Golf club head or other ball striking device having impact-influencing body features

Information

  • Patent Grant
  • 9662551
  • Patent Number
    9,662,551
  • Date Filed
    Tuesday, June 9, 2015
    9 years ago
  • Date Issued
    Tuesday, May 30, 2017
    7 years ago
Abstract
A ball striking device has a face with a striking surface and a body extending rearwardly from the outer periphery of the face. A channel extends across at least a portion of the sole, and includes a trough defined between front and rear edges and extending in a heel-toe direction. The body further includes a spacing portion that forms a generally flattened surface extending from the front edge to proximate the outer periphery of the face. The rear edge of the channel is spaced rearwardly a different distance from the outer periphery of the face at the center portion of the channel as compared to the heel portion and/or the toe portion. One or more stiffening ribs may also be provided rearwardly of the channel, to increase the stiffness of the sole.
Description
TECHNICAL FIELD

The invention relates generally to golf club heads and other ball striking devices that include impact influencing body features. Certain aspects of this invention relate to golf club heads and other ball striking devices that have a compression channel extending across at least a portion of the sole.


BACKGROUND

Golf clubs and many other ball striking devices may have various face and body features, as well as other characteristics, that can influence the use and performance of the device. For example, users may wish to have improved impact properties, such as increased coefficient of restitution (COR) in the face and/or increased size of the area of greatest response or COR (also known as the “hot zone”) of the face. The present devices and methods are provided to address at least some of these problems and other problems, and to provide advantages and aspects not provided by prior ball striking devices. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.


BRIEF SUMMARY

The following presents a general summary of aspects of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a general form as a prelude to the more detailed description provided below.


Aspects of the invention relate to a ball striking device, such as a golf club head, having a face with a striking surface configured for striking a ball, the face being defined by an outer periphery, and a body connected to the face and extending rearwardly from the outer periphery of the face, with the body having a sole configured to face a playing surface and a crown opposite the sole, and a channel extending across at least a portion of the sole. The channel has an inward recess defined between a front edge and a rear edge extending in a heel-toe direction, and the channel also has a center portion, a heel portion more proximate a heel of the body, and a toe portion more proximate a toe of the body. The rear edge is spaced rearwardly a different distance from the outer periphery of the face at the center portion as compared to at least one of the heel portion and the toe portion, such that a distance between the rear edge of the channel and the outer periphery of the face is different proximate the center portion as compared to a point proximate the heel or the toe. The channel may be configured to influence an impact of a ball on the striking surface by exerting a reaction force on the face in response to the impact.


According to one aspect, the rear edge may be spaced rearwardly a greater distance from the outer periphery of the face at the center portion as compared to at least one of the heel portion and the toe portion, such that a distance between the rear edge of the channel and the outer periphery of the face is larger proximate the center portion and smaller proximate the heel or the toe. The rear edge may be spaced rearwardly a greater distance from the outer periphery of the face at the center portion as compared both the heel portion and the toe portion in one configuration.


According to another aspect, the point is located more proximate to the toe of the body, and the rear edge is spaced rearwardly a different distance from the outer periphery of the face at the center portion as compared to the toe portion. The front edge and the rear edge may both be spaced rearwardly a different distance from the outer periphery of the face at the center portion as compared to the toe portion in one configuration. The width of the channel defined between the front and rear edges may also be greater proximate the center portion as compared to the heel portion and/or the toe portion. Additionally, the body may further include a spacing portion that junctures with the front edge of the channel at least at the center portion and forms a generally flattened surface extending from the front edge to proximate the outer periphery of the face to space the channel rearwardly from the outer periphery of the face. The spacing portion may be oriented at an acute angle to the striking surface of the face. The channel may additionally have surface texturing that is different from the spacing portion.


According to a further aspect, the front edge is also spaced rearwardly a different distance from the outer periphery of the face at the center portion as compared to at least one of the heel portion and the toe portion. The body may further include a spacing portion that junctures with the front edge of the channel at least at the center portion and extends from the front edge to proximate the outer periphery of the face to space the channel rearwardly from the outer periphery of the face. In this configuration, the spacing portion has a width, defined between the front edge of the channel and the outer periphery of the face, that is different at a center of the spacing portion as compared to a second point more proximate to the heel or the toe of the body.


According to yet another aspect, the device also includes a stiffening rib on the sole, spaced rearwardly from the channel, where the stiffening rib increases the stiffness of the sole. The stiffening rib may project inwardly into the body.


According to a still further aspect, the wall thickness of the body may be reduced at the channel as compared to the wall thickness at other locations of the body.


Additional aspects of the invention relate to a ball striking device that includes a face having a striking surface configured for striking a ball and being defined by an outer periphery, a body connected to the face and extending rearwardly from the outer periphery of the face, the body having a sole configured to face a playing surface and a crown opposite the sole, and a channel extending across at least a portion of the sole of the body. The channel includes an inward recess defined between a front edge and a rear edge extending in a heel-toe direction, with the front edge being spaced rearwardly from the outer periphery of the face. The rear edge of the channel is bowed rearwardly away from the face at a center of the channel, such that a distance between the rear edge of the channel and the outer periphery of the face is larger proximate the center of the channel and is smaller proximate at least one of the heel and the toe. The channel may be configured to influence an impact of a ball on the striking surface by exerting a reaction force on the face in response to the impact. The device may include any of the components and features described above.


According to one aspect, the distance between the rear edge and the outer periphery of the face is larger proximate the center of the channel and is smaller proximate the toe, or smaller proximate both the heel and the toe.


According to another aspect, the front edge is also bowed rearwardly away from the face at the center of the channel, such that a distance between the front edge of the channel and the outer periphery of the face is larger proximate the center of the channel and is smaller proximate at least one of the heel and the toe.


Further aspects of the invention relate to a ball striking device that includes a face having a striking surface configured for striking a ball and being defined by an outer periphery, a body connected to the face and extending rearwardly from the outer periphery of the face, the body having a sole configured to face a playing surface and a crown opposite the sole, a recessed channel extending across at least a portion of the sole of the body, and a stiffening rib on the sole, spaced rearwardly from the channel. The stiffening rib increases the stiffness of the sole. The channel is defined between a front edge and a rear edge extending in a heel-toe direction, and has a center portion, a heel portion more proximate a heel of the body, and a toe portion more proximate a toe of the body. At least one of the front and rear edges is spaced rearwardly a different distance from the outer periphery of the face at the center portion as compared to a point proximate the heel or the toe. The device may include any of the components and features described above.


According to one aspect, the rear edge is spaced rearwardly a greater distance from the outer periphery of the face at the center portion as compared to the point proximate the heel or the toe. Further, the rear edge may be spaced rearwardly a greater distance from the outer periphery of the face at the center portion as compared to points proximate both the heel and the toe. The width of the channel defined between the front and rear edges may also be greater proximate the center portion and smaller proximate both the heel and the toe.


According to another aspect, the device may include multiple stiffening ribs on the sole, spaced rearwardly from the channel, where each stiffening rib increases the stiffness of the sole. Each of the stiffening ribs may project inwardly into the body.


Still further aspects of the invention relate to golf clubs that include a golf club head or other device as described above and a shaft connected to the head.


