the core's center point 16. The cores each incorporated 100 parts per hundred (“pph”) of BR40, which is manufactured by Enichem of Rome, Italy; either 24.3 pph or 21.8 pph of ZnO; either 33.5 pph or 34.8 pph of SR638, which is manufactured by Sartomer Company; 0.61 pph of Varox 231XL, which is manufactured by R.T. Vanderbilt Company of Norwalk, Conn.; and 0.17 pph of Trigonox 145-45B, which is manufactured by Akzr Nobel Chemicals of Arnhem, Netherlands. The core compositions also include either 1 pph or 0.8 pph of NH4PCTP. Detailed composition information for the twelve cores is provided in Table 1a below.
















TABLE 1a










Varox
Trigonox




Diameter
BR40
ZnO
SR638
231XL
145-45B
NH4PCTP


Core #
(inches)
(pph)
(pph)
(pph)
(pph)
(pph)
(pph)






















1
1.48
100
24.3
33.5
0.61
0.17
1


2
1.48
100
24.3
33.5
0.61
0.17
1


3
1.48
100
24.3
33.5
0.61
0.17
1


4
1.48
100
24.3
33.5
0.61
0.17
1


5
1.48
100
24.3
33.5
0.61
0.17
1


6
1.58
100
21.8
34.8
0.61
0.17
0.8


7
1.58
100
21.8
34.8
0.61
0.17
0.8


8
1.58
100
21.8
34.8
0.61
0.17
0.8


9
1.58
100
21.8
34.8
0.61
0.17
0.8


10
1.58
100
21.8
34.8
0.61
0.17
0.8


11
1.58
100
21.8
34.8
0.61
0.17
0.8


12
1.58
100
21.8
34.8
0.61
0.17
0.8









The cores 12 were molded and cured at two different temperatures for various cure times, i.e., mold times. In addition to C.O.R. and C.C., the Shore D hardness and specific gravity values for the center point 16 and surface 14 of selected cores were measured as shown in Table 1b below. As shown in Table 1b, the value of C.O.R. and C.C. increased with cure time at 210° C. In fact, the properties of the cores that cured more than five minutes approach the properties of fully cured cores. Cores numbered 7-10 have a Shore D hardness difference between the core's surface and the core's center point of more than 15 units. The data for cores numbered 6-12 in Table 1b show that the specific gravity value measured at the core's center point gradually increases in value with the length of the cure time. For the core numbered 12, which cured for 10.5 minutes, the specific gravity values measured at the core's center point and the core's surface are almost the same value.

















TABLE 1b






Mold
Mold
Center
Surface
Center
Surface





Temp
Time
Hardness
Hardness
Specific
Specific


Core #
(° C.)
(min)
(Shore D)
(Shore D)
Gravity
Gravity
C.O.R.
C.C.























1
180
12.0

46

1.220
0.830
79


2
210
2.5

41






3
210
3.0

43

1.183
0.815
51


4
210
3.5

43

1.186
0.817
56


5
210
5.0

45


0.828
77


6
210
1.5


0.962
1.052




7
210
2.5
27
46
1.093
1.162
0.817
56


8
210
3.5
27
48
1.109
1.167
0.826
71


9
210
4.5
33
48
1.080
1.160
0.826
78


10
210
6.5
32
52
1.133
1.161
0.829
79


11
210
8.5


1.154
1.172
0.828
84


12
210
10.5


1.182
1.184
0.827
81









The data shows that by adjusting the composition of the golf ball core 12, and adjusting the curing time and temperature of the core, the difference in hardness and specific gravity between a golf ball core's surface 14 and center point 16 can be altered as well as the resulting golf ball's C.O.R. and compression values. This results in golf balls 10 having lower spin rates, low C.C., and high C.O.R. Advantageously, the present invention allows for the flexibility to adjust ball performance, such as, spin rate, hit-feel, and durability during manufacturing.


The foregoing detailed description of the present invention is provided for purposes of illustration, and it is not intended to be exhaustive or to limit the invention to the particular embodiments disclosed. The embodiments may provide different capabilities and benefits, depending on the configuration used to implement the key features of the invention.

