This invention was not made as part of a federally sponsored research or development project.
The present invention relates to sports equipment; particularly, to an aerodynamic golf club head having a trip step feature.
Modern high volume golf club heads, namely drivers, are being designed with little, if any, attention paid to the aerodynamics of the golf club head. This stems in large part from the fact that in the past the aerodynamics of golf club heads were studied and it was found that the aerodynamics of the club head had only minimal impact on the performance of the golf club.
The drivers of today have club head volumes that are often double the volume of the most advanced club heads from just a decade ago. In fact, virtually all modern drivers have club head volumes of at least 400 cc, with a majority having volumes right at the present USGA mandated limit of 460 cc. Still, golf club designers pay little attention to the aerodynamics of these large golf clubs; often instead focusing solely on increasing the club head's resistance to twisting during off-center shots.
The modern race to design golf club heads that greatly resist twisting, meaning that the club heads have large moments of inertia, has led to club heads having very long front-to-back dimensions. The front-to-back dimension of a golf club head, often annotated the FB dimension, is measured from the leading edge of the club face to the furthest back portion of the club head. Currently, in addition to the USGA limit on the club head volume, the USGA limits the front-to-back dimension (FB) to 5 inches and the moment of inertia about a vertical axis passing through the club head's center of gravity (CG), referred to as MOIy, to 5900 g*cm2. One of skill in the art will know the meaning of “center of gravity,” referred to herein as CG, from an entry level course on mechanics. With respect to wood-type golf clubs, which are generally hollow and/or having non-uniform density, the CG is often thought of as the intersection of all the balance points of the club head. In other words, if you balance the head on the face and then on the sole, the intersection of the two imaginary lines passing straight through the balance points would define the point referred to as the CG.
Until just recently the majority of drivers had what is commonly referred to as a “traditional shape” and a 460 cc club head volume. These large volume traditional shape drivers had front-to-back dimensions (FB) of approximately 4.0 inches to 4.3 inches, generally achieving an MOIy in the range of 4000-4600 g*cm2. As golf club designers strove to increase MOIy as much as possible, the FB dimension of drivers started entering the range of 4.3 inches to 5.0 inches. The graph of
While increasing the FB dimension to achieve higher MOIy values is logical, significant adverse effects have been observed in these large FB dimension clubs. One significant adverse effect is a dramatic reduction in club head speed, which appears to have gone unnoticed by many in the industry. The graph of
This significant decrease in club head speed is the result of the increase in aerodynamic drag forces associated with large FB dimension golf club heads. Data obtained during extensive wind tunnel testing shows a strong correlation between club head FB dimension and the aerodynamic drag measured at several critical orientations. First, orientation one is identified in
Secondly, orientation two is identified in
Thirdly, orientation three is identified in
Now referring back to orientation one, namely the orientation identified in
Still referencing
The results are much the same in orientation two, namely the orientation identified in
Again, the results are much the same in orientation three, namely the orientation identified in
Further, the graph of
The drop in club head speed just described has a significant impact on the speed at which the golf ball leaves the club face after impact and thus the distance that the golf ball travels. In fact, for a club head speed of approximately 100 mph, each 1 mph reduction in club head speed results in approximately a 1% loss in distance. The present golf club head has identified these relationships, the reason for the drop in club head speed associated with long FB dimension clubs, and several ways to reduce the aerodynamic drag force of golf club heads.
The aerodynamic golf club head incorporates a trip step located on the crown section. The benefits associated with the reduction in aerodynamic drag force associated with the trip step may be applied to drivers, fairway woods, and hybrid type golf club heads having volumes as small as 75 cc and as large as allowed by the USGA at any point in time, currently 460 cc. The trip step is located between a crown apex and the back of the club head and may be continuous or discontinuous.
The trip step enables a significant reduction in the aerodynamic drag force exerted on the golf club head by forcing the air passing over the club head from laminar flow to turbulent flow just before the natural separation point of the airstream from the crown. This selectively engineered transition from laminar to turbulent flow over the crown section slightly increases the skin friction but results in less aerodynamic drag than if the air were to detach from the crown section at the natural separation point.
Without limiting the scope of the claimed high volume aerodynamic golf club, reference is now given to the drawings and figures:
These drawings are provided to assist in the understanding of the exemplary embodiments of the golf club head as described in more detail below and should not be construed as unduly limiting the claimed golf club head. In particular, the relative spacing, positioning, sizing and dimensions of the various elements illustrated in the drawings are not drawn to scale and may have been exaggerated, reduced or otherwise modified for the purpose of improved clarity. Those of ordinary skill in the art will also appreciate that a range of alternative configurations have been omitted simply to improve the clarity and reduce the number of drawings.
