GOLF BALL

Information

  • Patent Application
  • 20200139199
  • Publication Number
    20200139199
  • Date Filed
    November 01, 2019
    5 years ago
  • Date Published
    May 07, 2020
    4 years ago
Abstract
An object of the present invention is to provide a golf ball having excellent approach spin performance under a dry condition and excellent approach spin performance under a condition that there is grass between the golf ball and the club face. The present invention provides a golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body, wherein the paint film is composed of at least one layer, and an outermost paint film layer located at the outermost layer of the golf ball contains, as a base resin, a polyurethane obtained by a reaction between (A) a polyisocyanate composition and (B) a polyol composition, (B) the polyol composition contains a urethane polyol as a polyol component, and a loss tangent (tan δ) of the outermost paint film layer measured with a dynamic viscoelasticity measuring apparatus under specific conditions has a peak temperature in a range of from −40° C. to 40° C.
Description
FIELD OF THE INVENTION

The present invention relates to a golf ball comprising a paint film.


DESCRIPTION OF THE RELATED ART

A paint film is formed on a surface of a golf ball body. Conventionally, it has been proposed that the performance of the golf ball has been improved by improving the paint film and controlling the viscoelasticity of the golf ball.


For example, JP 2014-14383 A discloses a golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body, wherein a storage modulus (E′) of the paint film at a temperature range of from 120° C. to 150° C. is 1.00×107 dyn/cm2 or more and 1.00×108 dyn/cm2 or less, and a loss tangent (tan δ) of the paint film at 10° C. is 0.050 or more, wherein the storage modulus (E′) and the loss tangent (tan δ) are measured with a dynamic viscoelasticity measuring apparatus under specific conditions.


JP 2017-209298 A discloses a golf ball comprising a golf ball body and a paint film covering the golf ball body, wherein a loss tangent tan δ obtained by measuring viscoelasticity of the paint film has a peak temperature of 50° C. or less and a peak height of less than 0.8 (refer to paragraphs 0015 to 0019 and Table 4 in JP 2017-209298 A).


SUMMARY OF THE INVENTION

However, the conventional golf balls do not necessarily have satisfactory spin performance on approach shots, and there is still room for improvement. In addition, in the conventional technologies, the spin performance on approach shots under the condition that there is grass between the golf ball and the club face was not studied.


The present invention has been made in view of the abovementioned circumstances, and an object of the present invention is to provide a golf ball having excellent spin performance on approach shots under a dry condition and excellent spin performance on approach shots under the condition that there is grass between the golf ball and the club face.


The present invention that has solved the above problems provides a golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body, wherein the paint film is composed of at least one layer, and an outermost paint film layer located at the outermost layer of the golf ball contains, as a base resin, a polyurethane obtained by a reaction between (A) a polyisocyanate composition and (B) a polyol composition, (B) the polyol composition contains a urethane polyol as a polyol component, and a loss tangent (tan δ) of the outermost paint film layer measured with a dynamic viscoelasticity measuring apparatus under following conditions has a peak temperature in a range of from −40° C. to 40° C.:


<Measurement Conditions>


measuring mode: tensile mode


measuring temperature: −100° C. to 150° C.


temperature increase rate: 4° C./min


oscillation frequency: 10 Hz


measuring strain: 0.1%.


In the golf ball according to the present invention, the base resin of the outermost paint film layer contains a polyurethane having a urethane polyol as a polyol component, and the peak temperature of the loss tangent of the outermost paint film layer is controlled in a range of from −40° C. to 40° C. By such the configuration, the obtained golf ball is excellent not only in the approach spin performance under a dry condition but also in the approach spin performance under a condition that there is grass between the golf ball and the club face.


According to the present invention, a golf ball having excellent spin performance on approach shots under a dry condition and excellent spin performance on approach shots under the condition that there is grass between the golf ball and the club face is obtained.





BRIEF DESCRIPTION OF THE DRAWINGS

The FIGURE is a partially cutaway cross-sectional view showing a golf ball according to one embodiment of the present invention.





DESCRIPTION OF THE PREFERABLE EMBODIMENT

The present invention provides a golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body, wherein the paint film is composed of at least one layer, and an outermost paint film layer located at the outermost layer of the golf ball contains, as a base resin, a polyurethane obtained by a reaction between (A) a polyisocyanate composition and (B) a polyol composition. (B) the polyol composition contains a urethane polyol as a polyol component, and a loss tangent (tan δ) of the outermost paint film layer measured with a dynamic viscoelasticity measuring apparatus under following conditions has a peak temperature in a range of from −40° C. to 40° C.


(Paint Film)

The paint film may have either a single layered structure or a multiple layered structure. The outermost paint film layer located at the outermost layer of the golf ball contains a polyurethane as a base resin, wherein the polyurethane includes (A) a polyisocyanate composition and (B) a polyol composition as constituent components. When the paint film has a single layered structure, the single layered paint film contains the polyurethane as the base resin. When the paint film has a multiple layered structure, at least the outermost paint film layer contains the polyurethane as the base resin.


The amount of the polyurethane in the base resin of the outermost paint film layer is preferably 50 mass % or more, more preferably 70 mass % or more, and even more preferably 90 mass % or more. It is most preferable that the base resin of the outermost paint film layer consists of the polyurethane.


(Polyurethane)

The polyurethane contained in the outermost paint film layer will be explained. The polyurethane is obtained by a reaction between (A) the polyisocyanate composition and (B) the polyol composition. The properties of the paint film can be adjusted by changing the type or blended amount of the polyisocyanate component contained in (A) the polyisocyanate composition or the polyol component contained in (B) the polyol composition.


((A) Polyisocyanate Composition)

Examples of the polyisocyanate component of (A) the polyisocyanate composition include a compound having at least two isocyanate groups. Examples of the polyisocyanate include an aromatic polyisocyanate such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene dilsocyanate (NDI), 3,3′-bitolylene-4,4′-diisocyanate (TODI), xylylene diisocyanate (XDI), tetramethylxylylenediisocyanate (TMXDI), and para-phenylene diisocyanate (PPDI); an alicydic polyisocyanate or aliphatic polyisocyanate such as 4,4′-dicyclohexylmethane diisocyanate (H12MDI), hydrogenated xylylenediisocyanate (H6XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and norbomene diisocyanate (NBDI); and derivatives of these polyisocyanates. In the present invention, two or more polyisocyanates may be used as the polyisocyanate.


Examples of the derivatives of the polyisocyanate include an adduct-modified product obtained by a reaction between a diisocyanate and a polyhydric alcohol; an isocyanurate-modified product of a diisocyanate; a biuret-modified product of a diisocyanate; and an allophanate-modified product of a diisocyanate. The derivatives of the polyisocyanate from which free diisocyanate is removed are more preferable.


