Golf club head and improved casting method therefor

Information

  • Patent Grant
  • 6508722
  • Patent Number
    6,508,722
  • Date Filed
    Monday, January 31, 2000
    24 years ago
  • Date Issued
    Tuesday, January 21, 2003
    21 years ago
Abstract
The present invention relates to a golf club head casting provided with an internal perimetral welt about the club face. During the club head casting process, the thermomechanical behavior of the casting allows differential cooling across the club face. The face cools at a different rate than the welt, thereby allowing the exterior surface of the face to be maintained in a generally convex shape. Thus, a close-tolerance casting that conforms to preselected face tolerance specifications may be produced.
Description




FIELD OF THE INVENTION




The invention relates to a golf club head. More particularly, the invention is related to a golf club head casting provided with an internal perimetral welt about the club face for differential cooling across the face of the club head during manufacture.




BACKGROUND OF THE INVENTION




Metal woods have become extremely popular among golfers. Metal wood heads are fashioned from a variety of metals, including stainless steel, aluminum, and titanium, and are generally produced in investment casting operations in which molten metal is poured into a mold cavity and allowed to solidify.




Many solidification phenomena are known to occur during casting, and it is well known in the casting art that the structure and properties of a casting are directly affected by the shrinkage, cooling rate, and solidification time of the casting material.




Careful design of the mold and molding process allows the production of club heads with internal cavities and complex surfaces to be cast. Various methods and apparatus for producing golf club heads are disclosed in U.S. Pat. No. 4,842,243 to Butler, U.S. Pat. No. 5,056,705 to Wakita et al., U.S. Pat. No. 5,417,559 to Schmidt, U.S. Pat. No. 5,547,630 to Schmidt, and U.S. Pat. No. 5,651,409 to Sheehan, and are herein incorporated by reference.




In castings, defects can occur during the solidification process, especially due to solidification shrinkage as the casting cools. For example, when cooling from liquid to solid state, a low carbon steel typically shrinks 2.5%, while aluminum can shrink in excess of 6.5%. Additionally, as the solid-state casting cools to room temperature it may contract by several more percent. The shrinkage allowance for a steel casting can be one-quarter inch per foot of material.




In general, to account for shrinkage and avoid residual stresses, molds are often designed to limit the amount of restraint imposed on the casting during cooling. Since the casting of most materials will shrink during cooling, cracking and a concomitant low strength may result if the mold provides too much restriction on shrinkage and residual stresses are introduced. The mold should be compliant enough to permit the solidifying metal to contract in a predictable and desired manner. Thus, proper design of a mold and casting, and proper control of the casting process are essential to the production of club heads with consistent properties and dimensions.




Prior art metal club heads are generally produced from separate castings of a head-shell and soleplate. The club head is formed by welding the soleplate to the head-shell, and then finishing the surface of the head in a grinding and polishing operation.




A drawback of the casting process is that it is difficult to consistently cast the desired shape of the club head to a tight dimensional tolerance, accounting for the shrinkage that occurs during cooling. Yet, the proper shape and sizing of the club face is essential to achieving a desired performance in a golf club, especially in a metal wood.




The shape and sizing of a club face is quite complex. For example, the face progression, defined as the distance from the centerline of the shaft or hosel bore to the farthest front portion of the face on its centerline, is known to impact the trajectory of a golf ball. The face angle, defined as the angle of the face to the grounded sole line with the shaft hole perpendicular to the line of flight, impacts loft and direction of the golf ball, and thus the tendency of the ball to hook or slice.




Of great concern are two characteristics of the face, the horizontal face bulge and the vertical face roll. Horizontal face bulge radius is measured from the heel to toe or along the horizontal plane of the face, and is important because it compensates for a golfer's hitting the ball off of the centerline. If a ball is hit at an off-center location, the bulge effectively compensates for the misalignment that would cause hooking or slicing. A typical wood has a horizontal face bulge radius of between 8 and 16 inches.