The claimed aerodynamic golf club head (100) enables a significant advance in the state of the art. The preferred embodiments of the aerodynamic golf club head (100) accomplish this by new and novel arrangements of elements and methods that are configured in unique and novel ways and which demonstrate previously unavailable but preferred and desirable capabilities. The description set forth below in connection with the drawings is intended merely as a description of the presently preferred embodiments of the aerodynamic golf club head (100), and is not intended to represent the only form in which the aerodynamic golf club head (100) may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the aerodynamic golf club head (100) in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the claimed aerodynamic golf club head (100).
The present aerodynamic golf club head (100) has recognized that the poor aerodynamic performance of large FB dimension drivers is not due solely to the large FB dimension; rather, in an effort to create large FB dimension drivers with a high MOIy value and low center of gravity (CG) dimension, golf club designers have generally created clubs that have very poor aerodynamic shaping. The main problems include significantly flat surfaces located incorrectly on the body, the lack of proper shaping to account for airflow attachment and reattachment in the areas trailing the face, the lack of proper trailing edge design, and failure to incorporate features that keep the airstream attached to the body as long as possible to further reduce aerodynamic drag. In addition, current large FB dimension driver designs have ignored, or even tried to maximize in some cases, the frontal cross sectional area of the golf club head which increases the aerodynamic drag force. The present golf club head (100) solves these issues.
In one of many embodiments disclosed herein, the present golf club head (100) has a volume of at least 400 cc. In this embodiment the golf club head (100) is characterized by a face-on normalized aerodynamic drag force of less than 1.5 lbf when exposed to a 100 mph wind parallel to the ground plane (GP) when the high volume aerodynamic golf club head (100) is positioned in a design orientation and the wind is oriented at the front (112) of the high volume aerodynamic golf club head (100), as previously described with respect to
With general reference to
In yet another embodiment, a relatively large FB dimension allows the aerodynamic golf club head (100) to obtain beneficial moment of inertia values while obtaining superior aerodynamic properties unseen by other large volume, large FB dimension, high MOI golf club heads. Specifically, in yet another embodiment, the golf club head (100) obtains a first moment of inertia (MOIy) about a vertical axis through a center of gravity (CG) of the golf club head (100), illustrated in
The present golf club head (100) obtains superior aerodynamic performance through the use of unique club head shapes and features. Referring now to
With reference now to
Secondly, a portion of the crown section (400) between the crown apex (410) and the back (114) of the hollow body (110) has an apex-to-rear radius of curvature (Ra-r) that is less than 3.75 inches. The apex-to-rear radius of curvature (Ra-r) is also measured in a vertical plane that is perpendicular to a vertical plane passing through the shaft axis, and the apex-to-rear radius of curvature (Ra-r) is further measured at the point on the crown section (400) between the crown apex (410) and the back (112) that has the smallest the radius of curvature.
Lastly, as seen in
Conventional high volume large MOIy golf club heads having large FB dimensions, such as those seen in USPN D544939 and USPN D543600, have relatively flat crown sections that often never extend above the face. While these designs appear as though they should cut through the air, the opposite is often true with such shapes achieving poor airflow reattachment characteristics and increased aerodynamic drag forces. The present golf club head (100) has recognized the significance of proper club head shaping to account for airflow reattachment in the crown section (400) trailing the face (200), which is quite the opposite of the flat, steeply sloped crown sections of many prior art large FB dimension club heads. The crown section (400) of the present golf club head (100) will be described in greater detail later herein.
With reference now to
One of many significant advances of this embodiment is the design of an apex ratio that encourages airflow reattachment on the crown section (400) of the golf club head (100) as close to the face (200) as possible. In other words, the sooner that airflow reattachment is achieved the better the aerodynamic performance and the smaller the aerodynamic drag force. The apex ratio is the ratio of apex height (AH) to the maximum top edge height (TEH). As previously explained, in many large FB dimension golf club heads the apex height (AH) is no more than the top edge height (TEH). In this embodiment, the apex ratio is at least 1.13, thereby encouraging airflow reattachment as soon as possible.
Still further, another embodiment of the golf club head (100) further has a frontal cross sectional area that is less than 11 square inches. The frontal cross sectional area is the single plane area measured in a vertical plane bounded by the outline of the golf club head when it is resting on the ground plane (GP) at the design lie angle and viewed from directly in front of the face (200). The frontal cross sectional area is illustrated by the cross-hatched area of
In yet a further embodiment, a second aerodynamic drag force is introduced, namely the 30 degree offset normalized aerodynamic drag force, as previously explained with reference to
Yet another embodiment introduces a third aerodynamic drag force, namely the heel normalized aerodynamic drag force, as previously explained with reference to
A still further embodiment has recognized that having the apex-to-front radius of curvature (Ra-f) at least 25% less than the apex-to-rear radius of curvature (Ra-r) produces a particularly aerodynamic golf club head (100) further assisting in airflow reattachment. Yet another embodiment further encourages quick airflow reattachment by incorporating an apex ratio of the apex height (AH) to the maximum top edge height (TEH) that is at least 1.2. This concept is taken even further in yet another embodiment in which the apex ratio of the apex height (AH) to the maximum top edge height (TEH) is at least 1.25.
