The present disclosure relates to a striking face design for golf club heads, and more particularly to a striking face design for iron and wedge-type golf club heads.
The ability of a texture pattern on the striking face of a golf club head to enhance overall spin of a struck golf ball is well-known in the art. The texture pattern increases the roughness of the striking face, and thus enhances the friction between the club head and the golf ball upon contact. By enhancing overall spin, golfers are better able to locate shots and control the movement of the struck golf ball once it has returned to the ground.
The United States Golf Association (“USGA”), which governs golf equipment for all USGA sponsored events at affiliated golf courses, limits the surface roughness of the striking faces of iron and wedge-type golf clubs. In particular, with the exception of separately-regulated scorelines, the striking faces of iron and wedge-type golf clubs may be no rougher than that of “decorative sandblasting.” This USGA requirement has been interpreted to require that the striking face cannot have an average surface roughness Ra greater than 180 μin or a maximum average peak-to-trough value greater than 1,000 μin. Notwithstanding the general nature of these regulations, maximum average peak-to-trough length is conventionally characterized by the standard surface roughness parameter, average maximum profile height Rz.
As an additional complication, it is difficult for manufacturers to consistently hit target surface roughness characteristics (e.g., Ra and Rz) from club head to club head. Rather, some amount of dispersion is present over a product sample set. The USGA generally allows for some degree of dispersion (e.g., an individual manufacturer cannot have over 10% of its products be nonconforming), but the degree of dispersion effects what may be reasonably chosen as target surface roughness values. For example, target surface roughness values should be set farther from applicable limits with increasing degree of dispersion.
It is possible, according to the present disclosure, to provide a golf club head with a striking face sufficient to optimize overall spin of a struck golf ball but that also complies with USGA regulations governing surface roughness and dispersion.
This may be achieved by one or more aspects of the present disclosure. For example, the present disclosure provides a golf club head comprising a striking face, the striking face comprising: a recurrent texture pattern that has a period T and that is defined by a plurality of depressions, each depression having an average depth no greater than 0.10 mm; and a plurality of scorelines that at least partially intersect the recurrent texture pattern and that have a scoreline pitch Ps such that T/Ps is greater than 1.0, each scoreline having an average depth no less than 0.10 mm.
Such an advantageous golf club head may be produced by a manufacturing method according to one or more aspects of the present disclosure, the method comprising: milling on a striking face of a club head body, in a first pass, a first plurality of auxiliary grooves having a first groove pitch P1 no less than 0.010 in; and milling on the striking face, in a second pass, a second plurality of auxiliary grooves that are at least partially coextensive with the first plurality of grooves and that have a second groove pitch P2 that is no less than 0.010 in and that is different from the first pitch.
In another example, a golf club head according to one or more aspects of the present disclosure may comprise a striking face including a textured region having a maximum profile height parameter Rt no less than 1000 μin and an average maximum profile height parameter Rz no greater than 1000 μin.
In yet another example, a golf club head according to one or more aspects of the present disclosure may comprise: a striking face having: a recurrent texture pattern defined by a plurality of depressions having a period T of no less than 0.20 in and no greater than 0.35 in, each depression having an average depth no greater than 0.10 mm.
These and other features and advantages of the golf club head according to the various aspects of the present disclosure will become more apparent upon consideration of the following description, drawings, and appended claims. The drawings described below are for illustrative purposes only and are not intended to limit the scope of the present invention in any manner. It is also to be understood that, for the purposes of this application, any disclosed range encompasses a disclosure of each and every sub-range thereof. For example, the range of 1-5 encompasses a disclosure of at least 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, and 4-5.
Shown in
When in the reference position, the virtual striking face plane forms an angle relative to the vertical hosel plane, known as the loft or loft angle of the club head 100. The loft angle may be, for example, between 8° and 65°, more preferably no less than 22°, and even more preferably no less than about 42°. Additionally, a hosel 160 may extend from the heel portion 130 so as to provide an attachment point for a golf club shaft (not shown), the axis of the hosel 160 being collinear with the axis of the shaft.
Turning to
Returning to
As shown in
More specifically, with reference to
Alternatively, or in addition, the period T of the recurrent texture pattern 200 is preferably related to the pitch Ps of the scorelines 220. For example, the period T may be greater than the pitch Ps of the scorelines 220 (i.e., T/Ps may be greater than 1.0). More specifically, the ratio of the period T of the texture pattern 200 to the pitch Ps of the scorelines 220 may be between 1.50 and 2.50 (i.e., 1.50≤T/Ps≤2.50). Even more specifically, the ratio of the period T of the texture pattern 200 to the pitch Ps of the scorelines 220 may be between 1.75 and 2.25 (i.e., 1.75≤T/Ps≤2.25). Yet even more specifically, the period T may be about twice the pitch Ps of the scorelines 220. Additionally, or alternatively, T and Ps may satisfy the following relationship: 0.85≤T/(N*Ps)≤1.15, wherein N is a whole number greater than 1. More specifically, T and Ps may satisfy the following relationship: 0.95≤T/(N*Ps)≤1.05, wherein N is a whole number greater than 1.