Other features and advantages of the invention will be apparent from the following description taken in conjunction with the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

To allow for a more full understanding of the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:



FIG. 1 is a bottom rear perspective view of one embodiment of a ball striking device according to aspects of the present invention, in the form of a golf driver;



FIG. 2 is a top front perspective view of the ball striking device of FIG. 1;



FIG. 3 is a bottom view of the ball striking device of FIG. 1;



FIG. 4 is a side view of the ball striking device of FIG. 1;



FIG. 5 is a bottom view of another embodiment of a ball striking device according to aspects of the present invention, in the form of a golf driver;



FIG. 6 is a bottom rear perspective view of another embodiment of a ball striking device according to aspects of the present invention, in the form of a golf fairway wood;



FIG. 7 is a top front perspective view of the ball striking device of FIG. 6;



FIG. 8 is a bottom view of the ball striking device of FIG. 6;



FIG. 9 is a side view of the ball striking device of FIG. 6;



FIG. 10 is a bottom rear perspective view of another embodiment of a ball striking device according to aspects of the present invention, in the form of a golf hybrid;



FIG. 11 is a top front perspective view of the ball striking device of FIG. 10;



FIG. 12 is a bottom view of the ball striking device of FIG. 10;



FIG. 13 is a side view of the ball striking device of FIG. 10;



FIG. 14 is a bottom view of another embodiment of a ball striking device according to aspects of the present invention, in the form of a golf driver; and



FIG. 15 is a bottom view of another embodiment of a ball striking device according to aspects of the present invention, in the form of a golf driver.





DETAILED DESCRIPTION

In the following description of various example structures according to the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example devices, systems, and environments in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, example devices, systems, and environments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “front,” “back,” “side,” “rear,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures or the orientation during typical use. Additionally, the term “plurality,” as used herein, indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention. Also, the reader is advised that the attached drawings are not necessarily drawn to scale.


The following terms are used in this specification, and unless otherwise noted or clear from the context, these terms have the meanings provided below.


“Ball striking device” means any device constructed and designed to strike a ball or other similar objects (such as a hockey puck). In addition to generically encompassing “ball striking heads,” which are described in more detail below, examples of “ball striking devices” include, but are not limited to: golf clubs, putters, croquet mallets, polo mallets, baseball or softball bats, cricket bats, tennis rackets, badminton rackets, field hockey sticks, ice hockey sticks, and the like.


“Ball striking head” (or “head”) means the portion of a “ball striking device” that includes and is located immediately adjacent (optionally surrounding) the portion of the ball striking device designed to contact the ball (or other object) in use. In some examples, such as many golf clubs and putters, the ball striking head may be a separate and independent entity from any shaft member, and it may be attached to the shaft in some manner.


The term “shaft” includes the portion of a ball striking device (if any) that the user holds during a swing of a ball striking device.


“Integral joining technique” means a technique for joining two pieces so that the two pieces effectively become a single, integral piece, including, but not limited to, irreversible joining techniques, such as adhesively joining, cementing, welding, brazing, soldering, or the like, where separation of the joined pieces cannot be accomplished without structural damage thereto.


“Generally parallel” means that a first line, segment, plane, edge, surface, etc. is approximately (in this instance, within 5%) equidistant from with another line, plane, edge, surface, etc., over at least 50% of the length of the first line, segment, plane, edge, surface, etc.


In general, aspects of this invention relate to ball striking devices, such as golf club heads, golf clubs, and the like. Such ball striking devices, according to at least some examples of the invention, may include a ball striking head with a ball striking surface. In the case of a golf club, the ball striking surface is a substantially flat surface on one face of the ball striking head. Some more specific aspects of this invention relate to wood-type golf clubs and golf club heads, including fairway woods, hybrid clubs, and the like, as well as other wood-type golf clubs such as drivers, although aspects of this invention also may be practiced on iron-type clubs, putters, and other club types as well.


According to various aspects of this invention, the ball striking device may be formed of one or more of a variety of materials, such as metals (including metal alloys), ceramics, polymers, composites (including fiber-reinforced composites), and wood, and may be formed in one of a variety of configurations, without departing from the scope of the invention. In one illustrative embodiment, some or all components of the head, including the face and at least a portion of the body of the head, are made of metal (the term “metal,” as used herein, includes within its scope metal alloys). It is understood that the head may contain components made of several different materials, including carbon-fiber composites, polymer materials, and other components. Additionally, the components may be formed by various forming methods. For example, metal components (such as titanium, aluminum, titanium alloys, aluminum alloys, steels (including stainless steels), and the like) may be formed by forging, molding, casting, stamping, machining, and/or other known techniques. In another example, composite components, such as carbon fiber-polymer composites, can be manufactured by a variety of composite processing techniques, such as prepreg processing, powder-based techniques, mold infiltration, and/or other known techniques. In a further example, polymer components, such as high strength polymers, can be manufactured by polymer processing techniques, such as various molding and casting techniques and/or other known techniques.


The various figures in this application illustrate examples of ball striking devices according to this invention. When the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings refer to the same or similar parts throughout.


At least some examples of ball striking devices according to this invention relate to golf club head structures, including heads for wood-type golf clubs, such as drivers, fairway woods and hybrid clubs, as well as other types of wood-type clubs, long iron clubs (e.g., driving irons, zero irons through five irons, and hybrid type golf clubs), short iron clubs (e.g., six irons through pitching wedges, as well as sand wedges, lob wedges, gap wedges, and/or other wedges), and putters. Such devices may include a one-piece construction or a multiple-piece construction. Example structures of ball striking devices according to this invention will be described in detail below in conjunction with FIGS. 1-4, which illustrate one illustrative embodiment of a ball striking device 100 in the form of a wood-type golf club (e.g. a driver), although it is understood that similar configurations may be used for other wood-type clubs, including a fairway wood (e.g., a 3-wood, 5-wood, 7-wood, etc.), as illustrated in FIGS. 6-9, or a hybrid club, as illustrated in FIGS. 10-13.


The golf club 100 shown in FIGS. 1-4 includes a ball striking head 102 configured to strike a ball in use and a shaft 104 connected to the ball striking head 102 and extending therefrom. FIGS. 1-4 illustrate one embodiment of a ball striking head 102 in the form of a golf club head 102 that has a face 112 connected to a body 108, with a hosel 109 extending therefrom and a shaft 104 connected to the hosel 109. Any desired hosel and/or head/shaft interconnection structure 111 may be used without departing from this invention, including conventional hosel or other head/shaft interconnection structures 111 as are known and used in the art, or an adjustable, releasable, and/or interchangeable hosel or other head/shaft interconnection structure 111 such as those shown and described in U.S. Pat. No. 6,890,269 dated May 10, 2005, in the name of Bruce D. Burrows, U.S. Published Patent Application No. 2009/0011848, filed on Jul. 6, 2007, in the name of John Thomas Stites, et al., U.S. Published Patent Application No. 2009/0011849, filed on Jul. 6, 2007, in the name of John Thomas Stites, et al., U.S. Published Patent Application No. 2009/0011850, filed on Jul. 6, 2007, in the name of John Thomas Stites, et al., and U.S. Published Patent Application No. 2009/0062029, filed on Aug. 28, 2007, in the name of John Thomas Stites, et al., all of which are incorporated herein by reference in their entireties. The head 102 may have an opening or other access 128 for the adjustable hosel 109 features that extends through the sole 118, as seen in FIGS. 1 and 3.