Reducing aerodynamic drag by encouraging airflow reattachment, or conversely discouraging extended lengths of airflow separation, may be further obtained in yet another embodiment in which the apex-to-front radius of curvature (Ra-f) is less than the apex-to-rear radius of curvature (Ra-r), and the apex-to-rear radius of curvature (Ra-r) is less than the heel-to-toe radius of curvature (Rh-t). Such a shape is contrary to conventional high volume, long FB dimension golf club heads, yet produces a particularly aerodynamic shape.
Taking this embodiment a step further in another embodiment, a golf club head (100) having the apex-to-front radius of curvature (Ra-f) less than 2.85 inches and the heel-to-toe radius of curvature (Rh-t) less than 3.85 inches produces an even smaller face-on aerodynamic drag force. Another embodiment focuses on the playability of the high volume aerodynamic golf club head (100) by having a maximum top edge height (TEH) that is at least 2 inches, thereby ensuring that the face area is not reduced to an unforgiving level. Even further, another embodiment incorporates a maximum top edge height (TEH) that is at least 2.15 inches.
The foregoing embodiments may be utilized having even larger FB dimensions. For example, the previously described aerodynamic attributes may be incorporated into an embodiment having a front-to-back dimension (FB) that is at least 4.6 inches, or even further a front-to-back dimension (FB) that is at least 4.75 inches. These embodiments allow the present aerodynamic golf club head (100) to obtain even higher MOIy values without reducing club head speed due to excessive aerodynamic drag forces.
Yet a further embodiment balances all of the radii of curvature requirements to obtain an aerodynamic golf club head (100) while minimizing the risk of an unnatural appearing golf club head by ensuring that less than 10% of the club head volume is above the elevation of the maximum top edge height (TEH). A further embodiment accomplishes the goals herein with a golf club head having between 5% to 10% of the club head volume located above the elevation of the maximum top edge height (TEH). This range achieves the desired crown apex (410) and radii of curvature to ensure desirable aerodynamic drag while maintaining an aesthetically pleasing look of the golf club head (100). The location of the crown apex (410) is dictated to a degree by the apex-to-front radius of curvature (Ra-f); however, yet a further embodiment identifies that the crown apex (410) should be behind the forwardmost point on the face (200) a distance that is a crown apex setback dimension (412), seen in
Additionally, the heel-to-toe location of the crown apex (410) also plays a significant role in the aerodynamic drag force. The location of the crown apex (410) in the heel-to-toe direction is identified by the crown apex ht dimension (414), as seen in
While the present aerodynamic golf club head (100) need not have a minimum club head volume, the reduction in aerodynamic drag force increases as the club head volume increases. Thus, while one embodiment is disclosed as having a club head volume of at least 400 cc, further embodiments incorporate the various features of the above described embodiments and increase the club head volume to at least 440 cc, or even further to the current USGA limit of 460 cc.
However, one skilled in the art will appreciate that the specified radii and aerodynamic drag requirements are not limited to these club head sizes and apply to even larger club head volumes. Likewise, in one embodiment a heel-to-toe (HT) dimension, as seen in
Now, we turn our attention to further embodiments of the aerodynamic golf club head (100) that incorporate aerodynamic features solely, or in addition to the aerodynamic shaping previously discussed. The benefits of such aerodynamic features may be applied to drivers, fairway woods, and hybrid type golf club heads having volumes as small as 75 cc and as large as allowed by the USGA at any point in time, currently 460 cc. With reference to
As noted in the prior disclosure with reference to
The trip step (500) is characterized by a trip step heel end (550), a trip step toe end (560), and a trip step thickness (540). The trip step heel end (550) merely refers to the fact that it is the end of the trip step (500) nearest the heel (116), and likewise the trip step toe end (560) merely refers to the fact that is it the end of the trip step (500) nearest the toe (118). Thus, the trip step (500) need only extend across a portion of the club head (100), and need not extend all the way from the heel (116) to the toe (118). Additionally, in one embodiment a trip step leading edge (510), located on the edge of the trip step (500) closest to the face (200), is separated from a trip step trailing edge (520), located on the edge of the trip step (500) closest to the back (114), by a trip step width (530). The trip step leading edge (510) has a leading edge profile (512), and likewise, in this embodiment, the trip step trailing edge (520) has a trailing edge profile (522).