In certain aspects, the high amplitude regions 212 may generally coincide with landing areas 230 between the scorelines 220. In a preferred embodiment, the high amplitude regions 212 generally coincide with alternating landing areas 230 in a central region of the striking face 110. In an even more preferred embodiment, the high amplitude regions 212 generally coincide with those landing areas 230 in the lower portion of the central region, for example, beginning with the first (lowermost) landing area, and upwardly through the third, fifth, and seventh landing areas, the first through eight landing areas in the example illustrated in
The recurrent texture pattern 200 having one or more of the above arrangements may help imbue the striking face 110 with desirable surface roughness characteristics. It is to be noted that the striking face 110 may be further processed. For example, the striking face 110 may be subjected to a nickel (Ni) and/or chrome (Cr) plating processes. These processes, as well as other surface treatments described below, may have a non-negligible impact upon the surface roughness characteristics of the striking face 110. For example, these additional surface treatment processes may increase average surface roughness Ra by up to 100 μin. Thus, the recurrent texture pattern 200 alone may not result in the desired surface roughness characteristics. Thus, the desired metrological characteristics of the striking face 110 resulting from the formation of the texture pattern 200 preferably accounts for any surface processing that may occur prior to, or subsequent, the formation of the texture pattern 200.
In certain aspects, the average surface roughness Ra of the striking face 110 may be between about 80 μin and 120 μin, the average maximum profile height Rz may be no greater than 1000 μin, and the maximum profile height Rt of the striking face 110 may be no less than 1000 μin. More specifically, the average maximum profile height Rz may be no greater than 900 μin, and the maximum profile height Rt may be no less than 1020 μin. Even more specifically, the average maximum profile height Rz may be 861 μin, and the maximum profile height Rt may be 1029 μin. These values, as may be achieved by the texture patterns variously described herein, result in a striking face having greater ball spin characteristics while conforming to the regulations of the USGA.
Average surface roughness Ra and average maximum profile height Rz are measured under standard ASME/ISO conditions well known to those skilled in the art, say under the requirements of ISO 4288, shown in Table 1 below (units are converted).
For example, an Ra value of between 100 and 180 μin corresponds to a roughness evaluation length of 0.492126 in. To obtain Rz, this evaluation length is divided into 5 equal sub-segments, and the maximum peak-to-trough value of each sub-segment is measured and averaged with the maximum peak-to-trough value of the other sub-segments. Rt in turn corresponds to the actual peak-to-trough dimension over the evaluation length. Because of this distinction in measurement, by forming texture patterns in the manners described herein, striking face regions could be generated having maximum peak-to-trough dimensions greater than 1,000 μin, and selectively positioned in advantageous locations, while Rz would remain below 1000 μin.
A method of forming the recurrent texture pattern 200 on the club head 100 is described below with reference to
In a second step 502, the surface milling cutter may be again fed over the striking face 110 to create a first set of arcuate auxiliary grooves 213. In this second step, the cutter may be fed at a higher feed rate such as 53.145 in/min, at a greater depth such as 0.00197 in, but at a slower spin rate such as 1680 rev/min. In the direction of propagation from the sole portion 150 to the top portion 140, the first set of arcuate auxiliary grooves 213 may be evenly spaced, having a pitch P1 from the center of one groove to the center of an adjacent groove of no less than 0.01 inches. More preferably, the pitch P1 is no less than 0.020 in, even more preferably between 0.020 in. and 0.030 in., and yet even more preferably substantially equal to about 0.0262 in. The arcuate auxiliary grooves 213 as well as their pitch P1 are shown on the striking face 110 in
In a third step 504, the surface milling cutter may be again fed over the striking face 110 to create a second set of arcuate auxiliary grooves 214. In this step, the cutter may be fed across the striking face 110 at the same depth and spin rate as in the second step, but at a feed rate different than the feed rate in the second step, say 47.88 in/min. In the direction of propagation from the sole portion 150 to the top portion 140, the second set of arcuate auxiliary grooves 214 may also be evenly spaced, may also have a pitch P2 from the center of one groove to the center of an adjacent groove of no less than 0.01 inches, and may also be generally parallel to (and/or concentric with) the first set of arcuate auxiliary grooves 213. Preferably, the pitch P2 is no less than 0.015 in, more preferably between 0.020 in. and 0.030 in., and even more preferably substantially equal to about 0.0238 in. The arcuate auxiliary grooves 214 as well as their pitch P2 are shown, without the arcuate auxiliary grooves 213, on the striking face 110 in
Preferably, identical or same cutter bits are used in this step 504 as in the second milling step 502. In alternative embodiments, however, a different bit is used (e.g., varying in cross-sectional diameter and/or other profile feature). Further, in alternative embodiments, the second set of arcuate auxiliary grooves 214 are formed in a propagation direction different from the first set of arcuate grooves 213. For example, in some such embodiments, the second set of arcuate grooves 214 are formed in a propagation direction that is angled from the sole-to-top direction, preferably at an angle no greater than 20°.
