This disclosure is directed to a device or an assembly that is a golf ball holder that can be attached, assembled, or manufactured as part or a portion of a golf club.
The device or assembly holds a golf ball in place at least partially inside the device or assembly with a predetermined force requirement. This predetermined force setting, which prevents an unwanted release of a ball, will allow a desired release of the ball when the assembly is swung in a manner that overcomes the predetermined force level requirement created by the holder's mechanism(s) so to allow dynamic release of a secured ball from the holder during a swing of the assembly.
The golf ball holder can include at least one mechanism that allows an adjustment of an opening size of the holder that will alter and fix the predetermined force setting against a portion or portions of a ball's surface.
The ball used in conjunction with the device can have a dimpled surface, a surface that is not smooth, any type of surface consistency and/or surface texture (a raised surface for example), a surface having indented features, or any other type of surface imaginable, consistent or not. The device is operable to utilize at least a portion of a ball's surface or one ball surface feature to aid in developing a secure hold upon the ball while the both the ball and the assembly are in motion together. While the device assembly with a ball is in motion, a predetermined force level is either met or not met. The force level setting in combination with the motion of the holder assembly will result in either a release or non-release of the golf ball held within the adjustable holder during a swing of the assembly.
The sport of golf remains a highly popular worldwide source of exercise and recreation for persons of all ages and skill levels. Regardless of skill level or experience, users of all experience levels—from professional, to amateur, to novice—constantly work in improving their golf swings. Golf instruction represents a significant industry in the United States (as well as throughout the world).
Accordingly, there is a need for a device that can aid in helping a person execute a proper golf swing. This device can either be made, assembled or manufactured as part of a club. Alternatively, it can be made as a whole unit or club unit, or made as a sub-unit of a golf club that when attached or assembled into a club is operable to perform a swing in a manner that is consistent with the operational swing of a standard club.
A new device allows a user to develop a dynamic range swinging skill set rather than the static skill level of the prior art. The new device accomplishes the ability to develop a dynamic range swinging skill set with a force level utilized on a golf ball that is seated within a holder. The holder, in turn, acts upon the ball and effects either a release of the golf ball or not, during a swing operation.
An embodiment contemplates holding elements positioned in the holder as to allow the golf ball to exit the holder with an optimal velocity vector when the club is swung properly. Lines and grooves on the striking surface of ordinary club heads are substantially horizontal to the ground and not parallel with the shaft. In contrast, this embodiment contemplates a holder and holding elements that are substantially parallel with the shaft.
In one or more embodiments, the force requirement for releasing the ball can be adjusted and fixed before swinging. The device is offered to improve a user's swing by focusing on the proper techniques that can include a beginning point of a back-swing thru the point of a down swing and follow-thru of a motion of a swing utilizing a club having a shaft and a head portion (which has a club head face). At the head of the club is a shaped recess. This shaped recess is calibrated to be a sufficient size and dimension to hold and maintain a projectile throughout the back-swing and down-swing to release the projectile at a predictable point within or during a club swing motion path when swung.
The inventors also contemplate a holder assembly that allows for a predetermined adjustment of the holder diameter. This adjustable holder can be workable by a separate or integral mechanism or hand-bendable structure to act as a calibrated holder that is operable to be opened or contracted to a diameter of the semi circular recess of holder. An alternative system includes a series of cable strings to alter the outer diameter of the distal end of the holder. By making holder's diameter smaller, the user ensures greater support of the holder when launching the ball during the training swing. Decreasing holder's diameter requires the user to be more advanced and precise in his or her training swing. As yet another alternative embodiment, the head portion and holder (capable of being calibrated) are one single integral member placed at a distal end of the shaft of a club or a golf club.
An embodiment includes a holder whose contact points with the projectile can be rotated on the plane of the face of the club head. As a result, the force and acceleration vectors required to release the projectile from the holder can be subtly altered as the user wishes to fine-tune his or her swing.
Embodiments includes a holder portion or holder assembly that may be rotated and fixed at various planes relative to the hosel, thereby changing the force vector and acceleration requirements for releasing the projectile, as well as the projectile's trajectory when released.
An embodiment can include a noisemaker in the holder portion or holder assembly that is ordinarily stoppered by a projectile held in the recess. When the club is swung and the projectile is released, air flows through the noisemaker as the club is in motion to alert the user that the projectile has exited the recess of the assembly.