In the embodiments of the present golf club head (100) that incorporate a discontinuous trip step (500), such as that seen in
The same is true regardless of the shape of the individual trip step features, which may include rectangular and star shaped projections or indentations as seen in
As previously mentioned, the trip step (500) is located between the crown apex (410) and the back (114); as such, several elements are utilized to identify the location of the trip step (500). As seen in
The trip step (500) enables significant reduction in the aerodynamic drag force exerted on the golf club head (100). For instance,
The graph of
Interestingly, the final entry in the graph legend of
In this embodiment the present golf club head (100) has uniquely identified the window of opportunity to apply a trip step (500) and obtain reduced aerodynamic drag force. The trip step (500) must be located behind the crown apex (410). Further, specific locations, shapes, and edge profiles provide preferred aerodynamic results. One embodiment of the golf club head (100) provides a golf club head (100) having a face-on normalized aerodynamic drag force of less than 1.0 lbf when exposed to a 90 mph wind parallel to the ground plane (GP) when the aerodynamic golf club head (100) is positioned in a design orientation and the wind is oriented at the front (112) of the aerodynamic golf club head (100). In a further embodiment the normalized aerodynamic drag force is less than 1.0 lbf throughout the orientations from 0 degrees up to 110 degrees. In yet another embodiment the normalized aerodynamic drag force is 0.85 lbf or less throughout the orientation of 10 degrees up to 90 degrees. Still further, the two inch trip step offset (514) of
At a higher wind speed of 110 mph, seen in
The trip step thickness (540), seen in
In yet another embodiment, the lineal length of the trip step (500) is greater than seventy-five percent of the heel-to-toe dimension (HT). This length of trip step (500) causes the laminar to turbulent transition over enough of the crown section (400) to achieve the desired reduction in aerodynamic drag force. Further, in another embodiment, the trip step (500) is continuous and uninterrupted. An even further embodiment with a bulbous crown section (400) incorporates a trip step (500) in which the lineal length of the trip step (500) is greater than the heel-to-toe dimension (HT). However, even in this embodiment the trip step (500) is limited to the crown section (400).
While the trip step (500) may extend across a significant portion of the surface of the golf club head (100), it need only extend across a majority of the toe (118) portion of the crown section (400) to obtain the desired reduction in aerodynamic drag force. For example, the trip step (500) of
The leading edge profile (512) of the trip step (500) may be virtually any configuration. Further, the trip step leading edge (510) does not have to be parallel to the trip step trailing edge (520), thus the trip step width (530) may be variable. In one particular embodiment, the leading edge profile (512) includes a sawtooth pattern to further assist in the transition from laminar to turbulent flow. The sawtooth leading edge profile (512), seen in
Further, a trip step width (530) of ¼ inch or less produces a desirable air flow transition. Still further, one embodiment has a trip step width (530) of less than the apex-to-leading edge offset (516). The trip step width (530) does not have to be uniform across the entire length of the trip step (500).
Yet another embodiment has an apex-to-leading edge offset (516), seen best in
While the trip step (500) of
The introduction of the multi-sectional trip step (570) affords numerous embodiments of the trip step (500). One particular embodiment simply incorporates a design in which aerodynamic drag force is reduced by incorporating a trip step (500) that has an apex-to-heel LE offset (517) that is greater than the apex-to-leading edge offset (516), and an apex-to-toe LE offset (518) that is greater than the apex-to-leading edge offset (516), which is true of the embodiment seen in
Another embodiment of the multi-sectional trip step (570) variation incorporates a face oriented trip step section (585) that is parallel to the vertical plane passing through the shaft axis (SA), as seen in
Yet another embodiment, seen in
Another embodiment directed to the achieving a preferential balance of reducing the aerodynamic drag force in multiple orientations incorporates a curved trip step (500), as seen in
Yet another embodiment places the trip step (500) at, or slightly in front of, the natural location of air flow separation on the crown section (400) of the club head (100) without the trip step (500). Thus, a club head (100) designed for higher swing speed golfers, such as professional golfers having swing speeds in excess of 110 mph, would have smaller apex-to-leading edge offset (516) than that of a golf club head (100) designed for lower swing speed golfers, such as average golfers with swing speeds of less than 100 mph. This is because air flow passing over the club head (100) at 110 mph naturally wants to separate from the crown section (400) closer to the face (200) of the club head (100). Similarly, air flow passing over the club head (100) at 90 mph tends to stay attached to the crown section (400) much longer and naturally separates from the crown section (400) much further from the face (200) of the golf club (100) than separation naturally occurs at higher air flow velocities.