Claims
  • 1. A golf ball, comprising: a golf ball core comprising a center point having a first hardness value, and an outer surface having a second hardness value, different from the first hardness value, wherein a gradient in hardness value between the first hardness value and the second hardness value across a radius of the golf ball core occurs in discrete increments, and wherein regions of the golf ball core having discrete hardness values are arranged concentrically about the center point;two or more intermediate layers enclosing the golf ball core, at least one of the intermediate layers comprising a block copolymer; anda cover layer comprising a thermoset elastomer.
  • 2. The golf ball according to claim 1, wherein the golf ball core has a point, along a radius between the center point and the outer surface, that has a third hardness value, different in value from the first hardness value and the second hardness value.
  • 3. The golf ball according to claim 2, wherein the third hardness value is intermediate the first hardness value and the second hardness value, the third hardness value is greater than the first hardness value, or wherein the third hardness value is greater than both the first hardness value and the second hardness value.
  • 4. The golf ball according to claim 1, wherein the golf ball core comprises an unsaturated polymer and a peptizer, selected from the group consisting of pentachlorothiophenol, a metal salt of pentachlorothiophenol, a non-metal salt of pentachlorothiophenol, and dibenzamido diphenyldisulfide.
  • 5. The golf ball according to claim 4, wherein the golf ball core further comprises a cross-linking agent selected from the group consisting of diacetyl peroxide, di-tert-butyl peroxide, dibenzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di-(benzoylperoxy)hexane, 1,4-bis-(t-butylperoxyisopropyl)benzene, t-butylperoxybenzoate, 2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3,1,1-bis-(t-butylperoxy)-3,3,5-trimethylcyclohexane, di-(2,4-dichlorobenzoyl)peroxide, and mixtures thereof.
  • 6. The golf ball according to claim 5, wherein the cross-linking agent is a mixture of organic peroxides, with each organic peroxide having a different activation temperature.
  • 7. The golf ball according to claim 1, wherein the golf ball core further comprises a nanofiller intercalated with the matrix polymer or exfoliated with the matrix polymer.
  • 8. The golf ball according to claim 7, wherein the nanofiller is a clay selected from the group consisting of hydrotalcite, montmorillonite, phyllosilicate, saponite, hectorite, beidellite, stevensite, vermiculite, halloysite, mica, micafluoride, and ostosilicate.
  • 9. The golf ball according to claim 1, wherein one or more of the intermediate layers enclosing the golf ball core include a polymer selected from the group consisting of thermoplastic elastomer, thermoset elastomer, synthetic rubber, thermoplastic vulcanizate, copolymeric ionomer, terpolymeric ionomer, modified ionomer, polycarbonate, polyolefin, polyamide, copolymeric polyamide, polyesters, polyvinyl alcohols, acrylonitrile-butadiene-styrene copolymers, polyarylate, polyacrylate, polyphenylene ether, impact-modified polyphenylene ether, high impact polystyrene, diallyl phthalate polymer, metallocene catalyzed polymers, functionalized styrenic copolymer, functionalized styrenic terpolymer, styrenic terpolymer, cellulose polymer, liquid crystal polymer (LCP), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymers (EVA), ethylene-propylene copolymer, ethylene vinyl acetate, polyurea, polysiloxane, and any metallocene-catalyzed polymers of these species.
  • 10. The golf ball according to claim 1, wherein one or more of the intermediate layers enclosing the golf ball core include a nanofiller clay selected from the group consisting of hydrotalcite, montmorillonite, phyllosilicate, saponite, hectorite, beidellite, stevensite, vermiculite, halloysite, mica, micafluoride, and ostosilicate and present in an amount between about 0.1% and about 20% by weight and said nanofiller is either intercalated or exfoliated within the polymer.
