This application claims the benefit of Korean Patent Application No. 10-2015-0159690, filed on Nov. 13, 2015, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field
One or more exemplary embodiments relate to a golf ball, and more particularly, to a golf ball having divided spherical surfaces in order to effectively arrange dimples thereon.
2. Description of the Related Art
In order to arrange dimples on a surface of a golf ball, the surface of a sphere is generally divided by the great circles into a spherical polyhedron having a plurality of spherical polygons. A great circle is formed by an intersection of the surface of the sphere with a plane passing through a central point of the sphere. A small circle is a circle drawn on the surface of the sphere, other than the great circle.
The dimples are arranged on the spherical polyhedron in such a manner that the dimples have spherical symmetry. Most spherical polyhedrons that are frequently used to arrange dimples of a golf ball include spherical regular polygons. Examples of the spherical regular polyhedrons may be a spherical tetrahedron having four spherical regular triangles, a spherical hexahedron having six spherical squares, a spherical octahedron having eight spherical regular triangles, a spherical dodecahedron having twelve regular pentagons, a spherical icosahedron having twenty spherical regular triangles, a spherical cubeoctahedron having six spherical squares and eight spherical regular triangles, an icosidodecahedron having twenty spherical regular triangles and twelve spherical regular pentagons, or the like.
On existing golf balls, three to four hundred dimples are symmetrically arranged on a spherical polyhedron having spherical polygons formed by dividing the surface of the sphere by the great circles only. When a mold cavity is manufactured with two to four types of diameters of the dimples, the land surfaces on which the dimples are not arranged increases. When the area of the land surface becomes relatively larger, a lift force regarding flight of the golf ball is affected, and thus, a flight distance of the golf ball is reduced. Therefore, in order to solve such a problem, various types of dimples having very small diameters are arranged on a golf ball to reduce the area of the land surface as small as possible.
U.S. Pat. No. 4,560,168 discloses an example of the surface of a golf ball which is divided by the great circles. On the golf ball, each of the triangles of a regular icosahedron is divided into four triangles by six great circles, to thus form twenty small triangles and twelve pentagons, that is, a spherical icosidodecahedron, where the dimples are arranged.
However, conventionally, more types of dimples are needed overall. Accordingly, it's costing too much to make a mold cavity. Also, the appearance of the golf ball is aesthetically poor.
Furthermore, in the case of a spherical polyhedron including at least two types of spherical regular polygons, the diameters of dimples vary with the types of the spherical regular polygon, which make a difference in the air flow, and thus the flight performance of the golf ball may be changed.
U.S. Pat. No. 4,560,168
One or more exemplary embodiments include a golf ball having a dimple area ratio that increases by reducing the land surfaces.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
Unlike an existing golf ball of which the surface is divided by great circles, the present disclosure features a surface of a golf ball divided by small circles into symmetrical spherical polygons where dimples are arranged.
Also, spherical polygons near the equator are further divided by great circles, and then, dimples are arranged to have bilateral symmetry on the divided spherical polygons.
In addition, a spherical polyhedron that is divided by small circles as well as great circles may include a spherical regular pentagon, a spherical regular hexagon, a spherical trapezoid, and other spherical pentagons.
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
As described above, it was difficult to symmetrically arrange the dimples having similar diameters due to fixed sizes of spherical regular pentagons and spherical regular hexagons included in a spherical truncated icosahedron, by cutting off vertex portions of each spherical triangle forming an existing spherical icosahedron that is formed by dividing a surface of a sphere by existing great circles.
Thus, in order to solve such problem, the disclosure provides a method of symmetrically dividing a sphere by small circles instead of dividing the sphere by great circles.
In the present exemplary embodiment, dimples are arranged on a spherical polyhedron that is obtained by dividing a surface of a sphere by small circles and further dividing portions of the surface, which are near the equator, by great circles. Identical dimples are arranged on the identical spherical polygons. The spherical polygons include two spherical regular pentagons, ten spherical hexagons, ten spherical trapezoids, and ten spherical pentagons.
Referring to
In the present exemplary embodiment, through the following method, a desired spherical polyhedron is obtained by further dividing some of the spherical polygons near the equator by the great circles.