For reference, the head 102 generally has a top or crown 116, a bottom or sole 118, a heel 120 proximate the hosel 109, a toe 122 distal from the hosel 109, a front 124, and a back or rear 126, as shown in FIGS. 1-4. The shape and design of the head 102 may be partially dictated by the intended use of the golf club 100. For example, it is understood that the sole 118 is configured to face the playing surface in use. With clubs that are configured to be capable of hitting a ball resting directly on the playing surface, such as a fairway wood, hybrid, iron, etc., the sole 118 may contact the playing surface in use, and features of the club may be designed accordingly. In the club 100 shown in FIGS. 1-4, the head 102 has an enclosed volume, as the club 100 is a wood-type club designed for use as a driver, intended to hit the ball long distances. In other applications, such as for a different type of golf club, the head 102 may be designed to have different dimensions and configurations. For example, when configured as a driver, the club head 102 may have a volume of at least 400 cc, and in some structures, at least 450 cc, or even at least 460 cc. If instead configured as a fairway wood (e.g., FIGS. 6-9), the head may have a volume of 120 cc to 230 cc, and if configured as a hybrid club (e.g., FIGS. 10-13), the head may have a volume of 85 cc to 140 cc. Other appropriate sizes for other club heads may be readily determined by those skilled in the art. The club head 102 loft angle also may vary, e.g., depending on the shot distance desired for the club head 102.


The body 108 of the head 102 can have various different shapes, including a rounded shape, as in the head 102 shown in FIGS. 1-4, a squared or rectangular shape, or any other of a variety of other shapes. It is understood that such shapes may be configured to distribute weight in any desired, manner, e.g., away from the face 112 and/or the geometric/volumetric center of the head 102, in order to create a lower center of gravity and/or a higher moment of inertia.


In the illustrative embodiment illustrated in FIGS. 1-4, the head 102 has a hollow structure defining an inner cavity (not shown) (e.g., defined by the face 112 and the body 108) with a plurality of inner surfaces defined therein. In one embodiment, the inner cavity may be filled with air. However, in other embodiments, the head 102 could be filled with another material, such as foam. In still further embodiments, the solid materials of the head may occupy a greater proportion of the volume, and the head may have a smaller cavity or no inner cavity at all. It is understood that the inner cavity may not be completely enclosed in some embodiments.


The face 112 is located at the front 124 of the head 102 and has a ball striking surface (or striking surface) 110 located thereon and an inner surface (not shown) opposite the ball striking surface 110, as illustrated in FIG. 2. The ball striking surface 110 is typically an outer surface of the face 112 configured to face a ball in use and is adapted to strike the ball when the golf club 100 is set in motion, such as by swinging. As shown, the ball striking surface 110 is relatively flat, occupying at least a majority of the face 112. The face 112 has an outer periphery formed of a plurality of outer or peripheral edges, including a top edge 113, a bottom edge 115, and lateral edges (including heel edge 117 and toe edge 119). The edges of the face 112 may be defined as the boundaries of an area of the face 112 that is specifically designed to contact the ball in use, and may be recognized as the boundaries of an area of the face 112 that is intentionally shaped and configured to be suited for ball contact. The face 112 may include some curvature in the top to bottom and/or heel to toe directions (e.g., bulge and roll characteristics), as is known and is conventional in the art. In other embodiments, the surface 110 may occupy a different proportion of the face 112, or the body 108 may have multiple ball striking surfaces 110 thereon. In the illustrative embodiment shown in FIGS. 1-4, the ball striking surface 110 is inclined with respect to the ground or contact surface (i.e., at a loft angle), to give the ball a desired lift and spin when struck. In other illustrative embodiments, the ball striking surface 110 may have a different incline or loft angle, to affect the trajectory of the ball. Additionally, the face 112 may have a variable thickness and also may have one or more internal or external inserts and/or supports in some embodiments.


It is understood that the face 112, the body 108, and/or the hosel 109 can be formed as a single piece or as separate pieces that are joined together. The face 112 may be formed as a face plate member with the body 108 being partially or wholly formed by one or more separate pieces connected to the face plate member. The face 112 may alternately be formed as part of a face frame member with the body 108 being partially or wholly formed by one or more separate pieces connected to the face frame member, with a wall or walls extending rearward from the edges of the face 112 (these rearward extending walls also may be referred to as a “return portion”). This configuration may also be known as a “cup face” structure in some configurations. The face frame member may also have an L-shaped configuration. Additionally, at least a portion of the body 108 may be formed as a separate piece or pieces joined to the wall(s) of the face frame member, such as by a backbody member attached to the cup face structure, composed of a single piece or multiple pieces. These pieces may be connected by an integral joining technique, such as welding, cementing, or adhesively joining. Other known techniques for joining these parts can be used as well, including many mechanical joining techniques, including releasable mechanical engagement techniques. If desired, the hosel 109 may be integrally formed as part of the face frame member. Further, a gasket (not shown) may be included between the cup face structure and the backbody member.


The golf club 100 may include a shaft 104 connected to or otherwise engaged with the ball striking head 102 as shown in FIG. 2. The shaft 104 is adapted to be gripped by a user to swing the golf club 100 to strike the ball. The shaft 104 can be formed as a separate piece connected to the head 102, such as by connecting to the hosel 109, as shown in FIG. 1. In other illustrative embodiments, at least a portion of the shaft 104 may be an integral piece with the head 102, and/or the head 102 may not contain a hosel 109 or may contain an internal hosel structure. Still further embodiments are contemplated without departing from the scope of the invention. The shaft 104 may be constructed from one or more of a variety of materials, including metals, ceramics, polymers, composites, or wood. In some illustrative embodiments, the shaft 104, or at least portions thereof, may be constructed of a metal, such as stainless steel or titanium, or a composite, such as a carbon/graphite fiber-polymer composite. However, it is contemplated that the shaft 104 may be constructed of different materials without departing from the scope of the invention, including conventional materials that are known and used in the art. A grip element (not shown) may be positioned on the shaft 104 to provide a golfer with a slip resistant surface with which to grasp golf club shaft 104. The grip element may be attached to the shaft 104 in any desired manner, including in conventional manners known and used in the art (e.g., via adhesives or cements, threads or other mechanical connectors, swedging/swaging, etc.).


In general, the ball striking heads 102 according to the present invention include features on the body 108 that influence the impact of a ball on the face 112, such as one or more compression channels 140 positioned on the body 108 of the head 102 that allow at least a portion of the body 108 to flex, produce a reactive force, and/or change the behavior or motion of the face 112, during impact of a ball on the face 112. In one embodiment, at least a portion of the compression channel 140 is curved or bowed away from the outer periphery of the face 112. In the golf club 100 shown in FIGS. 1-4, the head 102 includes a single channel 140 located on the sole 118 of the head 102. As described below, this channel 140 permits compression and flexing of the body 108 during impact on the face 112, and can also produce a reactive force that can be transferred to the ball. This illustrative embodiment is described in greater detail below.