  • 11. The golf ball according to claim 9, wherein the modified ionomer is prepared by mixing: an ionomeric polymer comprising ethylene, 5 to 25 weight percent (meth)acrylic acid, and 0 to 40 weight percent of a C1-C8 (meth)acrylate monomer, where the ionomeric polymer is neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof; andone or more fatty acids, or metal salts of a fatty acid, where the metal is selected from the group consisting of calcium, sodium, zinc, lithium, barium, and magnesium.
  • 12. The golf ball according to claim 11 where the fatty acid comprises a chain of saturated or unsaturated alkyl groups comprising from about 4 to about 75 carbon atoms and a —COOH terminal group.
  • 13. The golf ball according to claim 11 where the fatty acid is stearic acid (C18, i.e., CH3(CH2)16COOH), palmitic acid (C16, i.e., CH3(CH2)14COOH), pelargonic acid (C9, i.e., CH3(CH2)7COOH), lauric acid (C12, i.e., CH3(CH2)10COOH) or oleic acid (CH3(CH2)7CH:CH(CH2)7COOH).
  • 14. The golf ball according to claim 11 where the fatty acid, or metal salt of the fatty acid, is present in the modified ionomeric polymer in an amount ranging from about 5 to about 45 weight percent based on the total weight of the modified ionomeric polymer.
  • 15. The golf ball according to claim 9 where the modified ionomer comprises: a high molecular weight component having a molecular weight of from about 80,000 to about 500,000, and including one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers, and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers, the high molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof;a low molecular weight component having a molecular weight of from about 2,000 to about 30,000, and including one or more ethylene/α,β-ethylenically unsaturated C3-8 carboxylic acid copolymers and/or one or more ethylene, alkyl(meth)acrylate, (meth)acrylic acid terpolymers, the low molecular weight component being partially neutralized with metal ions selected from the group consisting of lithium, sodium, zinc, calcium, magnesium, and mixtures thereof; andfrom about 5 to about 45 weight percent, based on the total weight of the modified ionomer, of one or more fatty acids, or metal salts of a fatty acid, where the metal is selected from the group consisting of calcium, sodium, zinc, lithium, barium, and magnesium.
  • 16. The golf ball according to claim 1 where the block copolymer is a styrene-butadiene-styrene block copolymer or a styrene-isoprene-styrene block copolymer.
  • 17. The golf ball according to claim 1 where the block copolymer comprises a polybutadiene block containing an epoxy group, or a polyisoprene block containing an epoxy group.
  • 18. The golf ball according to claim 1 comprising a 5-piece golf ball.
  • 19. The golf ball according to claim 1, wherein the thermoset elastomer is a thermoset polyurea.
  • 20. A method for forming a golf ball, comprising: providing a material that includes an unsaturated polymer and a peptizer;processing the material into a golf ball core that has a center point and an outer surface, the center point having a first hardness value and the outer surface having a second hardness value different from the first hardness value, thereby providing a gradient in hardness value that occurs in discrete increments across a radius of the golf ball core, the golf ball core further having golf ball core regions having discrete hardness values that are arranged concentrically about the center point;forming two or more intermediate layers that enclose the core, at least one of the intermediate layers comprising a block copolymer; andforming a cover layer that encloses the outermost intermediate layer, the cover layer comprising a thermoset elastomer.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation of U.S. patent application Ser. No. 12/898,038, filed Oct. 5, 2010 now U.S. Pat. No. 8,113,966, which is a continuation of U.S. patent application Ser. No. 11/339,981, filed Jan. 25, 2006, now issued as U.S. Pat. No. 7,819,761, which claims the benefit of the earlier filing date of U.S. Provisional Patent Application No. 60/647,073, filed Jan. 26, 2005, and all prior applications are hereby incorporated by reference.