The spherical polygons near the equator are further divided by the line segment of a great circle passing through the point 4 (latitude 0° and longitude 36°), the point 35 (latitude 29.012167742° and longitude 126°), and the point 18 (latitude 0° and longitude 216°), the line segment of a great circle passing through the point 12 (latitude 0° and longitude 144°), the point 32 (latitude 29.012167742° and longitude 54°), and the point 28 (latitude 0° and longitude 324°), the line segment of a great circle passing through the point 10 (latitude 0° and longitude 108°), the point 38 (latitude 29.012167742° and longitude 198°), and the point 24 (latitude 0° and longitude 288°), the line segment of a great circle passing through the point 16 (latitude 0° and longitude 180°), the point 41 (latitude 29.012167742° and longitude 270°), and the point 30 (latitude 0° and longitude 0°), and the line segment of a great circle passing through the point 22 (latitude 0° and longitude 252°), the point 44 (latitude 29.012167742° and longitude 342°), and the point 6 (latitude 0° and longitude 72°). The surface of the sphere is further divided by the connected line segment passing through the point 2 (latitude 0° and longitude 18°), the point 8 (latitude 0° and longitude 90°), the point 14 (latitude 0° and longitude 162°), the point 20 (latitude 0° and longitude 234°), and the point 26 (latitude 0° and longitude 306°), and this line segment is used as the equator.
And then the dimples are arranged on the spherical polygons.
According to exemplary embodiments, dimples may be arranged on the spherical polygons generated by dividing a surface of a sphere by small circles only. A golf ball 102 of
In the specification, the term ‘line segment’ does not mean a straight line in mathematics which connects two points to each other, but means a line that connects two points to each other on a surface of a sphere. For example, the term ‘line segment of a small circle’ denotes a line that connects two points to each other on a small circle, and the term ‘line segment of a great circle’ denotes a line that connects two points to each other on a great circle.
As shown in
In the specification, the term ‘angular length’ is a unit of a length. The length of a circumference is 360 degrees, and a length of the smallest line that connects two points to each other on the surface of the sphere is a central angle. For example, the length of the circumference is 360 degrees, and a length of the smallest line from the equator to the pole is 90 degrees.
The spherical regular pentagon has equal sides and equal internal angles. As shown in
Also,
Also, the internal angle C of another vertex of the spherical hexagon is 124.741408 degrees, and an internal angle that faces the internal angle C is the same. The internal angle D of a vertex of a base side of the spherical hexagon which is near the equator is 125.0740312 degrees, and internal angles, which face each other on a same side with respect to the line segment dividing the spherical hexagon in half from the pole to the equator, are the same as each other.
When the circumference of the sphere is 360 degrees, each length of the side and the height of the spherical hexagon, is represented as an angular length as follows.
The length a of a topside of the spherical hexagon near the pole is an angular length of 24.3746864 degrees because the length a is the same length as the side of the spherical pentagon which is near the pole. The length d1 of an upper side connected to the topside is an angular length of 24.14914 degrees. Angular lengths of sides, which face each other on a same side with respect to the line segment dividing the spherical hexagon in half from the pole to the equator, are the same as each other. The length d2 of a lower side connected to the upper side is an angular length of 24.38053908 degrees, and angular lengths of sides, which face each other on a same side with respect to the line segment dividing the spherical hexagon in half from the pole to the equator, are the same as each other. The length d3 of the base side of the spherical hexagon is an angular length of 23.41054723 degrees. The height length g between the base side and the topside of the spherical hexagon is an angular length of 43.42522226 degrees, and the length f of a line segment that connects a vertex, the point 47 (latitude 44.80225° and longitude 90°) to a vertex, the point 46 (latitude 44.80225° and longitude 18°), that is, the length f of the line segment perpendicular to the height, is an angular length of 49.29809085 degrees.
When the circumference of the sphere is 360 degrees, each length of the side and the height of the spherical pentagon near the equator are represented as an angular lengths as below.
The length h1 of the roof side of the spherical pentagon near the equator is an angular length of 24.38053908 degrees because the length h1 is the same as the length d2 of the side of the spherical hexagon, and an angular length of a roof side that is opposite to the above roof side based on the line segment dividing the spherical hexagon in half from the pole to the equator, are the same as each other. A length h2 of a pillar side connected to the roof side is an angular length of 30.0772096 degrees, and a side opposite to the pillar side based on the line segment has an angular length that is the same as the length h2. The length h3 of a base side of the spherical pentagon near the equator is an angular length of 24.38053935 degrees. Also, the height length i of the spherical pentagon near the equator is an angular length of 44.80225 degrees.
When the circumference of the sphere is 360 degrees, each length of the side and the height, of the spherical trapezoid near the equator are represented as an angle length as follows.
The length j of the topside of the spherical trapezoid near the equator is an angle length of 23.41054723 degrees because the length j is the same as the length d3 of the base side of the spherical hexagon, and the length k of a side connected to the topside is an angular length of 30.0772096 degrees which is the same as the length h2 because the side is shared by the pillar side of the pentagon near the equator. Angular lengths of sides, which face each other on the same side with respect to the line segment dividing the spherical trapezoid in half from the pole to the equator, are the same as each other. The length l of the base side of the spherical trapezoid which is near the equator side is an angular length of 47.61946064 degrees, and the height length m of the spherical trapezoid near the equator is an angular length of 29.01216774 degrees.
