The present invention relates to a golf ball having an excellent flight performance.
In the past, to improve both the feel of solid golf balls on impact and their controllability, such balls were optimized for properties such as core and cover hardness under high-trajectory conditions owing to a relatively high spin rate.
It was later found that a golf ball hit at a low spin and a high launch angle will travel a longer distance. Accordingly, greater effort has come to be devoted to increasing the distance of travel in a manner that is in keeping with these findings. With recent advances in golfing equipment such as balls and clubs, designs are being worked out on drivers and other distance clubs that greatly reduce the amount of backspin taken on by a golf ball when it is hit.
Under low-spin conditions, the ball that has been hit will have a small coefficient of drag, which tends to increase its distance of travel. Yet, when the dimples that have been used in earlier golf balls are used unchanged in these more advanced golf balls, a drop occurs due to insufficient lift in the region of diminished speed after the ball has reached the highest point of its trajectory, resulting in a loss of distance.
It is thus an object of the invention to provide a golf ball having a spherical surface on which numerous dimples of differing diameter are arranged, which ball, owing to the appropriate selection of the smallest diameter dimples and the largest diameter dimples and the appropriate selection of the dimple shapes, has an optimized trajectory when hit and is thus able to advantageous increase the distance traveled by the ball.
We have conducted extensive investigations, as a result of which We have found that by using as the circular dimples arranged on the surface of a golf ball a plurality of dimples types such that the largest dimples and the smallest dimples differ markedly in their diameters, and by appropriately selecting, in cross-sections of the dimples, the shape of the dimple wall near the bottom of the dimple, the ball will have an optimized trajectory and travel farther when hit.
Accordingly, the invention provides the following golf balls.
[1] A golf ball having, on a spherical surface, numerous dimples in a plurality of types of differing diameter, wherein the dimples include smallest size dimples having a diameter of 2.7 mm or less and largest size dimples having a diameter of 4.3 mm or more, and at least 50% of the total number of dimples are dimples in which an arc that connects mutually opposing positions on a wall of the dimple at a 70% dimple depth level with a deepest position on the dimple wall has a radius of curvature R of at least 15 mm.
[2] The golf ball of [1] which has a resilient solid core, a cover made primarily of polyurethane elastomer that is disposed outside of the solid core and has thereon said dimples, and an intermediate layer made primarily of ionomer resin that is disposed between the cover and the solid core.
[3] The golf ball of [2], wherein the core has a center portion and an outer portion which is harder than the center portion, such that the core center portion and an outside surface of the core have a JIS-C hardness difference therebetween of at least 25.
[4] The golf ball of [2], wherein the core has a two-layer construction composed of an inner layer and an outer layer, said outer layer having a thickness of 5 to 15 mm.
[5] The golf ball of [2], wherein the cover is formed to a thickness of 0.5 to 1.2 mm and has a Shore D hardness of 40 to 55.
[6] The golf ball of [2], wherein the intermediate layer is formed to a thickness of 0.9 to 1.7 mm and has a Shore D hardness of 55 to 70.
[7] The golf ball of claim 1, wherein 50 to 97% of the total number of dimples are dimples in which said arc has a radius of curvature R of at least 15 mm.
[8] The golf ball of [1], wherein said arc has a radius of curvature R of 15 to 40 mm.
[9] The golf ball of [1], wherein the angle θ between a tangent J drawn at a 30% dimple depth position on the dimple wall and a circular plane formed by connecting top edge areas of the dimple is from 4 to 15°.
[10] The golf ball of [1], wherein the total number of dimples is from 250 to 370.
The invention is described more fully below in conjunction with the attached diagrams.
Shown in
The golf ball of the invention has numerous dimples in a plurality of types of differing diameters. Of these dimples, the smallest dimples 2a have a diameter of 2.7 mm or less, and preferably 2.0 to 2.7 mm, and the largest dimples 2b have a diameter of 4.3 mm or more, and preferably 4.3 to 6.0 mm.
The ratio of the diameter of the largest dimples 2b to the diameter of the smallest dimples 2a is preferably at least 1.6, and more preferably from 1.6 to 3.0. By combining in this way dimples having such a large diameter ratio and optimizing the radius of curvature, the dimple surface coverage can be increased, enabling the ball to achieve a longer travel distance.