Therefore, in yet another embodiment, the club head (100) is available in at least two versions; namely one version for high swing speed golfers and one version for lower swing speed golfers. Thus, the “player's club” high swing speed version would have a smaller apex-to-leading edge offset (516) than the more “game improvement club” lower swing speed version. In fact, this may be taken even further in the extremes for extremely fast swing speeds such as those that compete in long drive competitions with swing speeds in excess of 130 mph and, at the other end of the spectrum, for extremely slow swing speeds, less than 85 mph, typically associated with senior's golf clubs and women's golf clubs. Therefore, an entire family of clubs may exist with a long drive version of the club head (100) having a trip step (500) slightly behind the crown apex (410), a player's club version of the club head (100) having a trip step (500) slightly behind the that of the long drive version, a game improvement version of the club head (100) having a trip step (500) slightly behind that of the player's club version, a super game improvement version of the club head (100) having a trip step (500) slightly behind that of the game improvement version, a senior's version of the club head (100) having a trip step (500) slightly behind that of the super game improvement version, and a women's version of the club head (100) having a trip step (500) slightly behind that of the senior's version, or some combination thereof.
In other words, the apex-to-leading edge offset (516) would be the greatest for club heads (100) designed for slow swing speed golfers and it would approach zero for extremely fast swing speed golfers. In one particular embodiment the apex-to-leading edge offset (516) increases by at least twenty five percent for each 10 mph decrease in design swing speed. Therefore, in one customizable embodiment the trip step (500) is adjustable, or repositionable, so that the location can be adjusted toward, or away from, the crown apex (410) to suit a particular player's swing speed. Similarly, in another embodiment the trip step (500) is adjustable in a heel-to-toe direction. Such adjustments may be made in the process of fitting a golfer for a preferred golf club head (100).
Wind tunnel testing, such as a paint streak test, can be performed to visually illustrate the natural air flow separation pattern on the crown of a particular golf club head design. Then, a curved trip step (500) may be applied to a portion of the crown section (400) at the natural air flow separation curve, or slightly forward of the natural air flow separation curve in a direction toward the face (200). Thus, in this embodiment, seen in
The curved trip step (500) does not need to be one continuous smooth curve. In fact, the curved trip step (500) may be a compound curve. Further, as previously mentioned, the curved trip step (500) is not required to extend toward the heel (116) of the golf club because the disruption in the air flow pattern caused by the hosel (120) results in turbulent air flow near the heel (116), and thus it is unlikely a reduction in aerodynamic drag force will be achieved by extending the curved trip step (500) all the way to the heel (116). However, the aesthetically pleasing embodiment of
Further, an additional embodiment, seen in
One further embodiment recognizes that a preferential reduction in aerodynamic drag force is obtained when at least a portion of the trip step (500) has a trip step radius of curvature (Rts) that is less than the apex-to-front radius of curvature (Ra-f). An even further embodiment incorporates a trip step (500) in which at least a portion of the trip step (500) has a trip step radius of curvature (Rts) that is less than four inches. Likewise, recognizing that the curvature of the crown's rear natural airflow separation line is generally tighter and better defined on the toe side (118) of the club head (100), an even further embodiment incorporates a trip step (500) in which at least a portion of the trip step (500) has a toe radius of curvature (Rtst) that is less than four inches. Such a small, or tight, trip step radius of curvature (Rts) ensures that at least a portion of the trip step (500) tends to mimic the shape of natural airflow separation from the rear of the crown section (400).
As previously touched upon, the trip step (500) may be in the form of a projection from the normal curvature of the club head (100), as seen in
Further, the trip step (500) need not have a specifically identifiable trip step trailing edge (520), as seen in
The trip step (500) may be achieved with any number of construction techniques. One embodiment incorporates an increase in material thickness, or a reduction of material thickness. Alternatively, another embodiment creates the trip step (500) with the addition of an adhesive graphic of the shape and thickness defined herein. Further, an additional embodiment incorporates an increase, or decrease, in the finish thickness of the club head (100), as seen in
Numerous alterations, modifications, and variations of the preferred embodiments disclosed herein will be apparent to those skilled in the art and they are all anticipated and contemplated to be within the spirit and scope of the instant aerodynamic golf club head. For example, although specific embodiments have been described in detail, those with skill in the art will understand that the preceding embodiments and variations can be modified to incorporate various types of substitute and or additional or alternative materials, relative arrangement of elements, and dimensional configurations. Accordingly, even though only few variations of the present aerodynamic golf club head are described herein, it is to be understood that the practice of such additional modifications and variations and the equivalents thereof, are within the spirit and scope of the aerodynamic golf club head as defined in the following claims. The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.