Vertical face roll radius is measured from the top of the face to the bottom of the face in a vertical position, and this factor affects the trajectory of the ball off the face. A typical wood has a vertical face roll radius of between 12 and 18 inches.




Prior art attempts to cast club heads to exacting specifications, as defined above, have met with poor results because of the thermomechanical behavior of the casting designs. For example, to minimize distortion of the casting during cooling, uniform cross-sections are desirable. Such a design criteria cannot be followed for a golf club head, especially the head of a wood containing an inner cavity. The face of the club head often contains grooving, and in the area near the hosel the cross section is often significantly wider than that of the remainder of the head-shell.




Prior art club head casting designs and casting methods often result in distortion of the shape and size of the clubhead during cooling. This is especially pronounced on the club head face, which although initially cast with an generally convex exterior surface, upon cooling often collapses inward and fails to retain the desired shape due to poor thermomechanical behavior during cooling.




Thus, there is a need for a casting that consistently results in the desired club head shape and sizing. More particularly, there is a need for a club head casting with a club head face having a consistent and predictable shape and size. Specifically, there is a need for a club head casting design and method which possess desirable thermomechanical behavior during cooling resulting in a casting with a face that does not excessively collapse upon cooling from casting temperature to room temperature.




SUMMARY OF THE INVENTION




The present invention relates to a golf club head casting adapted for attachment to a shaft. The golf club head includes a shell having an inner cavity with a head face and body, and a soleplate or crown plate coupled to the shell to form a substantially hollow body. The head face is cast and has an exterior surface, and the golf club head also includes means for thermomechanically stressing the head face during cooling, so that the exterior surface of the face is maintained in a generally convex shape.




Preferably, the golf club head face has a thickness of less than 0.1 inch. The convex shape may have a horizontal face bulge radius of less than 12 inches on at least a portion of the face, and may have a vertical face roll radius of less than 12 inches on at least a portion of the face The convex shape may alternatively have a vertical face roll radius of less than 8 inches on at least a portion of the face, and the head face and body may be cast simultaneously.




In another embodiment, a golf club head includes a homogeneous shell having an inner cavity with a head face and body, and a soleplate or crown plate coupled to the shell to form a substantially hollow body. The head face has an exterior surface and an interior surface, and a perimeter is included along the interior surface with a welt surrounding a substantial portion of the perimeter. Preferably, the welt covers more than 80 percent of the perimeter of the head face.




In a preferred embodiment, the welt covers more than 80 percent of the perimeter. The face may have a thickness between about 0.05 to 0.11 inch, and the welt may have a thickness between about 0.12 to 0.17 inch. In addition, a thickened central area of the head face may vary in thickness between about 0.050 and 0.150 inch.




In another embodiment, a golf club head includes a shell and a plate, the shell defining an inner cavity provided with a head face and a body. The body is provided with an aperture shaped for receiving the plate, and the head face is provided with a perimetral welt portion of a first thickness and a face portion of a second thickness adjacent the welt portion. The first thickness is at least 1.2 times greater than the second thickness. The perimetral welt is configured and dimensioned to cool slower than the central portion to maintain a predetermined face bulge and roll radius. Preferably, the head face thickness is less than 0.1 inch. The head face may have a generally convex shape with a horizontal face bulge radius of less than 12 inches on at least a portion of the face, and may have a vertical face roll radius of less than 12 inches on at least a portion of the face. The generally convex shape may alternatively have a vertical face roll radius of less than 8 inches on at least a portion of the face. The plate may be a soleplate or a crown plate.




The present invention also relates to a method of forming a close-tolerance casting of a golf club head shell. The method includes the steps of: selecting a face shape of a head shell corresponding to at least two face tolerance specifications, selecting a perimetral welt thickness and shape of a head shell to surround the face, forming a casting mold for casting the head shell having the face shape and perimetral welt, casting molten metal into the casting mold to form the head shell, and allowing the face to cool faster than the welt to maintain two face tolerance specifications. The at least two face tolerance specifications may be a horizontal face bulge radius and a vertical face roll radius.