A holder is contemplated in one embodiment as having both a curved upper portion and a curved lower portion that both form a shaped recess. This shaped recess is calibrated to be a sufficient size and dimension to hold and maintain a standard size ball throughout the back-swing and down-swing to release the ball on at a predictable point within or during a club swing motion path during a properly executed swing.
Single noun words and their noun plural word form, such as, but not limited to, cradle, holder, clip, fastener, mechanism, tensioning structure, cable, structure, projectile holder, support recess, ball recess, recess, fastening structure, cradle, and forced holder, can be interchangeable with each other and can mean a structure that is operable for securing limited movement of a ball during motion or non-motion of the structure.
The word “mechanism” can have single or multiple meanings, functions or utilizations and can simply mean a single structure, a two structure assembly, or a multiple structure amalgamation. A mechanism may include a single structure for a setting or a creating of a predetermined position of another structure or a plurality of structures that when assembled together allow for an adjustable holding of a golf ball by the amalgamation of assembled parts. Such a mechanism or holder may be operable for a predetermined position that becomes a force setting for a ball release determinant.
The words club, shaft unit, club or a golf club, bat, swinging unit, or ball club can refer to or mean a single integral structure or to an assembly of a plurality of parts that form a whole or a part of a final club unit that is or are operable singularly or together as a device that propels a projectile when swung or allows for a ball secured in a restricted manner from moving for a portion of a swing movement. Such an assembly can be operable to have a structure that creates a predetermined position that is operable for holding and releasing a ball in a predetermined manner. The assembly is part of a larger unit and is operable for creating a predetermined force setting or release setting of a ball that will be determined by movement of the club as it is moved or swung by a machine or person.
Preferred embodiments and others will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments and others are shown. Preferred embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope to those skilled in the art. Like numbers refer to like elements throughout.
The disclosure is directed toward an apparatus 100, having an assembly 700 or 800 for example, for improving a user's golf game by focusing on the user's swing.
Accordingly, an apparatus 100, having an assembly 700 or 800 for example, allows for a release of a projectile 270 based upon a calibrated amount of force that is developed when the assembly is in motion. For example, a force developed when the user performs a properly executed swing such that the mechanism in combination with a projectile holder has been adjusted to a predetermined calibration that allows the projectile 270 will exit an assembly 700 or 800 for example, on a predictable flight path when the force level setting created by the prior manipulation of the mechanism in combination with a projectile holder has been achieved or even surpassed.
Put another way, the apparatus assembly allows for a desired trajectory of the ball to be achieved when the ball leaves the apparatus 100 having an assembly 700 or 800 for example, or apparatus 100, 700 or 800 for example. By engaging in a correct swing, the apparatus 100, 700 or 800 for example, and projectile 270 effectively act as one object, with an initial “start-up” acceleration applied initially in the down swing.
As shown in
The holder 300 shown in
Combinations of multiple club fasteners are shown in
The inventor contemplates an embodiment using a holder 500 that can be calibrated.
By making these changes to the angle of holder 500, the user is able to achieve a precision swing by preventing an improper trajectory of the ball. In addition, by decreasing the interior diameter of the shaped recess 510, the user makes it more difficult to release the projectile 270 during the swing from the apparatus 100 thus progressing in his or her training regiment.
As shown in
Placed between both housings 520 and 530 is a plurality of cable strings 560 which connect to the back portion 540 of holder 500. Likewise, these cable strings 560 are connected to a tightening mechanism 570 located proximate to the back portion 540. Through tightening the cable strings 560 through the tightening mechanism 570, the inner diameter of the shaped recess 510 of holder 500 is increased. Likewise, loosening the tightening mechanism 570 decreases the diameter.
Alternatively, a holder 500 of
Once holder 500 is fastened, it is properly adjusted to select the correct inner diameter of the shaped recess 510. This is accomplished through pulling and tightening (or in the alternative loosing and releasing) multiple cable strings 560 within the outer and inner housings 520 and 530 of holder 500. Once these strings are tightened, they are secured via a tightening mechanism 570 proximate to the back portion 540 of holder 500. In addition, the shape and dimension of holder 500 can be further calibrated through moving of the mechanism 395 (either clockwise or counter-clockwise) to alter the shaped recess 510.