This application is a continuation of U.S. patent application Ser. No. 14/330,205, filed on Jul. 14, 2014, which is a divisional application of U.S. patent application Ser. No. 13/584,479, filed on Aug. 13, 2012, which is a divisional application of U.S. patent application Ser. No. 12/361,290, filed on Jan. 28, 2009, which claims the benefit of U.S. provisional patent application Ser. No. 61/080,892, filed on Jul. 15, 2008, and U.S. provisional patent application Ser. No. 61/101,919, filed on Oct. 1, 2008, all of which are incorporated by reference as if completely written herein.
Number | Name | Date | Kind |
---|---|---|---|
2083189 | Crooker | Jun 1937 | A |
3085804 | Pieper | Apr 1963 | A |
3166320 | Onions | Jan 1965 | A |
3266805 | Bulla | Aug 1966 | A |
3468544 | Antonious | Sep 1969 | A |
3893672 | Schonher | Jul 1975 | A |
3985363 | Jepson et al. | Oct 1976 | A |
3997170 | Goldberg | Dec 1976 | A |
4065133 | Gordos | Dec 1977 | A |
4077633 | Studen | Mar 1978 | A |
4139196 | Riley | Feb 1979 | A |
4147349 | Jeghers | Apr 1979 | A |
4165076 | Cella | Aug 1979 | A |
4193601 | Reid, Jr. et al. | Mar 1980 | A |
D256709 | Reid, Jr. et al. | Sep 1980 | S |
4247105 | Jeghers | Jan 1981 | A |
D265112 | Lyons | Jun 1982 | S |
4431192 | Stuff, Jr. | Feb 1984 | A |
4432549 | Zebelean | Feb 1984 | A |
4471961 | Masghati et al. | Sep 1984 | A |
4527799 | Solheim | Jul 1985 | A |
4592552 | Garber | Jun 1986 | A |
4754974 | Kobayashi | Jul 1988 | A |
4787636 | Honma | Nov 1988 | A |
4881739 | Garcia | Nov 1989 | A |
4895367 | Kajita et al. | Jan 1990 | A |
4919428 | Perkins | Apr 1990 | A |
5000454 | Soda | Mar 1991 | A |
5054784 | Collins | Oct 1991 | A |
5092599 | Okumoto et al. | Mar 1992 | A |
5116054 | Johnson | May 1992 | A |
5190289 | Nagai et al. | Mar 1993 | A |
5193810 | Antonious | Mar 1993 | A |
5221086 | Antonious | Jun 1993 | A |
5255919 | Johnson | Oct 1993 | A |
5301944 | Koehler | Apr 1994 | A |
5318297 | Davis et al. | Jun 1994 | A |
D349543 | MacDougall | Aug 1994 | S |
5340106 | Ravaris | Aug 1994 | A |
5435558 | Iriarte | Jul 1995 | A |
D366682 | Antonious | Jan 1996 | S |
5482280 | Yamawaki | Jan 1996 | A |
5511786 | Antonious | Apr 1996 | A |
D371407 | Ritchie | Jul 1996 | S |
5558332 | Cook | Sep 1996 | A |
D375130 | Hlinka et al. | Oct 1996 | S |
D378770 | Hlinka et al. | Apr 1997 | S |
5632695 | Hlinka et al. | May 1997 | A |
5695412 | Cook | Dec 1997 | A |
5700208 | Nelms | Dec 1997 | A |
5759114 | Bluto et al. | Jun 1998 | A |
5785608 | Collins | Jul 1998 | A |
5797807 | Moore | Aug 1998 | A |
D397750 | Frazetta | Sep 1998 | S |
RE35931 | Schroder et al. | Oct 1998 | E |
D401650 | Burrows | Nov 1998 | S |
5851160 | Rugge et al. | Dec 1998 | A |
5876293 | Musty | Mar 1999 | A |
5885166 | Shiraishi | Mar 1999 | A |
5890971 | Shiraishi | Apr 1999 | A |
5921872 | Kobayashi | Jul 1999 | A |
5935020 | Stites et al. | Aug 1999 | A |
5954595 | Antonious | Sep 1999 | A |
6001029 | Kobayashi | Dec 1999 | A |
6033319 | Farrar | Mar 2000 | A |
6074308 | Domas | Jun 2000 | A |
6083115 | King | Jul 2000 | A |
6093113 | Mertens | Jul 2000 | A |
6123627 | Antonious | Sep 2000 | A |
6139445 | Werner et al. | Oct 2000 | A |
6168537 | Ezawa | Jan 2001 | B1 |
6332848 | Long | Dec 2001 | B1 |
6344002 | Kajita | Feb 2002 | B1 |
6402639 | Iwata et al. | Jun 2002 | B1 |
6458042 | Chen | Oct 2002 | B1 |
6464598 | Miller | Oct 2002 | B1 |