BRIEF DESCRIPTION OF THE DRAWINGS




Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:





FIG. 1

shows a front perspective view of the golf club head casting of the present invention.





FIG. 2

shows a bottom, perspective view of the golf club head casting with the sole plate removed.





FIG. 3

shows a cross-sectional view of the golf club head casting of FIG.


1


.





FIG. 3A

shows an exploded cross-sectional view of a portion of the golf club head casting of FIG.


3


.





FIG. 4

shows a top, perspective view of the golf club head casting with the perimetral welt indicated in phantom.





FIGS. 5

shows a front view of the face of the golf club head casting of the present invention.





FIG. 5A

shows a cross-sectional view of the golf club head casting along line A—A of FIG.


5


.





FIG. 5B

shows a cross-sectional view of the golf club head casting along line B—B of FIG.


5


.





FIGS. 6

shows a front view of the face of another golf club head casting of the present invention.





FIG. 6A

shows a cross-sectional view of the golf club head casting along line C—C of FIG.


6


.





FIG. 6B

shows a cross-sectional view of the golf club head casting along line D—D of FIG.


6


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

shows a first embodiment of the golf club head casting


10


of the present invention. Club head


10


includes shell


12


with body


14


, toe portion


18


, heel portion


20


, sole plate


22


, hosel


24


, bottom portion


26


, and top portion


28


, and face


16


. The sole plate


22


, shown in phantom, fits in a recess in the bottom portion


26


of body


14


. The shell


12


and sole plate


22


create an inner cavity


30


. The face


16


is preferably provided with grooving


32


on its exterior surface


34


. A golf club shaft (not shown) is attached at hosel


24


and is disposed along a shaft axis SHA, and the hosel may extend to the bottom of the club head, or may terminate at a location intermediate the top and bottom portions of the head. Inner cavity


30


of club head


10


may be empty, or alternatively may be filled with a foam or other low specific gravity material. Preferably, at least face


16


is cast, and the remainder of the golf club head may be formed by other means. More preferably, shell


12


is cast simultaneously as a body


14


and face


16


, forming a homogeneous shell and eliminating the need to bond or otherwise permanently secure a separate face


16


to shell


12


.




In an alternate embodiment, shell


12


has a body


14


, toe portion


18


, heel portion


20


, sole plate


22


, hosel


24


, bottom portion


26


, and top portion


28


, and face


16


. The sole plate is formed integral with shell


12


. A crown plate, not shown, is fitted to shell


12


, thereby creating a hollow, inner cavity.




Perimetral welt


36


, also shown in phantom, is provided about the head face


16


. In a preferred embodiment, the welt


36


is formed of additional material around at least a portion of the perimeter of head face


16


. The welt is preferably made of the same material as the shell


12


to facilitate casting. Alternatively, the welt may be made of a different material which is also cast in place.




As further seen in

FIG. 2

, preferably the perimetral welt


36


is formed along the inner edge of head face


16


, at the intersection of head face


16


and body


14


on interior surfaces


40


and


42


. The welt can contact hosel


24


, or is preferably formed such that it is separate from the hosel. The welt can have a variety of cross-sections, including but not limited to arcuate and rectangular forms. The welt


36


may extend along a substantial portion of the perimeter defined at the intersection of face


16


and body


14


on interior surfaces


40


and


42


. Preferably, the welt


36


covers more than 80% of the perimeter. In a preferred embodiment, the welt


36


has a generally uniform thickness and cross-section. Alternatively, a plurality of welt portions may be provided along the perimeter, the welt portions having either constant or varying cross-sections.




By locating the perimetral welt


36


at or near the intersection of head face


16


and body


14


, the heat transfer characteristics inherent in the geometry permit a desired club head shape to be achieved. All heat transfer modes may be employed to selectively control the cooling of the club head during the entire casting process, including conduction, radiative heat transfer, and convective heat transfer. Thus, for example, even though the perimetral welt may not actually touch head face


16


, it may be located in such proximity to the head face to thereby allow other modes of heat transfer to compensate for the detached location and still achieve the necessary temperature differential across the shell to produce the desired final shape.