US Referenced Citations (310)
Number Name Date Kind
3264272 Rees et al. Aug 1966 A
3265272 Smith Aug 1966 A
3359231 George Dec 1967 A
3388186 Kray et al. Jun 1968 A
3454280 Harrison et al. Jul 1969 A
3465059 Seven et al. Sep 1969 A
3492245 Calderon et al. Jan 1970 A
3528936 Kent et al. Sep 1970 A
3560573 Hayden et al. Feb 1971 A
3634543 Sherman Jan 1972 A
3726835 Bertozzi Apr 1973 A
3804803 Streck et al. Apr 1974 A
3819768 Molitor Jun 1974 A
3974092 Streck et al. Aug 1976 A
3974238 Schweiker et al. Aug 1976 A
3989568 Isaac Nov 1976 A
4035438 Nielinger et al. Jul 1977 A
4104216 Clampitt Aug 1978 A
4115475 Foy et al. Sep 1978 A
4123061 Dusbiber Oct 1978 A
4153772 Schwesig et al. May 1979 A
4183876 Coran et al. Jan 1980 A
4195015 Deleens et al. Mar 1980 A
4217430 Starkweather et al. Aug 1980 A
4230828 Caul, Jr. et al. Oct 1980 A
4230838 Foy et al. Oct 1980 A
4248432 Hewitt et al. Feb 1981 A
4331786 Foy et al. May 1982 A
4332920 Foy et al. Jun 1982 A
4349657 Halloway Sep 1982 A
4404325 Mason et al. Sep 1983 A
4431193 Nesbitt Feb 1984 A
4482663 Kraus Nov 1984 A
4546980 Gendreau et al. Oct 1985 A
4611810 Kamata et al. Sep 1986 A
4692497 Gendreau et al. Sep 1987 A
4726590 Molitor Feb 1988 A
4728693 Dröscher et al. Mar 1988 A
4755552 Jadamus et al. Jul 1988 A
4762322 Molitor et al. Aug 1988 A
4781383 Kamada et al. Nov 1988 A
4792141 Llort Dec 1988 A
4798386 Berard Jan 1989 A
4838556 Sullivan Jun 1989 A
4839441 Cuzin et al. Jun 1989 A
4840993 Bartz Jun 1989 A
4844471 Terence et al. Jul 1989 A
4852884 Sullivan Aug 1989 A
4864014 Cuzin et al. Sep 1989 A
4865326 Isaac et al. Sep 1989 A
4884814 Sullivan Dec 1989 A
4894411 Okada et al. Jan 1990 A
4950826 Zerpner et al. Aug 1990 A
4955966 Yuki Sep 1990 A
4998734 Meyer Mar 1991 A
5007647 Gulick Apr 1991 A
5064199 Morell Nov 1991 A
5130372 Lences et al. Jul 1992 A
5150905 Yuki et al. Sep 1992 A
5228697 Gulick et al. Jul 1993 A
5252652 Egashira et al. Oct 1993 A
5253871 Viollaz Oct 1993 A
5301951 Morell Apr 1994 A
5306760 Sullivan Apr 1994 A
5312857 Sullivan May 1994 A
5324783 Sullivan Jun 1994 A
5330195 Gulick Jul 1994 A
5334673 Wu Aug 1994 A
5384385 Trinks et al. Jan 1995 A
5385776 Maxfield et al. Jan 1995 A
5424006 Murayama et al. Jun 1995 A
5436295 Nishikawa et al. Jul 1995 A
5460367 Horiuchi Oct 1995 A
5484870 Wu Jan 1996 A
5496035 Gilchrist et al. Mar 1996 A
5542680 Proudfit et al. Aug 1996 A
5609535 Morgan Mar 1997 A
5651741 Masutani et al. Jul 1997 A
5688869 Sullivan Nov 1997 A
5691066 Rajagopalan Nov 1997 A
5692974 Wu et al. Dec 1997 A
5733205 Higuchi et al. Mar 1998 A
5766097 Horiuchi et al. Jun 1998 A
5776012 Moriyama et al. Jul 1998 A
5779561 Sullivan et al. Jul 1998 A
5789475 Chen Aug 1998 A
5810677 Maruko et al. Sep 1998 A
5810678 Cavallaro et al. Sep 1998 A
5816943 Masutani et al. Oct 1998 A