The adduct-modified product is a polyisocyanate obtained by a reaction between a diisocyanate and a polyhydric alcohol. Preferable examples of the polyhydric alcohol include a low molecular weight triol such as trimethylolpropane and glycerin. As the adduct-modified product, an adduct-modified product of hexamethylene diisocyanate is preferable, a triisocyanate (the following formula (1)) obtained by a reaction between hexamethylene diisocyanate and trimethylolpropane; and a triisocyanate (the following formula (2)) obtained by a reaction between hexamethylene diisocyanate and glycerin are more preferable.




embedded image


Examples of the isocyanurate-modified product include an isocyanurate-modified product of hexamethylene diisocyanate, and a trimer of hexamethylene diisocyanate (the following formula (3)) is preferable.




embedded image


Examples of the biuret-modified product include a trimerized product of a diisocyanate, and a trimer of hexamethylene diisocyanate (the following formula (4)) is preferable.




embedded image


The allophanate-modified product is, for example, a triisocyanate obtained by further reacting a diisocyanate with a urethane bond formed by a reaction between a diisocyanate and a low molecular weight dol.


As the polyisocyanate component, the adduct-modified product is preferable, and the adduct-modified product of hexamethylene diisocyanate (preferably trimer) is more preferable. When the adduct-modified product of hexamethylene diisocyanate is used, the amount of the adduct-modified product of hexamethylene diisocyanate in the polyisocyanate component is preferably 30 mass % or more, more preferably 50 mass % or more, and even more preferably 70 mass % or more. It is also preferable that the polyisocyanate component consists of the adduct-modified product of hexamethylene diisocyanate.


In addition, as the polyisocyanate component, the adduct-modified product and the isocyanurate-modified product are preferably used in combination, and the adduct-modified product of hexamethylene diisocyanate (the trimer is preferable) and the isocyanurate-modified product of hexamethylene diisocyanate (the trimer is preferable) are more preferably used in combination. In this case, the mass ratio (adduct-modified product/isocyanurate-modified product) of the adduct-modified product to the isocyanurate-modified product is preferably 0.43 or more, more preferably 1.0 or more, and even more preferably 2.5 or more. If the mass ratio is 0.43 or more, the dynamic friction coefficient is greater and thus the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases.


In addition, when the adduct-modified product of hexamethylene diisocyanate and the isocyanurate-modified product of hexamethylene diisocyanate are used as the polyisocyanate component, the total amount of the adduct-modified product of hexamethylene diisocyanate and the isocyanurate-modified product of hexamethylene diisocyanate in the polyisocyanate component is preferably 70 mass % or more, more preferably 80 mass % or more, and even more preferably 90 mass % or more. It is also preferable that the polyisocyanate component consists of the adduct-modified product of hexamethylene diisocyanate and the isocyanurate-modified product of hexamethylene diisocyanate.


The amount (NCO %) of the isocyanate group of the polyisocyanate component is preferably 0.5 mass % or more, more preferably 1.0 mass % or more, and even more preferably 2.0 mass % or more, and is preferably 45 mass % or less, more preferably 40 mass % or less, and even more preferably 35 mass % or less. It is noted that the amount (NCO %) of the isocyanate group of the polyisocyanate component can be represented by 100×[mole number of isocyanate group in polyisocyanate×42 (molecular weight of NCO)]/[total mass (g) of polyisocyanate].


Specific examples of the polyisocyanate component include Burnock (Registered trademark) D-800, Burnock DN-950, and Burnock DN-955 available from DIC corporation; Desmodur (Registered trademark) N75MPA/X, Desmodur N3300, Desmodur N3390, Desmodur L75 (C), and Sumidur (Registered trademark) E21-1 available from Sumika Bayer Urethane Co., Ltd.; Coronate (Registered trademark) HX, Coronate HK, Coronate HL, and Coronate EH available from Tosoh Corporation; Duranate (Registered trademark) 24A-100, Duranate 21 S-75E, Duranate TPA-100, Duranate TKA-100, Duranate 24A-90CX, and Duranate E402-80B available from Asahi Kasei Chemicals Corporation; and VESTANAT (Registered trademark) T1890 available from Degussa Co., Ltd.


((B) Polyol Composition)

The polyol composition contains a urethane polyol. If the urethane polyol is used, the obtained paint film is soft and thus the spin performance is enhanced. The urethane polyol is a compound having a plurality of urethane bonds in the molecule thereof, and having at least two hydroxyl groups in one molecule. Examples of the urethane polyol include a urethane prepolymer obtained by a reaction between a first polyol component and a first polyisocyanate component, under a condition that the hydroxyl group of the first polyol component is excessive to the isocyanate group of the first polyisocyanate component.


The urethane polyol preferably has a polyether diol as a constituent component. Examples of the polyether diol constituting the urethane polyol include polyoxyethylene glycol, polyoxypropylene glycol, and polyoxytetramethylene glycol. Among them, polyoxytetramethylene glycol is preferable.


The number average molecular weight of the polyether diol is preferably 400 or more, more preferably 500 or more, and even more preferably 600 or more, and is preferably 3000 or less, more preferably 2000 or less, even more preferably 1000 or less, and most preferably less than 800. If the number average molecular weight of the polyether diol is 400 or more, the impact durability of the paint film is enhanced, and if the number average molecular weight of the polyether diol is 3000 or less, the stain resistance of the paint film is enhanced. It is noted that the average molecular weight can be measured, for example, by gel permeation chromatography (GPC), using polystyrene as a standard material, tetrahydrofuran as an eluate, and an organic solvent system GPC column (e.g., “Shodex (registered trademark) KF series” available from Showa Denko K.K.) as a column.


The urethane polyol may have a low molecular weight polyol having a molecular weight of less than 500 other than the polyether diol, as the first polyol component. Examples of the low molecular weight polyol include a diol such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol; and a triol such as glycerin, trimethytolpropane, and hexanetriol. The low molecular weight polyol may be used solely or as a mixture of at least two of them.


The first polyol component constituting the urethane polyol preferably contains a triol component and a diol component. As the triol component, trimethylolpropane is preferable. The mixing ratio (triol component/diol component) of the triol component to the diol component is preferably 0.2 or more, more preferably 0.5 or more, and is preferably 6.0 or less, more preferably 5.0 or less in a mass a ratio.


The first polyisocyanate component constituting the urethane polyol is not particularly limited, as long as the first polyisocyanate component has at least two isocyanate groups. Examples of the first polyisocyanate component include an aromatic polyisocyanate such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), 3,3′-bitolylene-4,4′-diisocyanate (TODI), xylylene diisocyanate (XDI), tetramethylxylylenediisocyanate (TMXDI), and para-phenylene diisocyanate (PPDI); and an alicyclic polyisocyanate or aliphatic polyisocyanate such as 4,4′-dicyclohexylmethane dilsocyanate (H12MDI), hydrogenated xylylenediisocyanate (H6XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and norbomene diisocyanate (NBDI). These polyisocyanates may be used solely or as a mixture of at least two of them.