As shown in

FIGS. 3

,


3


A, and


4


, the desired vertical face roll R


1


and horizontal face bulge R


2


can be chosen for the head casting so that the casting is shaped as a particular wood. Vertical face roll R


1


is the radius of the face at the vertical centerline VCL and the face bulge R


2


is the radius of the center arc CA of the face at the horizontal centerline HCL. In the preferred embodiment, welt


36


is provided at the intersection of head face


16


and body


14


on interior surfaces


40


and


42


. Head face


16


has a thickness t


1


in areas adjacent welt


36


; the welt


36


has a thickness t


2


and covers a length L of head face


16


. Thickness t


2


and length L may be substantially equivalent, or one may be larger than the other depending on the desired final geometry of the head face.




Referring to

FIG. 2A

, the thickness of the club head face t


1


is preferably about 0.08 to 0.11 inch. Most preferably, the thickness of the face is less than about 0.10 inch and about 0.09 inch. Moreover, the thickness of the welt t


2


is preferably about 0.12 to 0.17 inch, and most preferably about 0.15 inch. The length of the welt L is preferably about 0.10 to 0.25 inch. Most preferably, the length L of the welt is about 0.20 inch.




Preferably, the roll radius R


1


will increase with an increase in loft. For example, for a 3 wood, it is preferable to have a roll radius of approximately 5 to 6 inches. In other words, a club head having a loft of approximately 10 to 15 degrees would preferably have a roll radius of around 5 to 6 inches. A 5 wood, a clubhead having a loft of approximately 8 to 25 degrees, would preferably have a larger roll radius of approximately 8 to 10 inches. Thus, all of the clubs in a set or individually preferably have a roll radius of less than 11 inches. More preferably, the clubs with 15 degrees of loft or less have a roll radius of 8 inches or less and clubs with a loft of 16 to 25 degrees have a roll radius of 8 to 11 inches.




Preferably, the bulge radius will increase with an increase in loft. For example, for a 3 wood, a club head having a loft of approximately 10 to 15 degrees, would preferably have a bulge radius of around 8 to 11 inches and preferably about 10 inches. A 5 wood, a club head having a loft of approximately 18 to 25 degrees, would have a bulge radius of approximately 10 to 13 inches. Thus, clubs preferably have a bulge radius of less than 13 inches. More preferably, the clubs with 15 degrees of loft or less have a bulge radius of 10 inches or less and clubs with a loft of 16 to 25 degrees have a bulge radius of 10 to 13 inches.




Although interior surface


40


of head face


16


is shown with a uniform cross-section, a variable cross-section may be provided across the head face. Thus, the central region


44


of head face


16


may have a different thickness than adjacent areas as well as the perimetral welt. As shown in

FIGS. 5

to


5


B, the thickness of the head face may change in a stepped fashion from a central region with thickness t


4


to adjacent regions having thickness t


3


and t


1


to perimetral welt regions having thickness t


2


. Preferably, the thickness t


4


≧1.5 t


1


, and the thickness t


4


≦t


2


. In another embodiment, the thickness from one region to the next may change gradually. Such a reinforced head face may provide the dual benefits of added structural integrity, which helps prevent permanent deformation of the head face as a result of repeated contact with a golf ball during normal play, as well as additional surface that can be used to control the heat transfer during cooling from initial casting and thereby allow the desired head face curvature to be achieved.




As shown in

FIGS. 5

,


5


A, and


5


B, the face


16


may have variable thickness where the thickness of the head face t


1


adjacent to the welt


36


is preferably about 0.075 to 0.100 inch. Most preferably, the thickness of the face t


1


is about 0.080 inch. The thickness t


2


of the welt


36


is preferably about 0.12 to 0.17 inch, and most preferably about 0.150 inch. Several additional thickened areas may be provided, including an inner thickened area with t


3


preferably about 0.080 to 0.120, and most preferably 0.100 inch, as well as a central thickened area with t


4


preferably about 0.110 to 0.150, and most preferably 0.130 inch.