But because pitch is dependent upon feed rate and spin rate and because of the difference in feed rates between the second and third steps, the pitch P2 of the second set of arcuate auxiliary grooves 214 may be different than the pitch P1 of the first set of arcuate auxiliary grooves 213. For example, the pitch P1 of the first set of auxiliary grooves 213 may be larger than the pitch P2 of the second set of auxiliary grooves 214. More specifically, the ratio of the pitch P1 to the pitch P2 may be between 1.05 and 1.20, inclusive (i.e., 1.05≤P1/P2≤1.20). Even more specifically, the ratio of the pitch P1 to the pitch P2 may be 1.1. As shown in
Preferably, as described above, the second milling process 502 and the third milling process 504 occur at the same cutting depth. Specifically, both milling processes 502 and 504 occur at a cutting depth between 0.0010 in and 0.0030 in, more preferably between 0.0015 in and 0.0025 in, and even more preferably at a cutting depth substantially equal to 0.00197 in. Performing multiple milling passes at the same cutting depth advantageously reduces dispersion in surface roughness characteristics. Reductions in dispersion in turn enable manufactures to increase target surface roughness characteristics closer to regulated limits. In alternative embodiments, however, the cutting depth may vary between the second milling process 502 and the third milling process 504.
In alternative embodiments, a texture pattern having variable amplitude in the manners described above with regard to the embodiments of
Additional surface processing is preferably performed to the striking face 110 having the recurrent texture pattern 200 in step 506. For example, the striking face 210 may be nickel (Ni) and/or chrome (Cr) plated. Additionally or alternatively, a laser-milling process may be used to generate superimposed laser-milled lines on the striking face 110. Additionally and/or alternatively, the striking face 110 may also be subjected to at least one of sandblasting, laser etching, chemical etching, peening, media blasting, anodizing, and PVD coating.
The above-described club head 100 and method for producing the club head 100 provide at least the following distinct advantages. The striking face 110 with the recurrent texture pattern 200 possesses a difference between maximum profile height Rt and average maximum profile height Rz that is generally greater than other club heads. Furthermore, high roughness areas, such as the high amplitude regions 212, may be selectively provided in more advantageous locations on the striking face 110, say where ball impacts most frequently occur. By having a greater difference between Rt and Rz and by providing these high roughness areas where ball impacts most frequently occur, the spin characteristics of the clubhead 100 are generally improved.
For example, as shown in Chart #1 below, the performance of a wedge-type club head having a surface pattern as described with regard to
Furthermore, the above-described club head 100 and method for producing the club head 100 maximize roughness characteristics of the striking face 110 while simultaneously complying with USGA regulations. For example, the average surface roughness Ra and the maximum average peak-to-trough value of the striking face 110 remain below USGA limits. Similarly, dispersion is reduced relative to the art for at least the following reasons. First, multiple deep milling passes are believed to reduce dispersion because subsequent milling passes serve to remove debris and aberrations remaining from prior passes. Second, multiple milling passes at the same cutting depth reduce dispersion versus multiple passes at different cutting depths. Finally, offsetting the feed rate in multiple milling passes allows for these benefits without denigrating the look and feel of the recurrent texture pattern 200.
In an alternate preferred embodiment, illustrated in
In an alternate preferred embodiment, illustrated in
In the foregoing discussion, the present invention has been described with reference to specific exemplary aspects thereof. However, it will be evident that various modifications and changes may be made to these exemplary aspects without departing from the broader spirit and scope of the invention. Accordingly, the foregoing discussion and the accompanying drawings are to be regarded as merely illustrative of the present invention rather than as limiting its scope in any manner.
This application is a Continuation Application of U.S. patent application Ser. No. 14/310,704, filed on Jun. 20, 2014, now U.S. Pat. No. 9,539,477. The disclosure of the prior application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D606605 | Wada et al. | Dec 2009 | S |
D607071 | Wada et al. | Dec 2009 | S |
9539477 | Ripp | Jan 2017 | B2 |
9636757 | Rice | May 2017 | B1 |
20080108453 | Park et al. | May 2008 | A1 |
20080125243 | Ban | May 2008 | A1 |
20090176597 | Yamagishi et al. | Jul 2009 | A1 |
20090318243 | Golden et al. | Dec 2009 | A1 |
20100029401 | Nakamura | Feb 2010 | A1 |
20100087270 | Ban et al. | Apr 2010 | A1 |
20100113180 | Nakamura | May 2010 | A1 |
20110269567 | Ban et al. | Nov 2011 | A1 |
20130085011 | Serrano et al. | Apr 2013 | A1 |
20130331197 | Hackenberg | Dec 2013 | A1 |
Entry |
---|
Cobra Golf Tour Trusty Rusty Wedge-Type Golf Club. <http://www.cobragolf.com/2013-cobra-tour-trusty-wedge>. Sep. 6, 2013. |
Number | Date | Country | |
---|---|---|---|
20170087425 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14310704 | Jun 2014 | US |
Child | 15372748 | US |