5833553 Sullivan et al. Nov 1998 A
5886103 Bellinger et al. Mar 1999 A
5948862 Sano et al. Sep 1999 A
5959059 Vedula et al. Sep 1999 A
5962533 Bergeron, Jr. Oct 1999 A
5962553 Ellsworth Oct 1999 A
5973046 Chen et al. Oct 1999 A
5985370 Ohira et al. Nov 1999 A
5989135 Welch Nov 1999 A
5989136 Renard et al. Nov 1999 A
6012991 Kim et al. Jan 2000 A
6012992 Yavitz Jan 2000 A
6037419 Takesue et al. Mar 2000 A
6042489 Renard et al. Mar 2000 A
6060549 Li et al. May 2000 A
6068561 Renard et al. May 2000 A
6083119 Sullivan et al. Jul 2000 A
6100321 Chen Aug 2000 A
6117024 Dewanjee Sep 2000 A
6117025 Sullivan Sep 2000 A
6142887 Sullivan et al. Nov 2000 A
6162135 Bulpett et al. Dec 2000 A
6180722 Dalton et al. Jan 2001 B1
6183382 Kim et al. Feb 2001 B1
6193617 Mertens Feb 2001 B1
6203451 Rajagopalan Mar 2001 B1
6255361 Rajagopalan et al. Jul 2001 B1
6309706 Maruoka et al. Oct 2001 B2
6315681 Sullivan Nov 2001 B1
6329458 Takesue et al. Dec 2001 B1
6361455 Takemura Mar 2002 B1
6368237 Sullivan Apr 2002 B1
6416424 Sullivan Jul 2002 B2
6419594 Nesbitt et al. Jul 2002 B1
6426387 Kim Jul 2002 B1
6435986 Wu et al. Aug 2002 B1
6454666 Shira Sep 2002 B1
6462303 Brown Oct 2002 B1
6476176 Wu Nov 2002 B1
6485378 Boehm Nov 2002 B1
6503156 Sullivan Jan 2003 B1
6506130 Sullivan Jan 2003 B2
6508724 Dalton Jan 2003 B2
6508725 Kim Jan 2003 B1
6520871 Sullivan et al. Feb 2003 B1
6525157 Cozewith et al. Feb 2003 B2
6537158 Watanabe Mar 2003 B2
6558277 Ohira et al. May 2003 B1
6562906 Chen May 2003 B2
6569037 Ichikawa et al. May 2003 B2
6582326 Wu et al. Jun 2003 B2
6592472 Dewanjee Jul 2003 B2
6610812 Wu et al. Aug 2003 B1
6616552 Takesue et al. Sep 2003 B2
6635715 Datta et al. Oct 2003 B1
6635716 Voorheis et al. Oct 2003 B2
6639024 Simonds et al. Oct 2003 B2
6642316 Datta et al. Nov 2003 B1
6649678 Sandstrom Nov 2003 B1
6653382 Statz et al. Nov 2003 B1
6653403 Dalton et al. Nov 2003 B2
6692379 Morgan et al. Feb 2004 B2
6695718 Nesbitt Feb 2004 B2
6719646 Calabria et al. Apr 2004 B2
6762244 Rajagopalan et al. Jul 2004 B2
6762273 Dewanjee Jul 2004 B2
6770360 Mientus et al. Aug 2004 B2
6776942 Kim Aug 2004 B2
6777472 Statz et al. Aug 2004 B1
6780126 Ladd et al. Aug 2004 B2
6780127 Kennedy, III Aug 2004 B2
6793864 Dewanjee et al. Sep 2004 B1
6794447 Kim et al. Sep 2004 B1
6812276 Yeager Nov 2004 B2
6815480 Statz et al. Nov 2004 B2
6835146 Jordan et al. Dec 2004 B2
6852784 Sullivan Feb 2005 B2
6861474 Kim Mar 2005 B2
6872782 Sullivan et al. Mar 2005 B2
6878075 Kim Apr 2005 B2
6894098 Rajagopalan et al. May 2005 B2
6903178 Wu et al. Jun 2005 B2
6905423 Morgan et al. Jun 2005 B2
6919395 Rajagopalan et al. Jul 2005 B2
6924337 Kim et al. Aug 2005 B2
6930150 Kim Aug 2005 B2
6939924 Kim et al. Sep 2005 B2
6949595 Morgan et al. Sep 2005 B2