The amount of the polyether diol in the urethane polyol is preferably 20 mass % or more, more preferably 30 mass % or more, and even more preferably 40 mass % or more. The polyether diol forms a soft segment in the paint film. Therefore, if the amount of the polyether diol is 20 mass % or more, the obtained golf ball has further enhanced spin performance.


The weight average molecular weight of the urethane polyol is preferably 5000 or more, more preferably 5300 or more, and even more preferably 5500 or more, and is preferably 20000 or less, more preferably 18000 or less, and even more preferably 16000 or less. If the weight average molecular weight of the urethane polyol falls within the above range, the obtained golf ball has further enhanced spin performance.


The hydroxyl value of the urethane polyol is preferably 10 mgKOH/g or more, more preferably 15 mgKOH/g or more, and even more preferably 20 mgKOH/g or more, and is preferably 200 mgKOH/g or less, more preferably 190 mgKOH/g or less, and even more preferably 180 mgKOH/g or less.


The polyol composition may contain a polyol compound other than the urethane polyol as the polyol component. Examples of the polyol compound include a low molecular weight polyol having a molecular weight of less than 500 and a high molecular weight polyol having an average molecular weight of 500 or more. Examples of the low molecular weight polyol include a diol such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol; and a triol such as glycerin, trimethylolpropane, and hexanetriol. Examples of the high molecular weight polyol include a polyether polyol such as polyoxyethylene glycol (PEG), polyoxypropylene glycol (PPG), and polyoxytetramethylene glycol (PTMG); a condensed polyester polyol such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA); a lactone polyester polyol such as poly-s-caprolactone (PCL); a polycarbonate polyol such as polyhexamethylene carbonate; and an acrylic polyol. The other polyol compound may be used solely or as a mixture of at least two of them.


The amount of the urethane polyol in the polyol component contained in the polyol composition is preferably 60 mass % or more, more preferably 70 mass % or more, and even more preferably 80 mass % or more. It is also preferable that the polyol component of the polyol composition consists of the urethane polyol.


The hydroxyl value of the polyol component contained in the polyol composition is preferably 10 mgKOH/g or more, more preferably 15 mgKOH/g or more, and even more preferably 20 mgKOH/g or more, and is preferably 400 mgKOH/g or less, preferably 300 mgKOH/g or less, more preferably 200 mgKOH/g or less, even more preferably 170 mgKOH/g or less, and most preferably 160 mgKOH/g or less. If the hydroxyl value of the polyol component falls within the above range, the paint film has enhanced adhesion to the golf ball body. It is noted that in the present invention, the hydroxyl value can be measured according to JIS K 1557-1, for example, by an acetylation method.


The molar ratio (NCO group/OH group) of the isocyanate group (NCO group) included in (A) the polyisocyanate composition to the hydroxyl group (OH group) included in (B) the polyol composition is preferably 0.1 or more, more preferably 0.5 or more, and even more preferably 1.1 or more. If the molar ratio (NCO group/OH group) is 0.1 or more, the curing reaction sufficiently proceeds. In addition, if the molar ratio (NCO group/OH group) is excessively large, the amount of the isocyanate group is excessive, and the obtained paint film not only becomes hard and fragile but also has deteriorated poor appearance. Thus, the molar ratio (NCO group/OH group) is preferably 2.0 or less, more preferably 1.7 or less, and even more preferably 1.5 or less. It is noted that the reason why the appearance of the obtained paint film deteriorates if the amount of the isocyanate group in the paint becomes excessive is that an excessive amount of the isocyanate group may promote a reaction between the moisture in air and the isocyanate group, thereby generating a lot of carbon dioxide gas.


(A) The polyisocyanate composition and (B) the polyol composition may contain a solvent. The solvent may be water or an organic solvent, and is preferably the organic solvent. Examples of the organic solvent include toluene, isopropyl alcohol, xylene, methylethyl ketone, methylethylisobutyl ketone, ethylene glycol monomethyl ether, ethylbenzene, propylene glycol monomethyl ether, isobutyl alcohol, and ethyl acetate. It is noted that the solvent may be added in either of (A) the polyisocyanate composition and (B) the polyol composition, and in light of uniformly performing the curing reaction, the solvent is preferably added in the polyol composition and the polyisocyanate composition, respectively.


(A) The polyisocyanate composition and (B) the polyol composition may contain a catalyst for the curing reaction. Examples of the catalyst include a monoamine such as triethyl amine and N,N-dimethylcyclohexylamine; a polyamine such as N,N,N′,N′-tetramethylethylene diamine and N,N,N′,N″,N″-pentamethyldiethylene triamine; a cyclic diamine such as 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) and triethylene diamine; and a tin catalyst such as dibutyl tin dilaurate and dibutyl tin diacetate. These catalysts may be used solely, or two or more of the catalysts may be used in combination. Among them, the tin catalyst such as dibutyl tin dilaurate and dibutyl tin diacetate is preferable, and dibutyl tin dilaurate is particularly preferable.


(A) The polyisocyanate composition and (B) the polyol composition may further contain additives generally contained in a paint for a golf ball, such as a filler, an ultraviolet absorber, an antioxidant, a light stabilizer, a fluorescent brightener, an anti-blocking agent, a leveling agent, a slip agent, and a viscosity modifier, where necessary.


The outermost paint film layer is preferably formed from a paint containing (A) the polyisocyanate composition and (B) the polyol composition. Examples of the paint include a so-called two-component curing type urethane paint containing the polyol as a base material and the polyisocyanate as a curing agent.


(Properties of the Outermost Paint Film Layer)

The peak temperature of the loss tangent (tan δ) of the outermost paint film layer is preferably −40° C. or more, more preferably −30° C. or more, and even more preferably −20° C. or more, and is preferably 40° C. or less, more preferably 30° C. or less, and even more preferably 20° C. or less. If the peak temperature of the loss tangent (tan δ) is −40° C. or more, the paint film has low adhesiveness and thus is hard to be stained, and if the peak temperature of the loss tangent (tan δ) is 40° C. or less, the paint film has a high dynamic friction coefficient and thus the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases.


The storage modulus (E′) of the outermost paint film layer at the temperature of 24° C. is preferably 10 MPa or more, more preferably 15 MPa or more, and even more preferably 20 MPa or more, and is preferably 100 MPa or less, more preferably 80 MPa or less, and even more preferably 60 MPa or less. If the storage modulus (E′) is 10 MPa or more, the paint film has low adhesiveness and thus is hard to be stained, and if the storage modulus (E′) is 100 MPa or less, the paint film has a high dynamic friction coefficient and thus the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases.