In a preferred embodiment, the widths of each thickened region are measured along a cross-section taken along a horizontal plane that includes the center of gravity of the club head, and the region widths are related as follows:








W




1


<0.75


W




CH












W




3




−W




2


≧1/6


W




CH












W




CH




−W




3


≦1/6


W




CH








The heights of each thickened region are also measured along a cross-section taken along a vertical plane that includes the center of gravity of the club head, and the region heights are related as follows:








H




1


<0.6


H




CH












H




3




−H




2


≧1/6


H




CH











H




CH




−H




3


≦1/6


H




CH






It is well known to those skilled in the art that the temperature distribution and heat transfer across a complex surface can be predicted based in part on material properties and geometric considerations. It has long been settled that areas of greater thickness may take longer to cool than areas having a comparatively thin cross-section. However, geometrical considerations may in some designs permit an area to cool at a predictable and enhanced rate. For example, it is well known that the heat transfer inherent to a plane wall configuration can be enhanced through the use of an extended surface, often referred to as a finned surface.




In the preferred embodiment, the size of the welt


36


is chosen based on the thermomechanical characteristics of the golf club head casting. By choosing a welt of a particular size and shape, a casting can be made which displays resilient face roll and face bulge characteristics. In particular, a head face is normally provided with a relatively uniform thickness. In the present embodiment, the welt provides a perimetral area having a thickness greater than the thickness of the adjacent area of the head face. After initial casting, while the newly formed head casting is still cooling from a significantly elevated temperature, the complex geometry of the interior surface of the head face and body results in nonuniform cooling across the club head casting. Of particular relevance is the nonuniform cooling that is obtained across head face


16


. Perimetral areas, having a greater thickness than adjacent areas on the head face, take longer to cool. This nonuniform cooling results in the generation of stresses due to the different degrees of thermal contraction that occur across the head face. Such non-uniform thermal contraction stresses in both the longitudinal and transverse directions can advantageously be used to produce the desired curvature of the head face when the casting has cooled to room temperature.




As shown in

FIGS. 6

,


6


A, and


6


B, the face


16


may have variable thickness such that some of the thickened sections are not symmetrically shaped with, for example, the shape of head face


16


. In the preferred embodiment, one or more elliptically shaped thickened areas are provided on the central region


44


of head face


16


. Each elliptical thickened area has a major axis MAJ and a minor axis MIN. For example, the major axis MAJ extends through vertices


46


and


48


, with a center point


50


located midway between points


46


and


48


. The minor axis MIN extends through center point


50


and is perpendicular to the major axis MAJ. Preferably, axis MAJ is oriented transverse with respect to the shaft axis SHA. Most preferably, axis MAJ is perpendicular to axis SHA, and center point


50


is coaxial with a point defining the center of gravity of the club head casting


10


. This orientation of thickened sections balances the club such that if a ball is hit at an off-center location on the face, the club is less likely to rotate about an axis through center point


50


and parallel to shaft axis SHA. Such an orientation also has advantageous vibrational characteristics.




Preferably, each thickened section has a generally constant thickness. For example, thickened section


52


has a constant thickness such that thickness t


5


near the section edge is equivalent to thickness t


6


, and likewise thickened section


56


also has a constant thickness with t


7


equivalent to t


8


. Alternatively, the thickened sections may have a surface curvature such that the thickness varies across the section. The curvature may be ellipsoidal.




In a preferred embodiment, the bulge radius is oriented around the axis MAJ. In addition, the roll radius may be oriented around the axis MIN.




In another preferred embodiment, the roll radius is oriented at an angle from 0 to 35 degrees from the horizontal plane that includes the center of gravity of the face plate.




It may be desired to decrease or eliminate residual stresses that result from the initial thermal processing steps that establish the curvature of the face. Methods for removing such stresses are well-known in the art, and include additional mechanical and thermal treatments.




By initially casting a club head with a perimetral welt having a preselected geometry, the present invention further provides a method of controlling curvature of the head casting as it cools.