The golf club 100 shown in FIGS. 1-4 includes a compression channel 140 positioned on the sole 118 of the head 102, and which may extend continuously across at least a portion of the sole 118. In other embodiments, the head 102 may have a channel 140 positioned differently, such as on the crown 116, the heel 120, and/or the toe 122. It is also understood that the head 102 may have more than one channel 140, or may have an annular channel extending around the entire or substantially the entire head 102. As illustrated in FIGS. 1-4, the channel 140 of this example structure is elongated, extending between a first end 142 located proximate the heel 120 of the head 102 and a second end 144 located proximate the toe 122 of the head 102. The channel 140 has a boundary that is defined by a first or front edge 146 and a second or rear edge 148 that extend between the ends 142, 144. In this embodiment, the channel 140 extends adjacent to and along the bottom edge 115 of the face 112, and further extends into the heel 120 and toe 122 areas of the head 102. As seen in FIGS. 1-4, the channel 140 is substantially symmetrically positioned on the head 102 in this embodiment. In other embodiments, the channel 140 may be oriented and/or positioned differently. For example, the channel 140 may be oriented adjacent to a different edge of the face 112, and at least a portion of the channel 140 may be parallel or generally parallel to one or more of the edges of the face 112. The size and shape of the compression channel 140 also may vary widely without departing from this invention.


The channel 140 is recessed inwardly with respect to the immediately adjacent surfaces of the head 102 that extend from and/or are in contact with the edges 146, 148 of the channel 140, as shown in FIGS. 1-4. The channel 140 in this embodiment has a curved and generally semi-circular cross-sectional shape or profile, with a trough 150 and sloping, depending side walls 152 that are smoothly curvilinear, extending from the trough 150 to the respective edges 146, 148 of the channel 140. The trough 150 forms the deepest (i.e. most inwardly-recessed) portion of the channel 140 in this embodiment. It is understood that the channel 140 may have a different cross-sectional shape or profile, such as having a sharper and/or more polygonal (e.g. rectangular) shape in another embodiment. Additionally, the channel 140 may generally taper in depth so that the trough 150 has a greater depth at and around a center portion 130 of the channel 140 and is shallower at heel and toe portions 131, 132 of the channel 140. The channel 140 in the embodiment of FIGS. 1-4 generally extends around the edges of the sole 118 to some degree, although the deepest portion of the channel 140 (i.e. the trough 150) is located only near the front 124 of the head 102, and the rear portions of the channel 140 have a much shallower depth. Further, the channel 140 may have ridges or swales 158 located at the heel and toe portions 131, 132 of the channel 140. The ridges 158 generally define a boundary of the deepest portion of the channel 140 in the embodiment of FIGS. 1-4.


Additionally, in one embodiment, the wall thickness of the body 108 may be reduced at the channel 140, as compared to the thickness at other locations of the body 108, to provide for increased flexibility at the channel 140. In one embodiment, the wall thickness in the channel 140 is from 0.8-1.5 mm.


In the embodiment shown in FIGS. 1-4, the channel 140 is spaced from the bottom edge 115 of the face 112, with a spacing portion 154 defined between the channel 140 and the bottom edge 115. The spacing portion 154 is located immediately adjacent the channel 140 and junctures with one of the side walls 152 of the channel 140 along the front edge 146 of the channel 140, as shown in FIGS. 1-4. In this embodiment, the spacing portion 154 is oriented at an acute (i.e. <90°) angle to the ball striking surface 110 and extends rearward from the bottom edge 115 of the face 112 to the channel 140. Force from an impact on the face 112 can be transferred to the channel 140 through the spacing portion 154, as described below. In other embodiments, the spacing portion 154 may be oriented at a right angle or an obtuse angle to the ball striking surface 110, and/or the spacing portion 154 may be smaller than shown in FIGS. 1-4 or absent entirely. The spacing portion 154 is generally flattened in the embodiment of FIGS. 1-4. If desired, as another example, a smoothly curved surface may extend from the bottom edge 115 of the face 112 directly into the interior side walls 152 of the channel 140.


In one embodiment, the channel 140, or at least a portion thereof, is curved or bowed. The head 102 as illustrated in FIGS. 1-4 has a channel 140 that generally has a center portion 130 that is curved and bowed rearwardly, i.e. away from the face 112, and is spaced rearwardly a greater distance from the face 112 than adjacent portions of the channel 140. As seen in FIGS. 1 and 3, in this embodiment, the channel 140 has a heel portion 131 and a toe portion 132 that are spaced rearwardly approximately equal distances from the outer periphery of the face 112 and the center portion 130 that is spaced a greater distance from the face 112 than the heel or toe portions 131, 132. The center portion 130 in this embodiment is generally symmetrical and generally aligned with the geometric centerline of the body 108, however this arrangement and alignment may be different in other embodiments, depending at least in part on the geometry and symmetry of the body 108.


The front and rear edges 146, 148 of the channel 140 in the embodiment of FIGS. 1-4 are both curved and bowed away from the face 112. In this configuration, the edges 146, 148 are both spaced farther rearwardly from the face 112 at the center portion 130 as compared to opposed ends of each of the edges 146, 148, which may be located at the heel and toe portions 131, 132 and are positioned more closely to the periphery of the face 112. Additionally, the degrees of curving and bowing of the edges 146, 148 are slightly different in this embodiment, so that the width (measured in the front 124 to rear 126 direction) of the channel 140 is slightly larger at the center portion 130 and slightly narrower at the heel and toe portions 131, 132. In other embodiments, only one of the edges 146, 148 may be curved and/or bowed, and the width of the channel 140 may vary in a different manner, such as if one of the edges 146, 148 is curved and/or bowed to a much greater degree than the other. In another embodiment, the width of the channel 140 may be consistent and approximately equal from the heel portion 131 to the toe portion 132. In an alternate embodiment, one or both of the edges 146, 148 may be bowed toward the face 112, rather than away from the face 112. Further, the width (measured in the front 124 to rear 126 direction) of the spacing portion 154 also varies with the bowed front edge 146 of the channel 140, such that the width is greater at the center of the spacing portion 154 (proximate the center portion 130) and smaller proximate the heel portion 131 and the toe portion 132 of the channel 140. As seen in FIGS. 1 and 3, the width of the spacing portion 154 decreases by tapering from the center and becomes smaller toward the heel portion 131 and the toe portion 132 of the channel 140. The spacing portion 154 has the greatest width at approximately the geometric centerline of the body 108 and is generally symmetrical with respect to the geometric centerline in this embodiment as well. In other embodiments, the configuration of the spacing portion 154 may be different.