The loss modulus (E″) of the outermost paint film layer at the temperature of 24° C. is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, and even more preferably 1.0 MPa or more, and is preferably 80 MPa or less, more preferably 65 MPa or less, and even more preferably 50 MPa or less. If the loss modulus (E″) is 0.1 MPa or more, the paint film has low adhesiveness and thus is hard to be stained, and if the loss modulus (E″) is 80 MPa or less, the paint film has a high dynamic friction coefficient and thus the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases.


The 10% elastic modulus of the outermost paint film layer is preferably 1 kgf/cm2 (0.10 MPa) or more, more preferably 3 kgf/cm2 (0.29 MPa) or more, and even more preferably 5 kgf/cm2 (0.49 MPa) or more, and is preferably 50 kgf/cm2 (4.9 MPa) or less, more preferably 40 kgf/cm2 (3.9 MPa) or less, and even more preferably 30 kgf/cm2 (2.9 MPa) or less. If the 10% elastic modulus of the outermost paint film layer is 1 kgf/cm2 or more, the paint film has low adhesiveness and thus is hard to be stained, and if the 10% elastic modulus of the outermost paint film layer is 50 kgf/cm2 or less, the paint film has a high dynamic friction coefficient and thus the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases.


The dynamic friction coefficient of the outermost paint film layer is preferably 0.65 or more, more preferably 0.70 or more, and even more preferably 0.73 or more, and is preferably 1.2 or less, more preferably 1.1 or less, and even more preferably 1.0 or less. If the dynamic friction coefficient is 0.65 or more, the spin rate on approach shots under a condition that there is grass between the golf ball and the club face increases, and if the dynamic friction coefficient is 1.2 or less, the paint film has low adhesiveness and thus is hard to be stained.


The thickness of the outermost paint film layer is preferably 5 μm or more, more preferably 7 μm or more, and is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. If the thickness of the outermost paint film layer falls within the above range, the outermost paint film layer has better appearance, and the golf ball has better abrasion resistance and better approach performance.


The methods for measuring the loss tangent, storage modulus, loss modulus, dynamic friction coefficient and thickness of the outermost paint film layer will be described later.


When the paint film has a multiple layered structure, examples of the base resin constituting the paint film layer other than the outermost paint film layer include a urethane resin, an epoxy resin, an acrylic resin, a vinyl acetate resin, and a polyester resin, and among them, the urethane resin is preferable. The paint film layer other than the outermost paint film layer may be formed from a paint same as or different from the paint for forming the outermost paint film layer.


(Formation of Paint Film)

The paint film can be formed by applying a paint on the surface of the golf ball body. The method of applying the paint is not particularly limited, a conventional method can be adopted, and examples thereof include a spray coating and electrostatic coating.


In the case of performing the spray coating with an air gun, (A) the polyisocyanate composition and (B) the polyol composition are fed with respective pumps and continuously mixed with a line mixer located in the stream line just before the air gun, and the obtained mixture is air-sprayed. Alternatively, the polyol and the polyisocyanate are air-sprayed respectively with an air spray system provided with a device for controlling the mixing ratio thereof. The paint application may be conducted by spraying the paint one time or overspraying the paint multiple times.


The paint applied on the golf ball body can be dried, for example, at a temperature in a range of from 30° C. to 70° C. for 1 hour to 24 hours, to form the paint film.


(Golf Ball Body)

The golf ball according to the present invention is not particularly limited, as long as it is a golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body. The construction of the golf ball body is not particularly limited, and the golf ball body may be a one-piece golf ball, a two-piece golf ball, a multi-piece golf ball such as a three-piece golf ball, a four-piece golf ball, a five-piece golf ball and a golf ball comprising more than five pieces, or a wound golf ball. The present invention can be applied appropriately to any one of the above golf balls.


(Core)

The one-piece golf ball body and the core used for a wound golf ball, two-piece golf ball and multi-piece golf ball will be explained.


The one-piece golf ball body or the core may be formed from a conventionally known rubber composition (hereinafter sometimes simply referred to as “core rubber composition”). For example, the one-piece golf ball body or the core may be formed by heat pressing a rubber composition containing a base rubber, a co-crosslinking agent and a crosslinking initiator.


As the base rubber, particularly preferable is a high cis-polybutadiene having a cis-bond in a proportion of 40 mass % or more, more preferably 70 mass % or more, and even more preferably 90 mass % or more in view of its advantageous resilience. As the co-crosslinking agent, an α,β-unsaturated carboxylic acid having 3 to 8 carbon atoms or a metal salt thereof is preferable, and a metal salt of acrylic acid or a metal salt of methacrylic acid is more preferable. As the metal constituting the metal salt, zinc, magnesium, calcium, aluminum or sodium is preferable, and zinc is more preferable. The amount of the co-crosslinking agent is preferably 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the base rubber. In the case that the α,β-unsaturated carboxylic acid having 3 to 8 carbon atoms is used as the co-crosslinking agent, a metal compound (e.g. magnesium oxide) is preferably used in combination. As the crosslinking initiator, an organic peroxide is preferably used. Specific examples of the organic peroxide include dicumyl peroxide, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and di-t-butyl peroxide. Among them, dicumyl peroxide is preferably used. The amount of the crosslinking initiator is preferably 0.2 part by mass or more, more preferably 0.3 part by mass or more, and is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, with respect to 100 parts by mass of the base rubber.


In addition, the core rubber composition may further contain an organic sulfur compound. As the organic sulfur compound, diphenyl disulfides (e.g. diphenyl disulfide, bis(pentabromophenyl)disulfide), thiophenols or thionaphthols (e.g. 2-thionaphthol) are preferably used. The amount of the organic sulfur compound is preferably 0.1 part by mass or more, more preferably 0.3 part by mass or more, and is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, with respect to 100 parts by mass of the base rubber. The core rubber composition may further contain a carboxylic add and/or a salt thereof. As the carboxylic acid and/or the salt thereof, a carboxylic acid having 1 to 30 carbon atoms and/or a salt thereof is preferable. As the carboxylic acid, an aliphatic carboxylic acid or an aromatic carboxylic acid (e.g. benzoic acid) may be used. The amount of the carboxylic acid and/or the salt thereof is preferably 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the base rubber.


The core rubber composition may further contain a weight adjusting agent such as zinc oxide and barium sulfate, an antioxidant, or a colored powder, in addition to the base rubber, the co-crosslinking agent, the crosslinking initiator, and the organic sulfur compound. The molding conditions for heat pressing the core rubber composition may be appropriately set depending on the rubber formulation. Generally, the heat pressing is preferably carried out at 130° C. to 200° C. for 10 to 60 minutes, or carried out in a two-step heating of heating at 130° C. to 150° C. for 20 to 40 minutes followed by heating at 160° C. to 180° C. for 5 to 15 minutes.