6951519 Dewanjee et al. Oct 2005 B2
6960629 Voorheis et al. Nov 2005 B2
6962951 Takesue et al. Nov 2005 B1
6974854 Dewanjee Dec 2005 B2
7001286 Kim et al. Feb 2006 B2
7026399 Kim et al. Apr 2006 B2
7037985 Kim et al. May 2006 B2
7041769 Wu et al. May 2006 B2
7070518 Kennedy, III Jul 2006 B2
7163471 Kim et al. Jan 2007 B2
7169861 Kim et al. Jan 2007 B2
7182703 Emerson et al. Feb 2007 B2
7208546 Rajagopalan et al. Apr 2007 B2
7226961 Park et al. Jun 2007 B2
7230127 Sage et al. Jun 2007 B2
7242443 Sage et al. Jul 2007 B2
7261647 Sullivan et al. Aug 2007 B2
7265195 Kuntimaddi et al. Sep 2007 B2
7276570 Kuntimaddi et al. Oct 2007 B2
7314896 Rajagopalan et al. Jan 2008 B2
7332533 Kim et al. Feb 2008 B2
7378483 Wu et al. May 2008 B2
7462113 Kim et al. Dec 2008 B2
7491136 Deng et al. Feb 2009 B2
7528196 Kim et al. May 2009 B2
7534838 Kim et al. May 2009 B2
7687116 Kim et al. Mar 2010 B2
7767759 Kim Aug 2010 B2
7819761 Kim et al. Oct 2010 B2
7874940 Kim et al. Jan 2011 B2
7878926 Kim et al. Feb 2011 B2
20010005699 Morgan et al. Jun 2001 A1
20010019971 Hayashi et al. Sep 2001 A1
20010031669 Ohama Oct 2001 A1
20010046906 Rajagopalan et al. Nov 2001 A1
20020040111 Rajagopalan Apr 2002 A1
20020045499 Takemura et al. Apr 2002 A1
20020049099 Peter Apr 2002 A1
20020061792 Yagley et al. May 2002 A1
20020065149 Tzivanis et al. May 2002 A1
20020193181 Kennedy et al. Dec 2002 A1
20030008975 Takesue et al. Jan 2003 A1
20030012902 Kim et al. Jan 2003 A1
20030017888 Higuchi et al. Jan 2003 A1
20030050373 Chen Mar 2003 A1
20030060307 Umezawa et al. Mar 2003 A1
20030064826 Voorheis et al. Apr 2003 A1
20030069087 Ichikawa et al. Apr 2003 A1
20030078348 Rajagopalan et al. Apr 2003 A1
20030096661 Kim May 2003 A1
20030119989 Ladd et al. Jun 2003 A1
20030130052 Kim Jul 2003 A1
20030130066 Sasai Jul 2003 A1
20030158312 Chen Aug 2003 A1
20030224871 Kim et al. Dec 2003 A1
20030228937 Dewanjee Dec 2003 A1
20030229183 Voorheis et al. Dec 2003 A1
20040019138 Voorheis et al. Jan 2004 A1
20040044136 Kim et al. Mar 2004 A1
20040059062 Kim Mar 2004 A1
20040082408 Sullivan et al. Apr 2004 A1
20040092336 Kim et al. May 2004 A1
20040097653 Kim et al. May 2004 A1
20040106474 Hayashi et al. Jun 2004 A1
20040161623 Domine et al. Aug 2004 A1
20040176185 Morgan et al. Sep 2004 A1
20040176188 Morgan et al. Sep 2004 A1
20040180733 Kim Sep 2004 A1
20040201133 Dewanjee et al. Oct 2004 A1
20040209708 Bulpett et al. Oct 2004 A1
20040230005 Voorheis et al. Nov 2004 A1
20040230006 Voorheis et al. Nov 2004 A1
20040230007 Voorheis et al. Nov 2004 A1
20040233347 Sage et al. Nov 2004 A1
20040235584 Chao et al. Nov 2004 A1
20040236030 Kim et al. Nov 2004 A1
20040245503 Sage et al. Dec 2004 A1
20040248669 Kim et al. Dec 2004 A1
20040248670 Okamoto et al. Dec 2004 A1
20040248671 Kim et al. Dec 2004 A1