A close-tolerance casting of a golf club head shell may be formed by preselecting a face shape of a head shell corresponding to at least two face tolerance specifications. Such specifications include face thickness, horizontal face bulge radius, and vertical face roll radius. Other specifications include, but are not limited to, face progression and face angle. The perimetral welt thickness and head shell shape are also preselected. A corresponding casting mold is formed, and molten metal is cast into the casting mold to form the head shell. The face of the casting is then allowed to cool faster than the welt.




While various descriptions of the present invention are described above, it should be understood that the various features can be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein.




Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.



Claims
  • 1. A golf club head casting adapted for attachment to a shaft comprising:a shell having an inner cavity with a head face and body, the head face being cast and having an exterior surface; a soleplate or crown plate coupled to the shell to form a substantially hollow body; and means for thermomechanically stressing the head face during cooling, thereby maintaining the exterior surface of the face in a generally convex shape, wherein the head face has a thickness less than 0.1 inch, and wherein the convex shape has a vertical face roll radius of less than 12 inches on at least a portion of the face.
  • 2. The golf club head casting of claim 1, wherein the convex shape has a horizontal face bulge radius of less than 12 inches on at least a portion of the face.
  • 3. The golf club head casting of claim 1, wherein the convex shape has a vertical face roll radius of less than 8 inches on at least a portion of the face.
  • 4. The golf club head casting of claim 1, wherein the head face and body are cast simultaneously.
  • 5. A golf club head comprising a shell and a plate, the shell defining an inner cavity provided with a head face and a body, wherein the body is provided with an aperture shaped for receiving the plate, and the head face is provided with a perimetral welt portion of a first thickness and a face portion of a second thickness adjacent the welt portion, wherein the first thickness is at least 1.2 times greater than the second thickness and the perimetral welt is configured and dimensioned to cool slower than the central portion to maintain a predetermined face bulge and roll radius,wherein the head face has a thickness less than 0.1 inch, and wherein the head face has a generally convex shape with a vertical face roll radius of less than 12 inches on at least a portion of the face.
  • 6. The golf club head of claim 5, wherein the head face has a generally convex shape with a horizontal face bulge radius of less than 12 inches on at least a portion of the face.
  • 7. The golf club head of claim 5, wherein the head face has a generally convex shape with a vertical face roll radius of less than 8 inches on at least a portion of the face.
  • 8. The golf club head of claim 5, wherein the plate is a soleplate.