In the practice of the invention, the total number of dimples is preferably from 250 to 370, and more preferably from 280 to 350. It is preferable for the number of dimple types of differing diameter to be at least three. There is no fixed upper limit in the number of such dimple types, although from the standpoint of practicality a maximum of 5 to 20 types is preferred. The reason is that, within a range in the total number of dimples disposed on the surface of the ball of 250 to 370, when numerous large-diameter dimples having a diameter of 4.3 mm or more are used and the number of dimple types is less than three, it is difficult to arrange the dimples densely and uniformly on the spherical surface of the ball. On the other hand, when more than 20 types of dimple are used, the advantageous effects of the resulting dimple arrangement are unlikely to justify the associated increases in mold fabrication and other costs.
It is preferable for the number of the largest dimples 2a to be from 12 to 60 and the number of the largest dimples 2b to be from 120 to 350.
On the inventive golf ball, at least 50% of the total number of dimples are dimples in which an arc that connects mutually opposing positions A and A′ on a wall of the dimple at a 70% dimple depth level and a deepest position B on the dimple wall has a radius of curvature R of at least 15 mm.
More specifically, the arc denoted in
Here, the above positions A, A′ and B are shape setting positions which regulate the dimple shape near the deepest part of the dimple. That is, the shape near the deepest part of the dimple must pass successively through these positions A-B-A′. Yet, the shape of the dimple wall which passes through these positions A-B-A′ is not necessarily limited to an arc of the above radius of curvature R, and may be modified to a variety of shapes. Hence, the actual shape of the dimple wall which passes through the positions A-B-A′ may or may not coincide with the above-described arcuate shape.
By positionally regulating in this way the shape near the deepest part of the dimple and by also selecting the dimple diameter as described above, an increase in the travel distance can be achieved. If the above-described arc near the deepest part of the dimple has a radius of curvature R of less than 15 mm, after the ball that has been hit reaches its highest point on the parabolic trajectory of its flight, it will undergo a more rapid decrease in lift, shortening the distance of travel. Moreover, if the dimples in which this radius of curvature R is at least 15 mm account for less than 50% of the total number of dimples, owing to a similarly rapid decrease in lift, the distance traveled by the ball will fail to increase, making the object of the invention unattainable.
Referring again to
Moreover, in
The dimple depth Dp is set in a range of preferably 0.05 to 0.3 mm, and more preferably 0.08 to 0.25 mm. It is especially preferable for the smallest dimples 2a to have a depth of 0.05 to 0.15 mm, and for the largest dimples 2b to have a depth of 0.12 to 0.3 mm.
The top edge e of the dimple and its vicinity may be given an arcuate shape having a radius of curvature r. It is common practice to paint the cover of the golf ball so as to form a paint film thereon. The radius of curvature r in
Moreover, in
In the golf ball of the invention, as shown in
Here, it is preferable for the cover thickness t1 to be from 0.5 to 1.2 mm and the intermediate layer thickness t2 to be from 0.9 to 1.7 mm. The above thicknesses t1 and t2 may both be the same or one may be thicker or thinner than the other, although it is preferable for the cover thickness t1 to be relatively thin. Specifically, it is preferably to set the thickness difference t2-t1 in a range of substantially 0 to 1 mm. With regard to hardness, it is preferable for the cover 12 to have a Shore D hardness of 40 to 55, and for the intermediate layer 13 to have a Shore D hardness of 55 to 70. It is preferable for the relative hardnesses of the two layers to be such that the cover 12 has a lower hardness than the intermediate layer 13. If the Shore D hardnesses of the intermediate layer 13 and the cover layer 12 are not set within the foregoing ranges, the ball may have a poor feel when played or an inferior flight performance.
The solid core is preferably formed to a diameter of 37 to 40 mm. Moreover, it is preferable for the outer portion of the core to be harder than the center portion, and for the center portion and the outside surface of the core to have a JIS-C hardness difference therebetween of at least 25, and especially 25 to 35. The solid core may have a one-piece construction or, as shown in
When the resilient core is thus formed as a plurality of layers, by resorting, for example, to the use of a rubber material in the inner layer 11a and a resin material in the outer layer 11b, the distinctive properties of the respective materials may be utilized to optimize the hardness distribution throughout the resilient core.