The deepest part of the channel 140, represented by the trough 150, also has a curved and bowed configuration in one embodiment, such as the embodiment shown in FIGS. 1-4. In this embodiment, the trough 150 has opposed ends (e.g. at the heel and toe portions 131, 132) that are more proximate to the periphery of the face 112 than the center of the trough 150 (e.g. at the center portion 130). Additionally, the trough 150 of the channel 140 in this embodiment is generally curved and bowed similarly to the front and rear edges 146, 148 of the channel 140, such that the trough 150 remains generally equidistant from the front and rear edges 146, 148 between the heel and toe portions 131, 132. In another embodiment, the side walls 152 of the channel 140 may be contoured differently, such that the trough 150 is curved and/or bowed differently. For example, in one configuration, one or both of the front and rear edges 146, 148 may be curved, while the trough 150 may not be curved, and in another configuration, the front and rear edges 146, 148 may not be curved, while the trough 150 may be curved. In a further configuration, the trough 150 may be curved and/or bowed in an opposite manner to one or both of the edges 146, 148. Still other configurations are possible.


In one embodiment, part or all of the channel 140 may have surface texturing or another surface treatment that affects the properties of the channel 140. For example, certain surface treatments, such as peening, coating, etc., may increase the stiffness of the channel and reduce flexing. As another example, other surface treatments may be used to create greater flexibility in the channel 140. As a further example, surface treatments may increase the smoothness of the channel 140 and/or the smoothness of transitions (e.g. the edges 146, 148) of the channel 140, which can influence aerodynamics, interaction with playing surfaces, visual appearance, etc. Further surface texturing or other surface treatments may be used as well.


The compression channel 140 of the head 102 shown in FIGS. 1-4 can influence the impact of a ball (not shown) on the face 112 of the head 102, as similarly described in U.S. patent application Ser. No. 13/015,264, filed Jan. 27, 2011, which is incorporated by reference herein in its entirety. In one embodiment, the channel 140 can influence the impact by flexing and/or compressing in response to the impact on the face 112, and/or by exerting a reaction force on the face 112 during impact. For example, when the ball impacts the face 112, the face 112 flexes inwardly. Additionally, some of the impact force is transferred through the spacing portion 154 to the channel 140, causing the sole 118 to flex at the channel 140. This flexing of the channel 140 may result in a smaller degree of deformation of the ball as compared to a traditional head, which can assist in achieving greater impact efficiency and greater energy and velocity transfer to the ball during impact. The more gradual impact created by the flexing also creates a longer impact time, which can also result in greater energy and velocity transfer to the ball during impact. Further, as the compressed channel 140 expands to return to its initial shape, a responsive or reactive force is exerted on the face 112, creating an increased “trampoline” effect, which can result in greater energy and velocity transfer to the ball during impact. Still further, because the channel 140 extends toward the heel 120 and toe 122, the head 102 can achieve increased energy and velocity transfer to the ball for impacts that are away from the center or traditional “sweet spot” of the face 112. It is understood that a channel 140 may be additionally or alternately incorporated into the crown 116 and/or sides 120, 122 of the body 108 in order to produce similar effects for energy and velocity transfer. For example, in one embodiment, the head 102 may have one or more channels 140 extending completely or substantially completely around the periphery of the body 108, such as shown in U.S. patent application Ser. No. 13/308,036, filed Nov. 30, 2011, which is incorporated by reference herein in its entirety. At least a portion of a channel 140 in this configuration may be curved or bowed away from the outer periphery of the face 112, as described above, and the channel 140 may have such curved/bowed portions on both the top 116 and the sole 118 in one embodiment. It is understood that the head 102 may have one or more channels 140 in a different configuration in other embodiments.


The curved and/or bowed configuration of the channel 140 may assist in controlling the flexing of the channel 140 and/or achieving a desired flexibility. For example, certain features of the head 102 (e.g. the access 128) may influence the flexibility of the channel 140, and the curved/bowed configuration of the channel 140 may assist in retaining the same flexibility as the channel 140 would have without the features in question. As another example, the curved/bowed configuration of the channel 140 may assist in achieving a desired flexibility for the channel 140, such as for a particular application. Other effects and properties may be achieved by channels 140 that are curved/bowed as shown in FIGS. 1-4 or in other configurations, and the configuration of the channel 140 may work in conjunction with other features to influence the flexibility of the channel 140.


In another embodiment, illustrated in FIG. 5, the head 102 may further include one or more weight members 133 located on the sole 118. These weight members 133 may be releasable and interchangeable, such as by having a snapping connection, a threaded connection, a locking connection (e.g. quarter-turn or half-turn), or other such connection, in order to permit interchanging of the weight members 133 with other weight members 133 having different weights. In another embodiment, the weight members 133 may be more permanently connected to the head 102. It is understood that such weight members permit selective weighting of the head 102, to achieve a desired weight and/or weight distribution.



FIGS. 6-9 illustrate another embodiment of a club head 202 according to aspects of the present invention, in the form of a fairway wood, having a channel 140 as described above with respect to the embodiment of FIGS. 1-4. FIGS. 10-13 illustrate another embodiment of a club head 302 according to aspects of the present invention, in the form of a hybrid club head, having a channel 140 as described above with respect to the embodiment of FIGS. 1-4. The heads 202, 302 in the embodiments of FIGS. 6-9 and FIGS. 10-13 generally have components and features that are similar to the head 102 as described above and shown in FIGS. 1-4, and such similar components and features are identified in FIGS. 6-13 using the same reference numerals as used above and in FIGS. 1-4. Additionally, such similar components and features may not be described again in detail for the sake of brevity. The heads 202, 302 in these embodiments may also produce some or all of the same benefits articulated herein with respect to the head 102 of FIGS. 1-4.


In general, the heads 202, 302 of FIGS. 6-13 each include a channel 140 that is curved and/or bowed as described above with respect to the channel 140 in the embodiment of FIGS. 1-4. The embodiments of FIGS. 6-13 each include a channel 140 that generally has a center portion 130 that is curved and bowed rearwardly, i.e. away from the face 112, and is spaced rearwardly a greater distance from the face 112 than adjacent portions of the channel 140, with heel and toe portions 131, 132 that are located closer to the face 112 than the center portion 130. In these embodiments, the front and rear edges 146, 148 and the trough 150 of each channel 140 are curved and bowed rearwardly, as similarly described above with respect to the channel 140 shown in FIGS. 1-4. Additionally, in the embodiments of FIGS. 6-13, the degrees of curving and bowing of the edges 146, 148 are slightly different, so that the width (measured in the front 124 to rear 126 direction) of each channel 140 is slightly larger at the center portion 130 and slightly narrower at the heel and toe portions 131, 132, as also similarly described above. Further, the spacing portion 154 in each of the embodiments of FIGS. 6-13 is wider proximate the center portion 130 and narrower proximate the heel and toe portions 131, 132 of the channel 140, as also similarly described above. It is understood that any of the variations, modifications, additional features, additional or alternate embodiments, etc., described above with respect to the head 102 of FIGS. 1-4 may be incorporated into the head 202 of FIGS. 6-9 or the head 302 of FIGS. 7-13.



FIGS. 14 and 15 illustrate further embodiments of club heads 402, 502 according to aspects of the present invention, in the form of golf drivers. The heads 402, 502 include at least some components and features that are similar to the head 102 as described above and shown in FIGS. 1-4, and such similar components and features are identified in FIGS. 14-15 using the same reference numerals as used above and in FIGS. 1-4. Additionally, such similar components and features may not be described again in detail for the sake of brevity. The heads 402, 502 in these embodiments may also produce some or all of the same benefits articulated herein with respect to the head 102 of FIGS. 1-4.