20040248672 Jeon et al. Dec 2004 A1
20040254298 Kim et al. Dec 2004 A1
20040266553 Park et al. Dec 2004 A1
20040266554 Park et al. Dec 2004 A1
20040266555 Park et al. Dec 2004 A1
20050020385 Onoda et al. Jan 2005 A1
20050026724 Deshmukh Feb 2005 A1
20050037870 Sullivan et al. Feb 2005 A1
20050059756 Kim et al. Mar 2005 A1
20050075196 Shimizu et al. Apr 2005 A1
20050148409 Morgan et al. Jul 2005 A1
20050148725 Statz et al. Jul 2005 A1
20050197211 Sullivan et al. Sep 2005 A1
20050197464 Handlin, Jr. Sep 2005 A1
20050197465 Handlin, Jr. Sep 2005 A1
20050215963 Autran et al. Sep 2005 A1
20050215964 Autran et al. Sep 2005 A1
20050239575 Chao et al. Oct 2005 A1
20050244638 Chang et al. Nov 2005 A1
20050245652 Bulpett et al. Nov 2005 A1
20050250601 Kim et al. Nov 2005 A1
20050256276 Elkin et al. Nov 2005 A1
20050261424 Snell et al. Nov 2005 A1
20050288446 Zieske et al. Dec 2005 A1
20060014898 Kim Jan 2006 A1
20060030427 Kim et al. Feb 2006 A1
20060166761 Kim et al. Jul 2006 A1
20060166762 Kim et al. Jul 2006 A1
20060172823 Loper et al. Aug 2006 A1
20060247074 Kim et al. Nov 2006 A1
20070015605 Kim et al. Jan 2007 A1
20070054754 Kim et al. Mar 2007 A1
20070100085 Kim et al. May 2007 A1
20070142568 Kim et al. Jun 2007 A1
20070213144 Comeau et al. Sep 2007 A1
20070232756 Kim et al. Oct 2007 A1
20070238552 Kim et al. Oct 2007 A1
20070243954 Sullivan et al. Oct 2007 A1
20080009371 Mayer, Jr. Jan 2008 A1
20080090678 Kim et al. Apr 2008 A1
20080139334 Willett et al. Jun 2008 A1
20080146374 Beach et al. Jun 2008 A1
20080176677 Snell et al. Jul 2008 A1
20080214326 Kim et al. Sep 2008 A1
20080274825 Kim et al. Nov 2008 A1
20090023518 Kim et al. Jan 2009 A1
20090163298 Kim Jun 2009 A1
20090166924 Kuttappa Jul 2009 A1
20090170634 Loper et al. Jul 2009 A1
20090176601 Snell et al. Jul 2009 A1
20090191981 Kim et al. Jul 2009 A1
20100160081 Kim et al. Jun 2010 A1
20100179002 Kim et al. Jul 2010 A1
Foreign Referenced Citations (39)
Number Date Country
0 342 244 Nov 1989 EP
0 577 058 Jan 1994 EP
0 601 861 Jun 1994 EP
2 278 609 Dec 1994 GB
2 320 439 Jun 1998 GB
59157122 Sep 1984 JP
60249980 Dec 1985 JP
62267357 Nov 1987 JP
63221157 Sep 1988 JP
02092379 Apr 1990 JP
04001231 Jan 1992 JP
05007635 Jan 1993 JP
06313075 Nov 1994 JP
10127822 May 1998 JP
10137364 May 1998 JP
10231400 Sep 1998 JP
11299933 Nov 1999 JP
2000-005341 Jan 2000 JP
2000-060999 Feb 2000 JP
2000-061001 Feb 2000 JP
2000-070409 Mar 2000 JP
2000-070411 Mar 2000 JP
2000-070412 Mar 2000 JP
2000-070414 Mar 2000 JP
2001-218872 Aug 2001 JP
2002-065896 Mar 2002 JP
2003-339910 Dec 2003 JP
2005-066040 Mar 2005 JP
2005-137743 Jun 2005 JP
09227737 Sep 2007 JP
WO 9311190 Jun 1993 WO
WO 9640378 Dec 1996 WO
WO 9843709 Oct 1998 WO
WO 9920354 Apr 1999 WO
WO 9954001 Oct 1999 WO
WO 0041773 Jul 2000 WO