(Cover)

The golf ball body preferably comprises a core and a cover covering the core. In this case, the hardness of the cover is preferably 60 or less, more preferably 55 or less, even more preferably 50 or less, and most preferably 45 or less in Shore D hardness. If the hardness of the cover is 60 or less in Shore D hardness, the spin rate is further increased. The lower limit of the hardness of the cover is not particularly limited, and is preferably 10, more preferably 15, and even more preferably 20 in Shore D hardness. The hardness of the cover is a slab hardness of the cover composition molded into a sheet shape.


The thickness of the cover is preferably 0.1 mm or more, more preferably 0.2 mm or more, and even more preferably 0.3 mm or more, and is preferably 1.0 mm or less, more preferably 0.9 mm or less, and even more preferably 0.8 mm or less. If the thickness of the cover is 0.1 mm or more, the shot feeling of the golf ball is better, and if the thickness of the cover is 1.0 mm or less, the resilience of the golf ball is maintained.


The resin component constituting the cover is not particularly limited, and examples thereof include various resins such as an ionomer resin, a polyester resin, a urethane resin and a polyamide resin; a thermoplastic polyamide elastomer having a trade name of “Pebax (registered trademark) (e.g. “Pebax 2533”)” available from Arkema Inc.; a thermoplastic polyester elastomer having a trade name of “Hytrel (registered trademark) (e.g. “Hytrel 3548” and “Hytrel 4047”)” available from Du Pont-Toray Co., Ltd.; a thermoplastic polyurethane elastomer having a trade name of “Elastollan (registered trademark) (e.g. “Elastollan XNY97A”)” available from BASF Japan Ltd.; and a thermoplastic styrene elastomer having a trade name of “Rabalon (registered trademark)” and a thermoplastic polyester elastomer having a trade name of “Primalloy” both available from Mitsubishi Chemical Corporation. These cover materials may be used solely, or two or more of these cover materials may be used in combination.


Among them, the resin component constituting the cover is preferably the polyurethane resin or the ionomer resin, particularly preferably the polyurethane resin. When the resin component constituting the cover includes the polyurethane resin, the amount of the polyurethane resin in the resin component is preferably 50 mass % or more, more preferably 70 mass % or more, and even more preferably 90 mass % or more. When the resin component constituting the cover includes the ionomer resin, the amount of the ionomer resin in the resin component is preferably 50 mass % or more, more preferably 70 mass % or more, and even more preferably 90 mass % or more.


The polyurethane may be either a thermoplastic polyurethane or a thermosetting polyurethane. The thermoplastic polyurethane is a polyurethane exhibiting plasticity by heating and generally means a polyurethane having a linear chain structure of a high-molecular weight to a certain extent. On the other hand, the thermosetting polyurethane (two-component curing type polyurethane) is a polyurethane obtained by polymerization through a reaction between a low-molecular weight urethane prepolymer and a curing agent (chain extender) when molding the cover. The thermosetting polyurethane includes a polyurethane having a linear chain structure or a polyurethane having a three-dimensional crosslinked structure depending on the number of the functional group of the prepolymer or the curing agent (chain extender) to be used. As the polyurethane, the thermoplastic elastomer is preferable.


The cover may further contain a pigment component such as a white pigment (e.g. titanium oxide), a blue pigment and a red pigment, a weight adjusting agent such as calcium carbonate and barium sulfate, a dispersant, an antioxidant, an ultraviolet absorber, a light stabilizer, a fluorescent material or a fluorescent brightener, or the like, in addition to the above resin component, as long as they do not impair the performance of the cover.


The method for molding the cover from the cover composition is not particularly limited, and examples thereof include a method of injection molding the cover composition directly onto the core; and a method of molding the cover composition into hollow shells, covering the core with a plurality of the hollow shells and compression molding the core with a plurality of the hollow shells (preferably a method of molding the cover composition into half hollow-shells, covering the core with two of the half hollow-shells and compression molding the core with two of the half hollow-shells). The golf ball body having the cover formed thereon is ejected from the mold, and as necessary, the golf ball body is preferably subjected to surface treatments such as deburring, cleaning, and sandblast. In addition, if desired, a mark may also be formed thereon.


The total number of the dimples formed on the cover is preferably 200 or more and 500 or less. If the total number of the dimples is less than 200, the dimple effect is hardly obtained, and if the total number of the dimples exceeds 500, the dimple effect is hardly obtained because the size of the respective dimples is small. The shape (shape in a plan view) of the dimples includes, for example, but is not limited to, a circle; a polygonal shape such as a roughly triangular shape, a roughly quadrangular shape, a roughly pentagonal shape, and a roughly hexagonal shape; and other irregular shape. The shape of the dimples may be employed solely, or two or more of the shapes may be employed in combination.


When the golf ball is a multi-piece golf ball such as a three-piece golf ball, a four-piece golf ball, a five-piece golf ball and a golf ball composed of more than five pieces, examples of the material for forming the intermediate layer disposed between the core and the outermost cover include a thermoplastic resin such as a polyurethane resin, an ionomer resin, a polyamide resin, and a polyethylene; a thermoplastic elastomer such as a styrene elastomer, a polyolefin elastomer, a polyurethane elastomer, and a polyester elastomer; and a cured product of a rubber composition. Herein, examples of the ionomer resin include a product obtained by neutralizing at least a part of carboxyl groups of a copolymer composed of ethylene and an α,β-unsaturated carboxylic acid with a metal ion; and a product obtained by neutralizing at least a part of carboxyl groups of a ternary copolymer composed of ethylene, an α,β-unsaturated carboxylic acid and an α,β-unsaturated carboxylic acid ester with a metal ion. The intermediate layer may further contain a weight adjusting agent such as barium sulfate and tungsten, an antioxidant, a pigment, and the like. It is noted that the intermediate layer is sometimes referred to as an inner cover or an outer core, depending on the construction of the golf ball.


The golf ball preferably has a diameter in a range from 40 mm to 45 mm. In light of satisfying the regulation of US Golf Association (USGA), the diameter is particularly preferably 42.67 mm or more. In light of prevention of air resistance, the diameter is more preferably 44 mm or less, even more preferably 42.80 mm or less. In addition, the golf ball according to the present invention preferably has a mass of 40 g or more and 50 g or less. In light of obtaining greater inertia, the mass is more preferably 44 g or more, even more preferably 45.00 g or more. In light of satisfying the regulation of USGA, the mass is particularly preferably 45.93 g or less.