The head 402 of FIG. 14 includes a channel 140 that is substantially the same as or identical to the channel 140 of the head 102 of FIGS. 1-4, and may include any of the features and components of the head 102 and the channel 140 described above, including any variations, modifications, additional features, additional or alternate embodiments, etc., described above. The head 502 of FIG. 15 includes a channel 140 that is similar to the channel 140 of FIGS. 1-4, but is generally parallel to the outer periphery of the face 112, including being generally parallel to at least the bottom edge 115 of the face 112. The head 502 of FIG. 15 may include any of the features and components of the head 102 and the channel 140 described above, including any variations, modifications, additional features, additional or alternate embodiments, etc., described above.


The heads 402, 502 of FIGS. 14-15 each include additional channels 160 located on the sole 118, spaced farther rearwardly from the compression channel 140 near the face 112. Each of these additional channels 160 can influence the response, flexing, and other properties of the face 112 and may alter the response force exerted by the channel 140 on the face 112 during impact. In the embodiments of FIGS. 14-15, the additional channels 160 act as internal stiffening ribs to increase the stiffness of the sole 118 and control the flexing of the channel 140 to limit the degree of flexing of the channel 140 during impact. Further, the additional channels 160 may act to provide a foundational “base” for the channel 140, to focus flexing of the sole 118 at the channel 140, rather than other areas of the sole 118. In another embodiment, the head 402, 502 may have stiffening ribs similar to the additional channels 160 that project outwardly from the body 108, rather than inwardly. It is understood that the features of the heads 402, 502 of FIGS. 14-15, including the additional channels/stiffening ribs 160 and any variations, modifications, additional features, additional or alternate embodiments, etc., thereof, may be used in connection with the heads 202, 302 of FIGS. 6-13 or any other embodiments as described herein.


Each of the additional channels 160 in the embodiments of FIGS. 14-15 has an inwardly recessed trough 161 that is defined between a front edge 162 and a rear edge 163 that extend in the heel 120 to toe 122 direction, such that the additional channels 160 are elongated in the heel 120 to toe 122 direction. In this configuration, each of the additional channels 160 has a heel portion 164 on the side most proximate the heel 120 and a toe portion 165 on the side most proximate the toe 122. The first additional channel 160 (the second overall channel) is spaced rearwardly from the rear edge 148 of the channel 140, and the second additional channel 160 (the third overall channel) is spaced rearwardly from the rear edge 163 of the first additional channel 160. Additionally, in this embodiment, the front and rear edges 162, 163 of each of the additional channels 160 are relatively straight, and the additional channels 160 each have a trapezoidal or other polygonal outer shape. Further, in this embodiment, each of the additional channels 160 has a tapering depth that gradually increases from the front edge 162 to the rear edge 163, such that the maximum depth of the trough 161 is located proximate the rear edge 163. This tapering depth may give the additional channels 160 a polygonal cross-sectional shape as well. Still further, the additional channels 160 in this embodiment are substantially symmetrical with respect to a geometric centerline of the head 102 (e.g. extending in the front 124 to rear 126 direction). It is understood that the additional channels 160 may have different shapes, locations, orientations, and/or configurations in other embodiments, and that other embodiments may include a different number of additional channels 160.


Still other embodiments of compression channels 140 can be incorporated into a head 102 of the present invention. Further, it is understood that one or more different features of any of the heads 102, 202, 302, 402, 502 and the channels 140 described above with respect to FIGS. 1-15 can be combined in any combination in other embodiments.


Heads 102, et seq., incorporating the channels 140 disclosed herein may be used as a ball striking device or a part thereof. For example, a golf club 100 as shown in FIGS. 1-4 may be manufactured by attaching a shaft or handle 104 to a head that is provided, such as the heads 102, et seq., as described above. “Providing” the head, as used herein, refers broadly to making an article available or accessible for future actions to be performed on the article, and does not connote that the party providing the article has manufactured, produced, or supplied the article or that the party providing the article has ownership or control of the article. Additionally, a set of golf clubs including one or more clubs 100 having heads 102, et seq., as described above may be provided. In other embodiments, different types of ball striking devices can be manufactured according to the principles described herein. Additionally, the heads 102, et seq., golf club 100, or other ball striking device may be fitted or customized for a person, such as by attaching a shaft 104 thereto having a particular length, flexibility, etc., or by adjusting or interchanging an already attached shaft 104 as described above.


The ball striking devices and heads therefor as described herein provide many benefits and advantages over existing products. For example, the flexing of the sole 118 at the channel 140 results in a smaller degree of deformation of the ball, which in turn can result in greater impact efficiency and greater energy and velocity transfer to the ball during impact. As another example, the more gradual impact created by the flexing can create a longer impact time, which can also result in greater energy and velocity transfer to the ball during impact. As a further example, the responsive or reactive force exerted on the face 112 as the compressed channel 140 expands to return to its initial shape is imparted to the ball, which can result in greater energy and velocity transfer to the ball during impact. Still further, because the channel 140 extends toward the heel and toe edges 117, 119 of the face 112, the head 102, et seq., can achieve increased energy and velocity transfer to the ball for impacts that are away from the center or traditional “sweet spot” of the face 112. As an additional example, the features described herein may result in improved feel of the golf club 100 for the golfer, when striking the ball. Additionally, the configuration of the channel 140 may work in conjunction with other features (e.g. the additional channels 160, the access 128, etc.) to influence the overall flexibility and response of the channel 140, as well as the effect the channel 140 has on the response of the face 112. Further benefits and advantages are recognized by those skilled in the art.


While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and methods. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.

Claims
  • 1. A golf club head comprising: a face having a striking surface configured for striking a ball, the face being defined by an outer periphery;a body connected to the face and extending rearwardly from the outer periphery of the face, the body having a sole configured to face a playing surface, a crown opposite the sole, a heel, and a toe;an internal interconnection structure adapted for connection of a shaft to the body in an adjustable configuration;a channel extending across at least a portion of the sole of the body, wherein the channel is defined between a front edge and a rear edge extending in a heel-to-toe direction and is inwardly recessed between the front and rear edges; andan access opening within the sole, the access opening providing access to the internal interconnection structure, wherein the access opening is in communication with the channel between the face and the rear edge of the channel,wherein the front edge of the channel is generally parallel to the outer periphery of the face at a center portion of the channel,wherein a portion of the channel curves away from the face and extends near a heel edge and a toe edge of the sole into the heel and toe areas with a deepest portion of the channel located near the face of the golf club head,wherein a width of the channel defined between the front and rear edges is greater proximate a center portion as compared to both a heel portion and a toe portion.
  • 2. A golf club head of claim 1, wherein at least one releasable weight member is positioned rearward of the channel and proximate a center sole region in the heel-to-toe direction and a center portion of the sole in a front-to-back direction.
  • 3. A golf club head of claim 1, wherein the club head has a volume in a range of 120 cc to 230 cc.
  • 4. A golf club head of claim 1, wherein the club head has a volume in a range of 85 cc to 140 cc.
  • 5. A golf club head of claim 1, wherein at least two releasable weight members are positioned in a center sole region in a heel-to-toe direction.
  • 6. A golf club head of claim 1, wherein the club head has a volume of at least 400 cc.
CROSS-REFERENCE TO RELATED APPLICATION

This present application is a continuation of U.S. Non-Provisional application Ser. No. 13/795,881 filed Mar. 12, 2013 which claims priority to and is a non-provisional of U.S. Provisional Application No. 61/653,937, filed May 31, 2012. U.S. Non-Provisional application Ser. No. 13/795,881 also claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 13/308,036, filed Nov. 30, 2011, which claims priority to and is a non-provisional of U.S. Provisional Application No. 61/418,240, filed Nov. 30, 2010, and U.S. Provisional Application No. 61/541,767, filed Sep. 30, 2011, all of which applications are incorporated by reference herein in their entireties and made part hereof.