  • 9. The golf club head of claim 5, wherein the plate is a crown plate.
US Referenced Citations (173)
Number Name Date Kind
1318325 Klin Oct 1919 A
1319233 Mattern Oct 1919 A
1467435 Kinnear Sep 1923 A
1525352 Aitken Feb 1925 A
1543691 Beat Jun 1925 A
1582836 Link Apr 1926 A
1589363 Butchart Jun 1926 A
1595589 Tyler Aug 1926 A
1605551 Mattern Nov 1926 A
1699874 Buhrke Jan 1929 A
1704119 Buhrke Mar 1929 A
1704165 Buhrke Mar 1929 A
1720867 Webster et al. Jul 1929 A
2034936 Barnhart Mar 1936 A
2087685 Hackney Jul 1937 A
3567228 Lynn Mar 1971 A
3571900 Hardesty Mar 1971 A
3625518 Solheim Dec 1971 A
3659855 Hardesty May 1972 A
3863932 Lezatte Feb 1975 A
3985363 Jepson et al. Oct 1976 A
4023802 Jepson et al. May 1977 A
4193601 Reid, Jr. et al. Mar 1980 A
4213613 Nygren Jul 1980 A
4214754 Zebelean Jul 1980 A
4367878 Schmidt Jan 1983 A
D267965 Kobayashi Feb 1983 S
4429879 Schmidt Feb 1984 A
4432549 Zebelean Feb 1984 A
4438931 Motomiya Mar 1984 A
4449707 Hayashi et al. May 1984 A
4451041 Hayashi et al. May 1984 A
4451042 Hayashi et al. May 1984 A
4465221 Schmidt Aug 1984 A
4471961 Masghati et al. Sep 1984 A
4489945 Kobayashi Dec 1984 A
4511145 Schmidt Apr 1985 A
4762324 Anderson Aug 1988 A
4792140 Yamaguchi et al. Dec 1988 A
4826172 Antonious May 1989 A
4842243 Butler Jun 1989 A
4913438 Anderson Apr 1990 A
4915385 Anderson Apr 1990 A
4915386 Antonious Apr 1990 A
4919430 Antonious Apr 1990 A
4919431 Antonious Apr 1990 A
4921252 Antonious May 1990 A
4930781 Allen Jun 1990 A
4932658 Antonious Jun 1990 A
4955610 Creighton et al. Sep 1990 A
D312858 Anderson et al. Dec 1990 S
5000454 Soda Mar 1991 A
5024437 Anderson Jun 1991 A
5028049 McKeighen Jul 1991 A
5046733 Antonious Sep 1991 A
5056705 Wakita et al. Oct 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5090702 Viste Feb 1992 A
5094383 Anderson et al. Mar 1992 A
5106094 Desbiolles et al. Apr 1992 A
5141230 Antonious Aug 1992 A
5163682 Schmidt et al. Nov 1992 A
5180166 Schmidt et al. Jan 1993 A
5183255 Antonious Feb 1993 A
5213328 Long et al. May 1993 A
5221087 Fenton et al. Jun 1993 A
5240252 Schmidt et al. Aug 1993 A
5242167 Antonious Sep 1993 A
5255918 Anderson et al. Oct 1993 A
5261663 Anderson Nov 1993 A
5261664 Anderson Nov 1993 A
5271621 Lo Dec 1993 A
5292129 Long et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301945 Schmidt et al. Apr 1994 A
5318300 Schmidt et al. Jun 1994 A
5328184 Antonious Jul 1994 A
5344140 Anderson Sep 1994 A
5346218 Wyte Sep 1994 A
5351958 Helmstetter Oct 1994 A
5358249 Mendralla Oct 1994 A
5362047 Shaw et al. Nov 1994 A
5362055 Rennie Nov 1994 A
5377986 Viollaz Jan 1995 A
5390924 Antonious Feb 1995 A
5395113 Antonious Mar 1995 A
5397126 Allen Mar 1995 A
5401021 Allen Mar 1995 A
5405137 Vincent et al. Apr 1995 A
5407202 Igarashi Apr 1995 A
RE34925 McKeighen May 1995 E
5417419 Anderson et al. May 1995 A
5417559 Schmidt May 1995 A
5423535 Shaw et al. Jun 1995 A
5429357 Kobayashi Jul 1995 A
5431396 Shieh Jul 1995 A
5433440 Lin Jul 1995 A
5447307 Antonious Sep 1995 A
5447309 Vincent Sep 1995 A
5451056 Manning Sep 1995 A
5460376 Schmidt et al. Oct 1995 A
5467983 Chen Nov 1995 A
5470069 Schmidt et al. Nov 1995 A