The spherical polygons obtained above are two spherical regular pentagons, ten spherical hexagons, ten spherical trapezoids, and ten spherical pentagons, and the spherical surface is divided by the spherical polygons to arranged dimples thereon. When the dimples are arranged as shown in
As a comparative example, a spherical truncated icosahedron, which is obtained by dividing the surface of the sphere by the great circles to form a spherical icosahedron and cutting off vertex portions of each spherical triangle forming the spherical icosahedron, is shown in
When the circumference of the sphere is 360 degrees, each length of the side and the height is represented as an angular length as follows. The length q of a topside of the spherical hexagon which is near the pole is an angular length of 23.28144627 degrees because the length q is the same as that of one side of the regular pentagon which is near the pole, and the length t of an upper side connected to the topside is an angular length of 23.28144627 degrees. A side, which is opposite to the upper side on the same location based on the line segment dividing the spherical hexagon in half from the pole to the equator, has the same angular length. An internal angle of a vertex of a lower side connected to the upper side is the same as above, and sides, which face each other and are formed on the same side based on the line segment dividing the spherical hexagon in half from the pole to the equator, have the same angular length. The length y of a base side of the spherical hexagon is an angular length of 23.28144627 degrees. Therefore, the spherical hexagon is a spherical regular hexagon, and the height length w between the topside and the base side of the spherical regular hexagon is an angular length of 41.8103149 degrees. The length v of a line segment that connects the vertex, that is, the point 86 (latitude 46.64180242° and longitude 90°), to the vertex, that is, the point 85 (latitude 46.64180242° and longitude 18°), that is, the length v of the line segment perpendicular to the height, is an angular length of 47.6003652 degrees.
When the circumference of the sphere is 360 degrees, each length of the side and the height of the spherical pentagon near the equator is represented as an angular length as follows. The length x1 of a roof side of the spherical pentagon near the equator is the same as one side of the spherical hexagon and is an angular length of 23.28144627 degrees. A length of a roof side which faces the same side based on the line segment dividing the spherical pentagon in half from the pole to the equator is the same as the length x1. The length x2 of a pillar side connected to the roof side is an angular length of 23.18144627 degrees, and a length of a side which faces the above pillar side on the same side based on the line segment dividing the spherical pentagon in half from the pole to the equator is the same as the length x2. The length x3 of a base side of the spherical pentagon near the equator is an angular length of 23.18144627 degrees. Also, a height length of the spherical pentagon near the equator is an angular length of 36.54896197 degrees because the spherical pentagon near the pole is a spherical regular pentagon having equal internal angles and equal sides. In addition, a spherical hexagon on the equator has internal angles and sides that are the same as the internal angles and the sides of the above spherical regular hexagon.
A spherical truncated icosahedron, which is obtained by dividing a spherical icosahedral surface by great circles, is a spherical polyhedron including twelve spherical regular pentagons and twenty spherical regular hexagons. Therefore, the spherical truncated icosahedron is greatly different from the spherical polyhedron of
In Table 1 below, areas of the spherical polygons of the spherical polyhedron that are obtained by dividing the surface of the sphere by the small circles as in the golf ball 100 of
As shown in Table 1, it is greatly important to make each spherical polygon, on which the dimples are to be arranged, have a proper size, and in the case of the surface of the sphere that is divided by the small circles, a dimple area ratio may effectively increase, and thus, a golf ball may have improved flight performance.
The golf ball 102 may have a land surface which is relatively smaller than that of an existing golf ball and may also have an increased dimple area ratio.
According to the one or more exemplary embodiments, in comparison with an existing golf ball that is generated by arranging dimples on a spherical polyhedron obtained by dividing a surface of a sphere by great circles, a golf ball has a reduced land surface and an increased dimple area ratio as dimples are arranged on a spherical polyhedron that is obtained by dividing a surface of a sphere by small circles. Accordingly, a flight distance of the golf ball may increase.
Also, when the dimples are arranged on a spherical polyhedron that is generated by further dividing spherical polygons which are near the equator from among spherical polygons that are generated by dividing the surface of the sphere by the small circles, the golf ball may have a greater dimple area ratio than the existing golf ball, and thus, the flight distance of the golf ball may additionally increase.
It should be understood that exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each exemplary embodiment should typically be considered as available for other similar features or aspects in other exemplary embodiments.
While one or more exemplary embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the inventive concept as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0159690 | Nov 2015 | KR | national |