WO 0057962 Oct 2000 WO
WO 0209823 Feb 2002 WO
WO 0262914 Aug 2002 WO
Non-Patent Literature Citations (24)
Entry
Akrochem Proaid AC 18E product literature (no date).
DeStefani, “Small but Mighty,” Molding Systems 3:34-46, Oct. 1999.
DuPont Packaging & Industrial Polymers, DuPont™ Surlyn® 8150 Data Sheet (3 pages), E.I. DuPont De Nemours and Company, Inc., Mar. 2004.
DuPont Packaging & Industrial Polymers, DuPont™ Surlyn® 9150 Data Sheet (3 pages), E.I. DuPont De Nemours and Company, Inc., Mar. 2004.
DuPont Product Literature for HPF1000, May 2005.
DuPont Product Literature for HPF2000, May 2005.
DuPont™ Surlyn® molding resins for golf ball manufacturing, Golf Ball Resins, http://www2.dupont.com/Surlyn/en—US/products/golfball—resins.html, downloaded Dec. 27, 2007.
Encyclopedia of Chemical Technology 6:415-418, 1993.
Encyclopedia of Polymer Science and Engineering 7:54-55, 1988.
Hawley's Condensed Chemical Dictionary, 13th edition, pp. 206, 828, 2001.
http://www.chemsoc.org/chembytes/ezine/2002/birkitt—july02.htm (accessed Nov. 1, 2006).
http://bppetrochemicals.com (accessed Nov. 1 , 2006) (http://bp.com/modularhome.do?categoryId=-6110).
http://www.nml.csir.co.za/news/20020711/index1.htm (accessed May 29, 2007).
http://www3.interscience.wiley.com/cgi-bin/abstract/70000886/ABSTRACT (accessed May 29, 2007).
Research Disclosure 29703, E.I. DuPont de Nemours & Co., 2 pages, published Jan. 1989.
Rostek et al., “Novel Sulfur Vulcanization Accelerators Based on Mercapto-Pyridine, -Pyrazine, and -Pyrimidine,” Rubber and Chemistry Technology 69(2):180-202, 1996.
Saunders, “Polyurethanes Chemistry and Technology Part I,” pp. 32-43, 1962.
Sherman, “Close-Up on Technology—TP Elastomers—New Metallocene TP Elastomers Tackle Films, Fibers, TPOs,” Plastics Technology Online Article, http://www.plasticstechnology.com/articles/200310cu2.html, downloaded Dec. 5, 2005.
Shuler et al., “Fate of Erucamide in Polyolefin Films at Elevated Temperature,” Polym. Eng. Sci. 44:2247-2253, 2004.
Technical Data, General Information about Nanomers, Nanocor, 2 pages (No Date).
Thain, Science and Golf IV, pp. 319-327, Jul. 2002.
English Translation of Notice of Reasons for Rejection dispatched from the Japanese Patent Office on Jan. 16, 2008, in Japanese Application No. 2006-014614.
English Translation of Notice of Reasons for Rejection, dispatched from the Japanese Patent Office on Oct. 22, 2008, in Japanese Application No. 2006-014614.
Office Action dated Nov. 25, 2009 from U.S. Appl. No. 11/428,278.
Related Publications (1)
Number Date Country
20120071273 A1 Mar 2012 US
Provisional Applications (1)
Number Date Country
60647073 Jan 2005 US
Continuations (2)
Number Date Country
Parent 12898038 Oct 2010 US
Child 13291803 US
Parent 11339981 Jan 2006 US
Child 12898038 US