6530847 | Antonious | Mar 2003 | B1 |
D482420 | Burrows | Nov 2003 | S |
6723002 | Barlow | Apr 2004 | B1 |
6773359 | Lee | Aug 2004 | B1 |
6776723 | Bliss et al. | Aug 2004 | B2 |
6776725 | Miura et al. | Aug 2004 | B1 |
D501903 | Tanaka | Feb 2005 | S |
6855068 | Antonious | Feb 2005 | B2 |
6939247 | Schweigert et al. | Sep 2005 | B1 |
D515643 | Ortiz | Feb 2006 | S |
6994636 | Hocknell et al. | Feb 2006 | B2 |
7004849 | Cameron | Feb 2006 | B2 |
7025695 | Mitsuba | Apr 2006 | B2 |
D522601 | Schweigert | Jun 2006 | S |
7163470 | Galloway et al. | Jan 2007 | B2 |
7166038 | Williams et al. | Jan 2007 | B2 |
7169058 | Fagan | Jan 2007 | B1 |
D537495 | Schweigert | Feb 2007 | S |
D543600 | Oldknow | May 2007 | S |
D544939 | Radcliffe et al. | Jun 2007 | S |
D549792 | Parise | Aug 2007 | S |
D552198 | Schweigert | Oct 2007 | S |
D554720 | Barez et al. | Nov 2007 | S |
7294064 | Tsurumaki et al. | Nov 2007 | B2 |
D564611 | Llewellyn | Mar 2008 | S |
7390266 | Gwon | Jun 2008 | B2 |
D589103 | Kohno | Mar 2009 | S |
7674187 | Cackett et al. | Mar 2010 | B2 |
7674189 | Beach et al. | Mar 2010 | B2 |
7731603 | Beach et al. | Jun 2010 | B2 |
D622338 | Kohno | Aug 2010 | S |
D622795 | Furutate | Aug 2010 | S |
7766765 | Oyama | Aug 2010 | B2 |
7771291 | Willett et al. | Aug 2010 | B1 |
7927229 | Jertson et al. | Apr 2011 | B2 |
7931546 | Bennett | Apr 2011 | B2 |
8012038 | Beach et al. | Sep 2011 | B1 |
8012039 | Greaney et al. | Sep 2011 | B2 |
8083609 | Burnett | Dec 2011 | B2 |
8088021 | Albertsen | Jan 2012 | B2 |
8133135 | Stites et al. | Mar 2012 | B2 |
8187115 | Bennett et al. | May 2012 | B2 |
8235844 | Albertsen | Aug 2012 | B2 |
D686679 | Greensmith et al. | Jul 2013 | S |
8496544 | Curtis et al. | Jul 2013 | B2 |
8523705 | Breier et al. | Sep 2013 | B2 |
8529368 | Rice et al. | Sep 2013 | B2 |
D692077 | Greensmith et al. | Oct 2013 | S |
D696366 | Milo et al. | Dec 2013 | S |
D696367 | Taylor et al. | Dec 2013 | S |
D697152 | Harbert et al. | Jan 2014 | S |
8663029 | Beach et al. | Mar 2014 | B2 |
8678946 | Boyd | Mar 2014 | B2 |
8777773 | Burnett et al. | Jul 2014 | B2 |
8827831 | Burnett | Sep 2014 | B2 |
9044653 | Wahl et al. | Jun 2015 | B2 |
9776053 | Burnett | Oct 2017 | B2 |
9839819 | Mizutani | Dec 2017 | B2 |
10245481 | Cleghorn | Apr 2019 | B1 |
10286265 | Tsunashima | May 2019 | B2 |
20020077195 | Carr et al. | Jun 2002 | A1 |
20020183130 | Pacinella | Dec 2002 | A1 |
20020183134 | Allen et al. | Dec 2002 | A1 |
20030114239 | Mase | Jun 2003 | A1 |
20030220154 | Anelli | Nov 2003 | A1 |
20040097299 | Soracco | May 2004 | A1 |
20040157678 | Kohno | Aug 2004 | A1 |
20040162156 | Kohno | Aug 2004 | A1 |
20040192463 | Tsurumaki et al. | Sep 2004 | A1 |
20050009622 | Antonious | Jan 2005 | A1 |
20050059508 | Burnett et al. | Mar 2005 | A1 |
20060009305 | Lindsay | Jan 2006 | A1 |
20060094535 | Cameron | May 2006 | A1 |
20060116218 | Burnett et al. | Jun 2006 | A1 |
20060258481 | Oyama | Nov 2006 | A1 |
20060281581 | Yamamoto | Dec 2006 | A1 |
20070105657 | Hirano | May 2007 | A1 |
20070275792 | Horacek et al. | Nov 2007 | A1 |
20080039234 | Williams et al. | Feb 2008 | A1 |
20080132356 | Chao et al. | Jun 2008 | A1 |
20080146374 | Beach et al. | Jun 2008 | A1 |
20080188320 | Kamatari | Aug 2008 | A1 |
20090124411 | Rae et al. | May 2009 | A1 |
20090137338 | Kajita | May 2009 | A1 |
20090149275 | Rae et al. | Jun 2009 | A1 |