US Referenced Citations (1100)
Number Name Date Kind
569438 Urquhart Oct 1896 A
632885 Sweny Sep 1899 A
648256 Hartley Apr 1900 A
651920 Cushing, Jr. Jun 1900 A
670522 Thompson Mar 1901 A
727086 Burnam May 1903 A
777400 Clark Dec 1904 A
1039491 Collins Sep 1912 A
1058463 Pringle Apr 1913 A
1083434 Curry Jan 1914 A
1133129 Govan Mar 1915 A
1135621 Roberts Apr 1915 A
1137457 Breitenbaugh Apr 1915 A
1165559 Vories Dec 1915 A
1173384 Rees Feb 1916 A
1190589 Rolfe Jul 1916 A
1206104 Goodrich Nov 1916 A
1206105 Goodrich Nov 1916 A
1219417 Vories Mar 1917 A
1222770 Kaye Apr 1917 A
1235922 Pittar Aug 1917 A
1250301 Goodrich Dec 1917 A
1258212 Goodrich Mar 1918 A
1429569 Craig Sep 1922 A
1529959 Martin Mar 1925 A
1549265 Kaden Aug 1925 A
1556928 Ganders Oct 1925 A
1568485 Turney Jan 1926 A
1594850 Perkins Aug 1926 A
1605140 Perkins Nov 1926 A
1620588 Wilson Mar 1927 A
1644177 Collins Oct 1927 A
1676518 Boles Jul 1928 A
1697846 Anderson Jan 1929 A
1697998 Novak et a1. Jan 1929 A
1705997 Quynn Mar 1929 A
1818359 Samaras et al. Aug 1931 A
1840924 Tucker Jan 1932 A
1854548 Hunt Apr 1932 A
1916792 Hadden Jul 1933 A
1974224 Van Der Linden Sep 1934 A
1993928 Glover Mar 1935 A
2004968 Young Jun 1935 A
2041676 Gallagher May 1936 A
2087685 Hackney Jul 1937 A
2179034 Duncan, Jr. Nov 1939 A
2217338 Fuller Oct 1940 A
2242670 Fuller May 1941 A
2305270 Nilson Dec 1942 A
2329313 Winter Sep 1943 A
2381636 Bancroft Aug 1945 A
2384333 Nilson Sep 1945 A
2429351 Fetterolf Oct 1947 A
2451262 Watkins Oct 1948 A
2455150 Verderber Nov 1948 A
2475926 Verderber Jul 1949 A
2477438 Brouwer Jul 1949 A
2495444 Chamberlain et al. Jan 1950 A
2520701 Verderber Aug 1950 A
2520702 Verderber Aug 1950 A
2550846 Milligan May 1951 A
2571970 Verderber Oct 1951 A
2576866 Verderber Nov 1951 A
2593368 Verderber Apr 1952 A
2691525 Callaghan, Sr. Oct 1954 A
2705147 Winter Mar 1955 A
2750194 Clark Jun 1956 A
2777694 Winter Jan 1957 A
2847219 Shoemaker et al. Aug 1958 A
2962286 Brouwer Nov 1960 A
2968486 Walton Jan 1961 A
3045371 Kurlinski Jul 1962 A
3061310 Giza Oct 1962 A
3064980 Steiner Nov 1962 A
3084940 Cissel Apr 1963 A
3166320 Onions Jan 1965 A
3170698 Schoeffler et al. Feb 1965 A
3199873 Surratt Aug 1965 A
3212783 Bradley Oct 1965 A
3270564 Evans Sep 1966 A
3292928 Billen Dec 1966 A
3305235 Williams, Jr. Feb 1967 A
3477720 Saba Nov 1969 A
3519271 Smith Jul 1970 A
3589731 Chancellor, Jr. Jun 1971 A
3601399 Agens et al. Aug 1971 A
3606327 Gorman Sep 1971 A
3753564 Brandell Aug 1973 A
3788647 Evans Jan 1974 A
3791647 Verderber Feb 1974 A
3792863 Evans Feb 1974 A
3806131 Evans Apr 1974 A
3810631 Braly May 1974 A
3814437 Winquist Jun 1974 A
3829102 Harrison Aug 1974 A
3840231 Moore Oct 1974 A
3931363 Giolito et al. Jan 1976 A
3931969 Townhill Jan 1976 A
3945646 Hammond Mar 1976 A
3966210 Rozmus Jun 1976 A
3970236 Rogers Jul 1976 A
3976299 Lawrence et al. Aug 1976 A
3979125 Lancellotti Sep 1976 A
3980301 Smith Sep 1976 A
3997170 Goldberg Dec 1976 A
4027885 Rogers Jun 1977 A
4139196 Riley Feb 1979 A
4165874 Lezatte et al. Aug 1979 A
4194739 Thompson Mar 1980 A
4291883 Smart et al. Sep 1981 A
4313607 Thompson Feb 1982 A
4322083 Imai Mar 1982 A
4398965 Campau Aug 1983 A
4431192 Stuff, Jr. Feb 1984 A
4438931 Motomiya Mar 1984 A
4444392 Duclos Apr 1984 A
4511145 Schmidt Apr 1985 A
4523759 Igarashi Jun 1985 A
4534558 Yoneyama Aug 1985 A
4535990 Yamada Aug 1985 A
4582321 Yoneyama Apr 1986 A
4630827 Yoneyama Dec 1986 A
4632400 Boone Dec 1986 A
4635941 Yoneyama Jan 1987 A
4664383 Aizawa May 1987 A
4667963 Yoneyama May 1987 A
4681321 Chen et al. Jul 1987 A
4697814 Yamada Oct 1987 A
4708347 Kobayashi Nov 1987 A
4728105 Kobayashi Mar 1988 A
4732389 Kobayashi Mar 1988 A
4754974 Kobayashi Jul 1988 A
4811949 Kobayashi Mar 1989 A
4811950 Kobayashi Mar 1989 A
4842280 Hilton Jun 1989 A
4856782 Cannan Aug 1989 A
4867458 Sumikawa et al. Sep 1989 A
4871174 Kobayashi Oct 1989 A
4878666 Hosoda Nov 1989 A
4895371 Bushner Jan 1990 A
4898387 Finney Feb 1990 A
4898389 Plutt Feb 1990 A
4927144 Stormon May 1990 A
4928972 Nakanishi et al. May 1990 A
4930781 Allen Jun 1990 A
4940236 Allen Jul 1990 A
4991850 Wilhlem Feb 1991 A
5004242 Iwanaga et al. Apr 1991 A
5009425 Okumoto et al. Apr 1991 A
D318703 Shearer Jul 1991 S
5028049 McKeighen Jul 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5076585 Bouquet Dec 1991 A
D323035 Yang Jan 1992 S
5078397 Aizawa Jan 1992 A