5474296 Schmidt et al. Dec 1995 A
5482279 Antonious Jan 1996 A
5497993 Shan Mar 1996 A
5505453 Mack Apr 1996 A
5522593 Kobayashi et al. Jun 1996 A
5524331 Pond Jun 1996 A
5533729 Leu Jul 1996 A
5536006 Shieh Jul 1996 A
5547630 Schmidt Aug 1996 A
5549297 Mahaffey Aug 1996 A
5564994 Chang Oct 1996 A
5584770 Jensen Dec 1996 A
5595552 Wright et al. Jan 1997 A
5611741 Schmidt et al. Mar 1997 A
5611742 Kobayashi Mar 1997 A
D379393 Kubica et al. May 1997 S
5626530 Schmidt et al. May 1997 A
5643104 Antonious Jul 1997 A
5643108 Cheng Jul 1997 A
5643110 Igarashi Jul 1997 A
5649872 Antonious Jul 1997 A
5651409 Sheehan Jul 1997 A
5655976 Rife Aug 1997 A
5669827 Nagamoto Sep 1997 A
5669829 Lin Sep 1997 A
5681228 Mikame Oct 1997 A
D387113 Burrows Dec 1997 S
5695411 Wright et al. Dec 1997 A
5709614 Horiba Jan 1998 A
5709615 Liang Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5716292 Huang Feb 1998 A
5718641 Lin Feb 1998 A
5720673 Anderson Feb 1998 A
5743813 Chen et al. Apr 1998 A
5753170 Muang May 1998 A
5755624 Helmstetter May 1998 A
5755627 Yamazaki et al. May 1998 A
5762567 Antonious Jun 1998 A
5766092 Mimeur et al. Jun 1998 A
5766094 Mahaffey et al. Jun 1998 A
5766095 Antonious Jun 1998 A
5774970 Huang Jul 1998 A
5776011 Su et al. Jul 1998 A
5807190 Krumme et al. Sep 1998 A
5827132 Bamber Oct 1998 A
RE35955 Lu Nov 1998 E
D401652 Burrows Nov 1998 S
5830084 Kosmatka Nov 1998 A
5839975 Lundberg Nov 1998 A
5842934 Ezaki et al. Dec 1998 A
5851159 Burrows Dec 1998 A
5863261 Eggiman Jan 1999 A
5873791 Allen Feb 1999 A
5873795 Wozny et al. Feb 1999 A
D406294 Burrows Mar 1999 S
5888148 Allen Mar 1999 A
5890973 Gamble Apr 1999 A
D411272 Burrows Jun 1999 S
5908357 Hsieh Jun 1999 A
5921872 Kobayashi Jul 1999 A
5931746 Soong Aug 1999 A
5935019 Yamamoto Aug 1999 A
5938541 Allen et al. Aug 1999 A
5954596 Noble et al. Sep 1999 A
5961394 Minabe Oct 1999 A
5967905 Nakahara et al. Oct 1999 A
5971868 Kosmatka Oct 1999 A
6280349 Cook Aug 2001 B1
Foreign Referenced Citations (46)
Number Date Country
1114911 Jan 1996 CN
2268693 Jan 1994 GB
2331938 Jun 1999 GB
59207169 Nov 1984 JP
61033682 Feb 1986 JP
61162967 Jul 1986 JP
61181477 Aug 1986 JP
61185281 Aug 1986 JP
61240977 Oct 1986 JP
1244770 Sep 1989 JP
4020357 Jan 1992 JP
4327864 Nov 1992 JP
5212526 Aug 1993 JP
6007487 Jan 1994 JP
6114126 Apr 1994 JP
6126002 May 1994 JP
6154367 Jun 1994 JP
6182005 Jul 1994 JP
6269518 Sep 1994 JP
8168541 Jul 1996 JP
8243194 Sep 1996 JP
8280853 Oct 1996 JP
8280854 Oct 1996 JP
8294550 Nov 1996 JP
9028842 Feb 1997 JP
9047531 Feb 1997 JP
9154985 Jun 1997 JP
9168613 Jun 1997 JP
9192270 Jul 1997 JP
9192273 Jul 1997 JP
9239074 Sep 1997 JP
9239075 Sep 1997 JP
9248353 Sep 1997 JP
2717759 Nov 1997 JP
9294833 Nov 1997 JP
9299519 Nov 1997 JP
10024126 Jan 1998 JP
10024128 Jan 1998 JP
10085369 Apr 1998 JP
10118227 May 1998 JP
10137372 May 1998 JP
10155943 Jun 1998 JP
10258142 Sep 1998 JP
10263121 Oct 1998 JP
10323410 Dec 1998 JP
10337347 Dec 1998 JP
Non-Patent Literature Citations (3)
Entry
Golf Digest, Sep., 1982, p. 25.
Golf Digest, Dec., 1981, p. 58-59.
“Variable Face Thickness Technology,” Calloway Golf advertisement, undated.