20090170632 | Beach et al. | Jul 2009 | A1 |
20090191980 | Greaney et al. | Jul 2009 | A1 |
20100016095 | Burnett et al. | Jan 2010 | A1 |
20110014992 | Morrissey | Jan 2011 | A1 |
20120071267 | Burnett et al. | Mar 2012 | A1 |
20120071268 | Albertsen et al. | Mar 2012 | A1 |
20120172146 | Greaney et al. | Jul 2012 | A1 |
20120316007 | Burnett et al. | Dec 2012 | A1 |
20130123040 | Willett et al. | May 2013 | A1 |
20140256461 | Beach et al. | Sep 2014 | A1 |
20170312591 | Saso | Nov 2017 | A1 |
20170319917 | Henrikson | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
0446935 | Sep 1991 | EP |
2782650 | Mar 2000 | FR |
H06190088 | Jul 1994 | JP |
H10263118 | Oct 1998 | JP |
H11114102 | Apr 1999 | JP |
H11155982 | Jun 1999 | JP |
2002-052099 | Feb 2002 | JP |
2002136625 | May 2002 | JP |
2003135632 | May 2003 | JP |
2003210621 | Jul 2003 | JP |
2003524487 | Aug 2003 | JP |
2003320061 | Nov 2003 | JP |
2004174224 | Jun 2004 | JP |
2004232397 | Aug 2004 | JP |
2004261451 | Sep 2004 | JP |
2004265992 | Sep 2004 | JP |
2004271516 | Sep 2004 | JP |
2004313762 | Nov 2004 | JP |
2004351054 | Dec 2004 | JP |
2004351173 | Dec 2004 | JP |
2005073736 | Mar 2005 | JP |
2005111172 | Apr 2005 | JP |
2005137494 | Jun 2005 | JP |
2005137788 | Jun 2005 | JP |
2005009543 | Feb 2005 | WO |
Entry |
---|
International Searching Authority (USPTO), International Search Report and Written Opinion for International Application No. PCT/US 09/49742, dated Aug. 27, 2009, 11 pages. |
Excerpts from Golf Digest; magazine; Feb. 2004; Article entitled: “The Hot List”, cover page from magazine and article on pp. 82-88. |
Excerpts from Golf Digest; magazine; Feb. 2005; Article entitled: “The Hot List”, cover page from magazine and article on pp. 119-130. (Part 1). |
Excerpts from Golf Digest; magazine; Feb. 2005; Article entitled: “The Hot List”, article on pp. 131-143. (Part 2). |
Excerpts from Golf Digest; magazine; Feb. 2006; Article entitled: “The Hot List”, cover page from magazine and article on pp. 122-132. (Part 1). |
Excerpts from Golf Digest; magazine; Feb. 2006; Article entitled: “The Hot List”, article on pp. 133-143. (Part 2). |
Excerpts from Golf Digest; magazine; Feb. 2007; Article entitled: “The Hot List”, cover page from magazine and article on pp. 130-151. |
Excerpts from Golf Digest; magazine; Feb. 2008; Article entitled: “The Hot List”, cover page from magazine and article on pp. 114-139. |
Excerpts from Golf Digest; magazine; Feb. 2009; Article entitled: “The Hot List”, cover page from magazine and article on pp. 101-127. |
International Searching Authority (USPTO), International Search Report and Written Opinion for International Application No. PCT/US2009/049418, dated Aug. 26, 2009, 10 pages. |
“Cleveland HiBore Driver Review,” http://thesandtrip.com , 7 pages, May 19, 2006. |
“Invalidity Search Report for Japanese Registered Patent No. 4128970,” 4pg. (dated Nov. 29, 2013.). |
Declaration of Mr. Kraig Willett, Nov. 30, 2012. |
Number | Date | Country | |
---|---|---|---|
20180015337 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61080892 | Jul 2008 | US | |
61101919 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13584479 | Aug 2012 | US |
Child | 14330205 | US | |
Parent | 12361290 | Jan 2009 | US |
Child | 13584479 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14330205 | Jul 2014 | US |
Child | 15715681 | US |