In the resilient solid core 11 used in the invention, the inner layer 11a and the outer layer 11b may be formed using, for example, a rubber composition containing suitable ingredients such as known co-crosslinking agents, organic peroxides, inert fillers and organosulfur compounds. It is preferable to use polybutadiene as the base rubber in such a rubber composition. In the case of a two-layer construction consisting of an inner layer and an outer layer like that shown in
The material used to make up the resin cover 12 in the invention is preferably a thermoplastic polyurethane elastomer. The material used to make up the intermediate layer 13 in the invention, while not subject to any particular limitation, may be a known synthetic resin. For example, preferred use can be made of a thermoplastic resin or thermoplastic elastomer (e.g., ionomer resin, thermoplastic polyester elastomer, polyurethane resin, thermoplastic olefin type elastomer) as the primary material.
The inventive golf ball can be manufactured by a known method. Ball properties such as weight and diameter may be suitably selected according to the Rules of Golf. The ball may generally be formed to a diameter of not less than 42.67 mm and a weight of not more than 45.93.
As described above, the golf ball of the invention, in addition to having a construction which includes a resilient core of one or more layers, an intermediate layer and a resin cover, employing a selected resilient core hardness distribution and a selected resin cover material, and having optimized intermediate layer and cover hardnesses, also has a dimple construction and a dimple arrangement which are optimized. Accordingly, the inventive ball, through an integral combination of internal features and dimple parameters, has a significantly increased travel distance, making it highly advantageous for competitive use.
The following Example of the invention and Comparative Example are provided by way of illustration and not by way of limitation.
Solid cores having a diameter of 38.2 mm were produced from the formulations shown in Table 1 by a conventional procedure. The core in the example of the invention had a two-layer construction composed of an inner layer and an outer layer, the inner layer having a diameter of 23.8 mm and the outer layer having a thickness of 7.2 mm.
Notes:
Polybutadiene BR730: Produced by JSR Corporation
Zinc acrylate: Produced by Nihon Jyoryu Kogyo Co., Ltd.
Zinc oxide: Produced by Sakai Chemical Industry Co., Ltd.
Zinc stearate: Produced by NOF Corporation
2,2′-Methylenebis(4-methyl-6-t-butylphenol): Produced by Ouchi Shinko Chemical Industry Co., Ltd.
Dicumyl peroxide: Produced by NOF Corporation
1,1-Bis(t-butylperoxy)cyclohexane, 40% dilution: Produced by NOF Corporation
Next, an intermediate layer (1.3 mm) and a cover (0.95 mm) were each formed by injection molding the formulations shown below, along with which dimples having the parameters shown in Table 2 were formed.
The respective materials shown below were used to form the intermediate layer and the cover in both the example of the invention and the comparative example.
Intermediate Layer
The cover material was prepared by blending 18 parts by weight of Crossnate EM-30 into a mixture of 50 parts by weight of Pandex T8295 and 50 parts by weight of Pandex T8260.
Notes:
R: The radius of curvature of the arc that passes through positions A and A′ on the dimple wall at 70% of the dimple depth (d7).
θ: The angle between a tangent J at a position D on the dimple wall at 30% of the dimple depth (d3) and a circular plane P.
ΣvR: Total volume of the dimples.
ΣsR: Total surface area of the dimples.
Total volume ratio: Ratio of total volume of all dimples on the ball to the volume of the ball were the surface to be free of dimples.
Total surface area ratio: Ratio of total surface area of all dimples on the ball to the surface area of the ball were the surface to be free of dimples.
Ball Construction and Test Results
Table 3 shows the ball constructions in the example of the invention and the comparative example, and also shows the results of distance tests conducted on these balls. In the distance test, each ball was hit at a head speed of 45 m/s with a club (W#1) mounted on a swing robot, and both the carry and the total distance were measured.
Notes:
(1) In the two-piece core construction in the example of the invention, the core had an outer layer thickness t3 of 7.2 mm and an inner layer radius t4 of 11.95 mm. The core radius in the comparative example was 18.65 mm.
(2) The Shore D hardnesses are values obtained by measurement in accordance with ASTEM-D2240.