When the golf ball has a diameter in a range from 40 mm to 45 mm, the compression deformation amount (shrinking amount along the compression direction) of the golf ball when applying a load from 98 N as an initial load to 1275 N as a final load to the golf ball is preferably 2.0 mm or more, more preferably 2.2 mm or more, and is preferably 4.0 mm or less, more preferably 3.5 mm or less. If the compression deformation amount is 2.0 mm or more, the golf ball is not excessively hard and thus the shot feeling thereof is better. On the other hand, if the compression deformation amount is 4.0 mm or less, the resilience is greater.


The FIGURE is a partially cutaway cross-sectional view showing a golf ball 1 according to one embodiment of the present invention. The golf ball 1 comprises a spherical core 2, a cover 3 covering the spherical core 2, and a paint film 4 formed on a surface of the cover 3. On the surface of the cover 3, a plurality of dimples 31 are formed. On the surface of the cover 3, a part other than the dimples 31 is a land 32.


Examples

Next, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples described below. Various changes and modifications without departing from the spirit of the present invention are included in the scope of the present invention.


[Evaluation Method]
(1) Compression Deformation Amount (mm)

The deformation amount of the core along the compression direction (shrinking amount of the core along the compression direction), when applying a load from 98 N as an initial load to 1275 N as a final load to the core, was measured.


(2) Core Hardness (Shore C Hardness)

The hardness measured at the surface of the core was adopted as the surface hardness of the core. In addition, the core was cut into two hemispheres and the hardness measured at the central point of the obtained cut plane was adopted as the center hardness of the core. The hardness was measured with an automatic hardness tester (Digitest II available from Bareiss company) using a detector of “Shore C”.


(3) Slab Hardness (Shore D Hardness)

Sheets with a thickness of about 2 mm were produced by injection molding the resin composition. The sheets were stored at 23° C. for two weeks. At least three of these sheets were stacked on one another so as not to be affected by the measuring substrate on which the sheets were placed, and the hardness of the stack was measured with an automatic hardness tester (Digitest II available from Bareiss company) using a detector of “Shore D”.


(4) Thickness of Paint Film (μm)

The golf ball was cut into two hemispheres, and the cross section of the paint film on the hemisphere was observed with a microscope (VHX-1000 available from Keyence Corporation) to obtain the thickness of the paint film.


(5) Loss Tangent (tan δ)

The storage modulus E′ (Pa), loss modulus E″ (Pa) and loss tangent (tan δ) of the paint film were measured under the following conditions.


Apparatus: Dynamic viscoelasticity measuring apparatus (Rheogel-E4000 available from UBM CO., Ltd.)


Test sample: A paint obtained by blending the polyisocyanate composition and the polyol composition was dried and cured at 40° C. for 4 hours to prepare a paint film having a thickness ranging from 0.11 mm to 0.14 mm. The paint film was cut to prepare a test piece having a width of 4 mm and a distance between the clamps of 20 mm.


Measuring mode: tensile mode


Measuring temperature: −100° C. to 150° C.


Temperature increase rate: 4° C./min


Measuring date capturing interval: 4° C.


Oscillation frequency: 10 Hz


Measuring strain: 0.1%


(6) 10% Elastic Modulus of Paint Film

The tensile properties of the paint film were measured according to JIS K7161 (2014). Specifically, the polyisocyanate composition and the polyol composition were blended to prepare a paint, and the obtained paint was dried and cured at 40° C. for 4 hours to prepare a paint film (thickness: 0.05 mm). The paint film was punched into the test piece type II (width of parallel part: 10 mm, gauge length: 50 mm) prescribed in JIS K7127 (1999), to prepare a test piece. The tensile test of the test piece was conducted with a precision universal tester (Autograph (registered trademark) available from Shimadzu Corporation) under testing conditions of a length between grips: 100 mm, a tensile speed: 50 mm/min and a testing temperature: 23° C., and the tensile stress at 10% strain (10% elastic modulus) was recorded.


(7) Spin Rate Under Dry Condition

A sand wedge (trade name: “CG 15 forged wedge”, loft angel: 52° available from Cleveland Golf Inc.) was installed on a swing machine available from Golf Laboratories, Inc. The golf ball was hit at a head speed of 16 m/s, and the spin rate (rpm) thereof was measured by continuously taking a sequence of photographs of the hit golf ball. The measurement was conducted ten times for each golf ball, and the average value thereof was adopted as the spin rate.


(8) Spin Rate Under a Condition that there is Grass Between the Golf Ball and the Club Face


A sand wedge (trade name: “CG 15 forged wedge”, loft angel: 52° available from Cleveland Golf Inc.) was installed on a swing machine available from Golf Laboratories, Inc. The golf ball was hit at a head speed of 16 m/s, and the spin rate (rpm) thereof was measured by continuously taking a sequence of photographs of the hit golf ball. It is noted that two leaves (length: about 3 cm) of wild grass were attached to the golf ball that was the testing object, and the golf ball was hit such that there was the wild grass between the club face and the golf ball. The measurement was conducted ten times for each golf ball, and the average value thereof was adopted as the spin rate.


(9) Dynamic Friction Coefficient

The dynamic friction coefficient of the golf ball was measured under the following conditions. It is noted that in the following conditions, the load is small and the moving speed is low, thus the dynamic friction coefficient of the outermost paint film layer can be measured.

    • Tester: Tribo Master TL201TS (available from Trinity-Lab inc.)
    • Test sample: golf ball
    • Face plate: A plate made of stainless steel (HT1770 (size: 50 mm×150 mm×thickness 2 mm) available from Nippon Steel Nisshin Co., Ltd.) and having a face surface with an arithmetic mean roughness Ra of 2.9 μm and a maximum height mean value Ry of 21.7 μm was used.
    • Preparation method of face plate: The face plate was obtained by performing an air-blast treatment to the stainless steel. As the grinding material, a mixture of alumina powder (#60) and steel ball (ES300 available from Ervin industries Co., Ltd.) in a mixing ratio of 1:1 was used. The blasting conditions were: a distance of 10 cm between the face plate and the nozzle, and a pressure of 4 to 6 kg/cm2 just before the nozzle.
    • Measuring method of Ra and Ry: Ra and Ry were measured with a surface roughness tester (SJ-301 available from Mitutoyo Corporation) by a method based on JIS B 0601-1994. Ra, Ry were each an average value of the values obtained at six measuring points. In addition, the cutoff value λc was 2.5 mm.
    • Temperature: 23° C.
    • Ball moving speed: 2 mm/s
    • Load: 1.96 N (200 gf)
    • Measurement method: The ball was fixed with a chuck, and allowed to move at a predetermined speed on a flat plate in a state that 200 gf of a load was applied on the ball, to measure the dynamic friction force.
    • Measuring item: dynamic friction (average value in the section of from 2-10 mm)


[Production of Golf Ball]
1. Production of Spherical Core

The rubber composition having the formulation shown in Table 1 was kneaded, and heat-pressed at 150° C. for 19 min in upper and lower molds, each having a hemispherical cavity, to obtain a spherical core having a diameter of 39.7 mm. It is noted that the amount of barium sulfate was adjusted such that the ball had a mass of 45.6 g.