As further shown in
In addition to creating a predetermined inner diameter size or a predetermined shape of recess 510 which in turn effects a final position or positioning of a ball (when the ball is partially immured within a holder), the apparatus 100, 700 or 800 for example, can be operable for an angle of the holder relative to a fixed position of the shaft. An adjusting mechanism may be included to alter or allow for a predetermined angle of holder 500 before a swing motion. This can be done in one way by having a flexible or bendable back portion 540. Back portion 540 can also be integral as part of tightening mechanism 570 can be manipulated to set a predetermined angle for ball release in a motion.
Another embodiment contemplated by the inventor, apparatus 100 having an assembly 700 or 800 for example, can include an arrangement where the head portion 240 and holder 500 form a single integral member such as (but not limited to) holder 700.
An adjustment mechanism attached to the holder structure 500 or 700 will allow a user to change a current diameter length 1005 (see
In one example like shown in
These ball holding elements (710, 711, 721 and 722) assist in holding and maintaining a projectile 270 within any club holder, club holder 500 and/or holder 700 or the like during the swing movement. In addition, a circular ring 740 can be added and located in the shaped cup 730 and can further assist in holding the ball in a proper position.
A passive or active sensor can be added to any of the assemblies or holders such as assembly 800, for example that can be an additional releasing device. In addition in
Once holder 500 or 700 or the like is calibrated by a user, a projectile 270 can be placed within the adjusted recess 510 ready for a swinging operation. The user then sets up in a regular stance, takes a normal back-swing and down-swing and then focuses on releasing the projectile 270 from holder 500 or 700 or the like. The calibrated holder and the movement of the assembly in combination allows for a release of the projectile 270 when a predetermined force level is met during the motion of apparatus 100. A predetermined force vector by way of the apparatus 100 can aid a user to accomplish a correct golf swing when the user later swings a golf club that does not have an apparatus 100.
In another embodiment, as seen in
The hosel 840 is made to be attachable by adhesive, soldering or fitting to a club shaft through hosel cavity 846, or alternatively is manufactured with a club shaft as a single unit. The holder 850 is preferably made of a slightly flexible and pliable material. The holding elements 880 may be made of the same material as the rest of the holder 850, but in any event should be made of a substance that has a sufficient strength to hold or grip a projectile when one or more holding elements are pressed against the projectile with sufficient force. The club head 870 is made of a material of appropriate hardness and inflexibility, such as hard plastic or light metal. The pin 820 is likewise made of a material of appropriate strength and inflexibility, such as hard plastic or light metal.
A hosel is the part or portion of the club head 870 to which a shaft is fitted and secured. The hosel 840 is either a separate unit that is later attached to club head 870 or formed as an integral portion of club head 870. In either format, the hosel facilitates or allows a shaft 210 to be attached to a club head. A hosel's design and final placement or attachment to a club head will contribute and be integral to the balance, feel and power of a club. A hosel may have a hosel cavity 846 that allows insertion and attachment of lower portion 230 of shaft 210. Hosel cavity 846 does not have to pass through the hosel from end to end but may have an aperture end portion that seats and/or supports the shaft end. An epoxy may be inserted within hosel cavity 846 and the shaft inserted for permanent attachment. A screw or any known fastening device(s) may be substituted for epoxy to provide an alternative attachment scheme. For example a screw or any known fastening device(s) may provide a tension against the shaft lower portion 230 and hosel to maintain firm contact of the attachment of the shaft 210 within a hosel cavity so minimize or eliminate any undesired movement of the shaft relative the hosel. Some hosels are minimal in size relative to a club head in order to minimize its mass relative to the size of the club head in order to lower the center of gravity of the club with respect to the club face 863 for a better ball distance result. The hosel may also be a male connector rather than a female connector, with the connecting shaft having a female connector.
In this embodiment, the holder 850 has four holding elements 880 that hold a projectile placed in holder 850. However, the device can function with any number of holding elements. Each of the holding element's 880 contact area 886 with a golf ball (not shown) is wider than two of the golf ball dimples. As seen in
Cheeks 861 in recess 860 on either side of projectile holder 850 prevent projectile holder 850 from rotating inside recess 860 while allowing projectile holder 850 to move toward or away from the face 863 of club head 870.
The position and angle of imaginary line 881 are based on the assumption that any shaft as shown in
In various embodiments that seek to replicate the swing motion of different types of clubs (for example, a 3 iron or a 1 wood), the shaft angle varies. Likewise, the imaginary lines 882, 883 in each embodiment will be set at substantially the same angle as the imaginary line 881 in the hosel 840.