TABLE 1





Spherical core

















Rubber composition
Polybutadiene rubber
100


formulation (parts by
Zinc acrylate
30.5


mass)
Zinc oxide
10



Barium sulfate
Appropriate




amount



Bis(pentabrorhophenyl)disulfide
0.3



Dicumyl peroxide
0.7



Benzoic acid
2


Molding condition
Temperature (° C.)
150



Time (min)
19


Core properties
Compression deformation
3.3



amount (mm)




Center hardness (Shore C)
53



Surface hardness (Shore C)
80



Hardness difference (Surface −
27



center) (Shore C)





Polybutadiene rubber: “BR730 (high-cis polybutadiene)” available from JSR Corporation


Zinc acrylate: “ZN-DA90S” available from Nihon Jyoryu Kogyo Co., Ltd.


Zinc oxide: “Ginrei R” available from Toho Zinc Co., Ltd.


Barium sulfate: “Barium Sulfate BD” available from Sakai Chemical Industry Co., Ltd,


Bis(pentabromophenyl)disulfide: available from Kawaguchi Chemical Industry Co., Ltd.


Dicumyl peroxide: “Perumyl (register trademark) D” available from NOF Corporation


Benzoic acid: available from Emerald Kalama Chemical Co., Ltd.






2. Preparation of Intermediate Layer Composition and Cover Composition

The materials having the formulations shown in Tables 2 and 3 were mixed with a twin-screw kneading extruder to prepare the intermediate layer composition and the cover composition in a pellet form. The extruding conditions were a screw diameter of 45 mm, a screw rotational speed of 200 rpm, and a screw L/D=35, and the mixture was heated to 160° C. to 230° C. at the die position of the extruder.









TABLE 2





Intermediate layer composition


















Himilan AM7329
55



Himilan 1555
45



Barium sulfate
Appropriate amount



Titanium dioxide
3



Slab hardness (Shore D)
62







Himilan (registered trademark) AM7329: zinc ion-neutralized ethylene-methacrylic acid copolymer ionomer resin available from Du Pont-Mitsui Polychemicals Co., Ltd.



Himilan 1555: sodium ion-neutralized ethylene-methacrylic acid copolymer ionomer resin available from Du Pont-Mitsui Polychemicals Co., Ltd.













TABLE 3





Cover compositon


















Elastollan NY80A
100



Titanium dioxide
4



Ultramarine blue
0.04



Slab hardness (Shore D)
27







Elastollan (registered trademark) NY80A: thermoplastic polyurethane elastomer available from BASF Japan Ltd.






3. Molding of Intermediate Layer

The intermediate layer composition obtained above was directly injection molded onto the spherical core obtained above to form the intermediate layer (thickness: 1.0 mm) covering the spherical core.


4. Production of Reinforcing Layer

A reinforcing layer composition (trade name “Polin (registered trademark) 750LE” available from Shinto Paint Co., Ltd.) having a two-component curing type epoxy resin as the base resin was prepared. The base agent contains a bisphenol A type solid epoxy resin in an amount of 30 parts by mass, and a solvent in an amount of 70 parts by mass. The curing agent contains a modified polyamide amine in an amount of 40 parts by mass, titanium dioxide in an amount of 5 parts by mass, and a solvent in an amount of 55 parts by mass. The mass ratio of the base agent to the curing agent was 1/1. The reinforcing layer composition was applied to the surface of the intermediate layer with an air gun, and kept for 12 hours in an atmosphere of 23° C., to form the reinforcing layer. The thickness of the reinforcing layer was 7 μm.


5. Molding of Cover

The cover composition in the pellet form was charged one by one into each of the depressed part of the lower mold for molding half shells, and a pressure was applied to mold half shells. The spherical body having the reinforcing layer formed thereon was concentrically covered with two of the half shells. The spherical body and the half shells were charged into a final mold provided with a plurality of pimples on the cavity surface. The cover (thickness: 0.5 mm) was formed by compression molding to obtain golf ball bodies. A plurality of dimples having an inverted shape of the pimples were formed on the cover.


6. Preparation of Urethane Polyol

As the first polyol component, polytetramethylene ether glycol (PTMG) and trimethylolpropane (TMP) were dissolved in a solvent (toluene and methyl ethyl ketone). In the obtained solution, as a catalyst, dibutyltin dilaurate was added in an amount of 0.1 mass % with respect to the total amount of the base material. While keeping the temperature of the obtained polyol solution at 80° C., isophorone diisocyanate (IPDI), as the first polyisocyanate component, was added dropwise to the polyol solution and mixed. After finishing the addition of isophorone diisocyanate, stirring was continued until the isocyanate group no longer existed. Then, the reaction liquid was cooled to the room temperature to prepare the urethane polyol (solid content: 30 mass %). The composition and the characteristics of the obtained urethane polyol are shown in Table 4.









TABLE 4





Urethane polyol

















Component
First polyol component
PTMG




TMP



First polyisocyanate component
IPDI








Number average moecuar weight of PTMG
650


TMP:PTMG (molar ratio)
1.87:1


Molar ratio (NCO/OH) of NCO group in polyisocyanate
0.6


component to OH group in polyol component



Amount of PTMG (mass %)
46.2


Hydroxyl value of solid component (mgKOH/g)
128.0


Weight average molecular weight
7200









7. Formation of Paint Film

Materials shown in Table 5 were blended to prepare paint compositions No. 1 to No. 8. The surface of the golf ball bodies obtained above was treated with sandblast and marked. The paint was applied with a spray gun, and dried for 24 hours in an oven at 40° C. to obtain golf balls having a diameter of 42.7 mm and a mass of 45.6 g.


The application of the paint was conducted as follows. The golf ball body was placed in a rotating member provided with a prong, and the rotating member was allowed to rotate at 300 rpm. The application of the paint was conducted by spacing a spray distance (7 cm) between the air gun and the golf ball body, and moving the air gun in an up and down direction. The painting interval in the overpainting operation was set to 1.0 second. The application of the paint was conducted under the spraying conditions of overpainting operation: twice, spraying air pressure: 0.15 MPa, compressed air tank pressure: 0.10 MPa, painting time per one application: one second, atmosphere temperature: 20° C. to 27° C., and atmosphere humidity: 65% or less. Evaluation results regarding the spin performance of the obtained golf balls are shown in Table 5.

















TABLE 5





Golf ball No.
1
2
3
4
5
6
7
8

























Paint
Polyol
Urethane polyol
100
100
100
100
70
100
100
100



composition
Liquid polybutadiene




30






(parts by mass)
Adduct-modified product
100
70
30









of HDI



Polyisocyanate
Biuret-modified product




30
30
30
30



composition
of HDI



(parts by mass)
Isocyanurate-modified

30
70
100
30
30
30
30




product of HDI




Isocyanurate-modified




40
40
40
40




product of IPDI

















Polyisocyanate composition/
1.2/1.0
1.2/1.0
1.2/1.0
1.2/1.0
0.7/1.0
0.38/1.0
0.61/1.0
1.2/1.0



polyol composition blending ratio



(NCO/OH molar ratio)


Paint film
Thickness (μm)
10
10
10
10
10
10
10
10


properties
Peak temperature of loss tangent (tanδ) (° C.)
8
14
20
32
64
52
68
84



Storage modulus E′ at 24° C. (MPa)
23
28
34
45
325
198
595
1520



Loss modulus E″ at 24° C. (MPa)
10
14
18
21
93
88
95
114



10% Elastic modulus (kgf/cm2)
7
10
12
15
55
10
65
180



Dynamic friction coefficient of
1.02
0.93
0.83
0.73
0.62
0.62
0.57
0.62



the outermost paint film layer


Golf ball
Spin rate under a dry condition (rpm)
4600
4650
4700
4700
4680
4650
4680
4600


evaluation
Spin rate under a condition that there is grass
3700
3600
3500
3300
2800
3000
2800
2600



between the golf ball and the club face (rpm)



Spin rate retention ratio under a condition that there
80.4
77.4
74.5
70.2
59.8
64.5
59.8
56.5



is grass between the golf ball and the club face (%)









The materials used in Table 5 are shown as below.


Polyol Composition

    • Liquid polybutadiene: Poly bd (registered trademark) R-45HT (hydroxyl group terminated liquid polybutadiene) available from Idemitsu Kosan Co., Ltd.


Polyisocyanate Composition

    • Adduct-modified product of HDI: adduct-modified product of hexamethylene diisocyanate (Duranate (registered trademark) E402-80B (NCO amount: 7.3%) available from Asahi Kasei Chemicals Corporation)
    • Biuret-modified product of HDI: biuret-modified product of hexamethylene diisocyanate (Duranate (registered trademark) 21S-75E (NCO amount: 15.5%) available from Asahi Kasei Chemicals Corporation)
    • Isocyanurate-modified product of HDI: isocyanurate-modified product of hexamethylene diisocyanate (Duranate TKA-100 (NCO amount: 21.7%) available from Asahi Kasei Chemicals Corporation)
    • Isocyanurate-modified product of IPDI: isocyanurate-modified product of isophorone diisocyanate (VESTANAT (registered trademark) TI 890 (NCO amount: 12.0%) available from Degussa Co., Ltd.)


The golf balls No. 1 to 4 are the cases that the base resin of the outermost paint film layer contains a polyurethane having a urethane polyol as a polyol component, and the peak temperature of the loss tangent of the outermost paint film layer is controlled in a range of from −40° C. to 40° C. These golf balls No. 1 to 4 are excellent in both the approach spin performance under a dry condition and the approach spin performance under a condition that there is grass between the golf ball and the club face.


The golf balls No. 5 to 8 are the cases that the loss tangent of the outermost paint film layer has a peak temperature of more than 40° C. These golf balls No. 5 to 8 are excellent in the approach spin performance under a dry condition, but is poor in the approach spin performance under a condition that there is grass between the golf ball and the club face.


This application is based on Japanese patent application No. 2018-207333 filed on Nov. 2, 2018, the contents of which are hereby incorporated by reference.

Claims
  • 1. A golf ball comprising a golf ball body and a paint film formed on a surface of the golf ball body, wherein the paint film is composed of at least one layer, and an outermost paint film layer located at the outermost layer of the golf ball contains, as a base resin, a polyurethane obtained by a reaction between (A) a polyisocyanate composition and (B) a polyol composition,(B) the polyol composition contains a urethane polyol as a polyol component, anda loss tangent (tan δ) of the outermost paint film layer measured with a dynamic viscoelasticity measuring apparatus under following conditions has a peak temperature in a range of from −40° C. to 40° C.:<measurement conditions>measuring mode: tensile modemeasuring temperature: −100° C. to 150° C.temperature increase rate: 4° C./minoscillation frequency: 10 Hzmeasuring strain: 0.1%.
  • 2. The golf ball according to claim 1, wherein (A) the polyisocyanate composition contains an adduct-modified product of a diisocyanate and/or an isocyanurate-modified product of a diisocyanate as a polyisocyanate component.
  • 3. The golf ball according to claim 1, wherein the loss tangent (tan δ) of the outermost paint film layer has the peak temperature in a range of from −20° C. to 20° C.
  • 4. The golf ball according to claim 1, wherein the urethane polyol has a weight average molecular weight in a range of from 5000 to 20000.
  • 5. The golf ball according to claim 1, wherein the urethane polyol includes a polyether diol as a constituent component.
  • 6. The golf ball according to claim 5, wherein the polyether diol has a number average molecular weight in a range of from 400 to 3000.
  • 7. The golf ball according to claim 1, wherein the outermost paint film layer has a storage modulus (E′) in a range of from 10 MPa to 100 MPa at the temperature of 24° C.
  • 8. The golf ball according to claim 1, wherein the outermost paint film layer has a loss modulus (E″) in a range of from 0.1 MPa to 80 MPa at the temperature of 24° C.
  • 9. The golf ball according to claim 1, wherein the outermost paint film layer has a 10% elastic modulus in a range of from 1 kgf/cm2 to 50 kgf/cm2.
  • 10. The golf ball according to claim 1, wherein the outermost paint film layer has a dynamic friction coefficient in a range of from 0.65 to 1.2.
  • 11. The golf ball according to claim 2, wherein the adduct-modified product of the diisocyanate is an adduct-modified product of hexamethylene diisocyanate, and the polyisocyanate component contains the adduct-modified product of hexamethylene diisocyanate in an amount in a range of from 30 mass % to 100 mass %.
  • 12. The golf ball according to claim 2, wherein the adduct-modified product and the isocyanurate-modified product are used in combination, and a mass ratio (adduct-modified product/isocyanurate-modified product) of the adduct-modified product to the isocyanurate-modified product is 0.43 or more.
  • 13. The golf ball according to claim 12, wherein the adduct-modified product of the diisocyanate is an adduct-modified product of hexamethylene diisocyanate, the isocyanurate-modified product of the diisocyanate is an isocyanurate-modified product of hexamethylene diisocyanate, and the polyisocyanate component contains the adduct-modified product of hexamethylene diisocyanate and the isocyanurate-modified product of hexamethylene dilsocyanate in a total amount in a range of from 70 mass % to 100 mass %.
Priority Claims (1)
Number Date Country Kind
2018-207333 Nov 2018 JP national