If the assembly does not have cheeks 861 (for example in
Pin 820 connects to dial 810 via screw (not shown), or alternatively dial 810 and pin 820 are a single unit. Pin head 824 has pin threads 826 that fit in and turn inside holder cylinder threads 894 inside holder cylinder 890. As dial 810 turns clockwise, pin 820 pulls holder 850 further into club head 870, causing shoulder 895 to push back against holder 850 and decrease diameter of holder 850 and pull holding elements 880 closer together, thereby increasing the pressure on the projectile being held. Likewise, if dial 810 is turned counterclockwise, holder 850 re-expands and moves further toward opening of recess 860.
Indents 872 in club head 870 line up with bearing 812 on dial, thus stabilizing dial/holder apparatus once the desired amount of pressure is placed on the projectile. In a minor variation of this embodiment, back wall 896 does not exist and holder cylinder threads 894 continue to back end of holder cylinder (not shown), thereby allowing pin head 824 to be completely unthreaded (i.e., separated) and rethreaded from holder cylinder 890. The amount of pressure on the projectile per dial turn can be made more fined-tuned by increasing the number of turn threads per inch in pin threads 826 and corresponding holder cylinder threads 894.
As seen in
In
As seen in
First imaginary line 881 is also substantially parallel to a third imaginary line 883 found between a third opposing holding element 880 UR of the at least two opposing holding elements and a fourth opposing holding element 880 LR of the at least two opposing holding elements. All three lines will be substantially parallel with one another during a swing of the golf club assembly 800 having a ball 270 placed or fixed into the projectile holder 840 within the recess portion 860.
This particular embodiment could have various other mechanisms to adjust and fix the holding pressure on the projectile. By way of example only, the horizontal pulling function of the pin head and holder cylinder threads could be substituted by having the dial handle set on an inclined circular plane, thereby pulling the holder back when the dial is turned. Or, the area between the recess and the holder could contain one or more inflatable devices that increase the pressure of the holding elements on the projectile when the inflatable device is filled with more air. Or, the holder could be surrounded by an adjustable hose clamp with an accessible tightening screw.
This embodiment also includes catch 830 with projections 832. In its locked position, the projections 832 fit into notches 842, thus preventing rotation of club head 870 relative to hosel 840. When upper end 834 of catch 830 is pushed, the projections 832 lift and allow club head 870 to rotate, whereafter the projections may be pushed into different notches 842, thus locking club head 870 into a different rotational angle relative to the hosel 840. The recess 860 of club head 870 thus can change its angle relative to hosel 840 and the club shaft (not shown).
As shown in
The fine scale guide 940 can include markings for angles so as to allow the user to increase the difficulty level or change the swing force and acceleration requirements, as well as change the trajectory of the ball (not shown) when the ball is released from the holder 950.
This application is a continuation-in-part of application Ser. No. 12/578,994, filed Oct. 14, 2009 now abandoned; and application Ser. No. 12/578,994 claims the benefit of provisional Application No. 61/166,457, filed on Apr. 3, 2009. This application incorporates by reference all of the following applications, including specification, claims, and figures: U.S. application Ser. No. 12/578,994, filed Oct. 14, 2009 and U.S. provisional Application No. 61/166,457, filed on Apr. 3, 2009.
Number | Name | Date | Kind |
---|---|---|---|
1739467 | Klutho | Dec 1929 | A |
1759622 | Kenney | May 1930 | A |
1994207 | Ahles | Mar 1935 | A |
2057821 | Costello | Oct 1936 | A |
2157415 | Jones | May 1939 | A |
2465124 | Sante | Mar 1949 | A |
3259387 | Beigay | Jul 1966 | A |
3428036 | Parker | Feb 1969 | A |
3589349 | Parker | Jun 1971 | A |
4085936 | Patterson | Apr 1978 | A |
4139198 | Kanavas | Feb 1979 | A |
4317567 | Blake | Mar 1982 | A |
4892317 | Corder | Jan 1990 | A |
5150901 | Stawicki | Sep 1992 | A |
5522594 | Taylor et al. | Jun 1996 | A |
7104897 | Park | Sep 2006 | B2 |
7118489 | Hubley | Oct 2006 | B1 |
7520818 | Winchester | Apr 2009 | B2 |
7686702 | Hubley | Mar 2010 | B2 |
7785211 | Hackenberg | Aug 2010 | B2 |
20040063511 | Middleton | Apr 2004 | A1 |
20080153616 | Hubley | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100298061 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61166457 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12578994 | Oct 2009 | US |
Child | 12847210 | US |