5080366 Okumoto et al. Jan 1992 A
5092599 Okumoto et al. Mar 1992 A
D326130 Chorne May 1992 S
5133553 Divnick Jul 1992 A
5149091 Okumoto Sep 1992 A
5160142 Marshall Nov 1992 A
5186465 Chorne Feb 1993 A
5193810 Antonious Mar 1993 A
5205560 Hoshi et al. Apr 1993 A
5211401 Hainey May 1993 A
5213328 Long et al. May 1993 A
5221086 Antonious Jun 1993 A
5221088 McTeigue et al. Jun 1993 A
5228689 Donofrio, Sr. Jul 1993 A
5228694 Okumoto et al. Jul 1993 A
5230512 Tattershall Jul 1993 A
5233544 Kobayashi Aug 1993 A
5245537 Barber Sep 1993 A
5253869 Dingle et al. Oct 1993 A
5269517 Petruccelli et al. Dec 1993 A
5282625 Schmidt et al. Feb 1994 A
5290036 Fenton et al. Mar 1994 A
5292123 Schmidt, Jr. et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301941 Allen Apr 1994 A
5301946 Schmidt et al. Apr 1994 A
5316305 McCabe May 1994 A
5326106 Meyer Jul 1994 A
5330187 Schmidt et al. Jul 1994 A
5332225 Ura Jul 1994 A
D350176 Antonious Aug 1994 S
5333871 Wishon Aug 1994 A
5340104 Griffin Aug 1994 A
5346216 Aizawa Sep 1994 A
5354063 Curchod Oct 1994 A
5364093 Huston et al. Nov 1994 A
5372365 McTeigue et al. Dec 1994 A
D354103 Allen Jan 1995 S
5377985 Ohnishi Jan 1995 A
5380010 Werner et al. Jan 1995 A
5385346 Carroll et al. Jan 1995 A
5393056 Richardson Feb 1995 A
5407196 Busnardo Apr 1995 A
5411263 Schmidt May 1995 A
5413337 Goodman et al. May 1995 A
5413345 Nauck May 1995 A
5419556 Take May 1995 A
5419560 Bamber May 1995 A
5429366 McCabe Jul 1995 A
5433441 Olsen et al. Jul 1995 A
5435551 Chen Jul 1995 A
5437456 Schmidt et al. Aug 1995 A
5441269 Henwood Aug 1995 A
5447307 Antonious Sep 1995 A
5451056 Manning Sep 1995 A
5451058 Price et al. Sep 1995 A
D363749 Kenmi Oct 1995 S
5464211 Atkins, Sr. Nov 1995 A
5464217 Shenoha et al. Nov 1995 A
5467988 Henwood Nov 1995 A
5472201 Aizawa et al. Dec 1995 A
5472203 Schmidt et al. Dec 1995 A
5478082 De Knight et al. Dec 1995 A
D366508 Hutin Jan 1996 S
5480152 Schmidt et al. Jan 1996 A
5489097 Simmons Feb 1996 A
5492327 Biafore, Jr. Feb 1996 A
5497995 Swisshelm Mar 1996 A
5505453 Mack Apr 1996 A
5511786 Antonious Apr 1996 A
5516106 Henwood May 1996 A
5518243 Redman May 1996 A
5524081 Paul Jun 1996 A
D371817 Olsavsky et al. Jul 1996 S
D372063 Hueber Jul 1996 S
5531439 Azzarella Jul 1996 A
5533725 Reynolds, Jr. Jul 1996 A
5533728 Pehoski et al. Jul 1996 A
5538245 Moore Jul 1996 A
D372512 Simmons Aug 1996 S
5547188 Dumontier et al. Aug 1996 A
5547427 Rigal et al. Aug 1996 A
D375130 Hlinka et al. Oct 1996 S
5564705 Kobayashi et al. Oct 1996 A
D375987 Lin Nov 1996 S
5570886 Rigal et al. Nov 1996 A
5580058 Coughlin Dec 1996 A
5581993 Strobel Dec 1996 A
5584770 Jensen Dec 1996 A
5586947 Hutin Dec 1996 A
5586948 Mick Dec 1996 A
D377509 Katayama Jan 1997 S
5595552 Wright et al. Jan 1997 A
5601498 Antonious Feb 1997 A
5603668 Antonious Feb 1997 A
5607365 Wolf Mar 1997 A
5611740 Nagamoto Mar 1997 A
D378770 Hlinka et al. Apr 1997 S
5616088 Aizawa et al. Apr 1997 A
5616832 Nauck Apr 1997 A
5626528 Toulon May 1997 A
5626530 Schmidt et al. May 1997 A
5632695 Hlinka et al. May 1997 A
5634855 King Jun 1997 A
D381382 Fenton, Jr. Jul 1997 S
D382612 Oyer Aug 1997 S
5669829 Lin Sep 1997 A
5681993 Heitman Oct 1997 A
D386550 Wright et al. Nov 1997 S
D386551 Solheim et al. Nov 1997 S
D387113 Burrows Dec 1997 S
D387405 Solheim et al. Dec 1997 S
5692968 Shine Dec 1997 A
5692972 Langslet Dec 1997 A
5695409 Jackson Dec 1997 A
5709613 Sheraw Jan 1998 A
5709615 Liang Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5718301 Williams Feb 1998 A
5718641 Lin Feb 1998 A
D392007 Fox Mar 1998 S
5724265 Hutchings Mar 1998 A
5728006 Teitell et al. Mar 1998 A
5735754 Antonious Apr 1998 A
D394688 Fox May 1998 S
5746664 Reynolds, Jr. May 1998 A
5749795 Schmidt et al. May 1998 A
5755625 Jackson May 1998 A
5766094 Mahaffey et al. Jun 1998 A
5772525 Klein Jun 1998 A
5772527 Liu Jun 1998 A
5779555 Nomura et al. Jul 1998 A
5785609 Sheets et al. Jul 1998 A
D397387 Allen Aug 1998 S
5788584 Parente et al. Aug 1998 A
5792000 Weber et al. Aug 1998 A
5792001 Henwood Aug 1998 A
D397750 Frazetta Sep 1998 S
D398687 Miyajima et al. Sep 1998 S
D398946 Kenmi Sep 1998 S
5803829 Hayashi Sep 1998 A
5803830 Austin et al. Sep 1998 A
D399274 Bradford Oct 1998 S
5820481 Raudman Oct 1998 A
5826874 Teitell et al. Oct 1998 A
D400945 Gilbert et al. Nov 1998 S
5839975 Lundberg Nov 1998 A
D403037 Stone et al. Dec 1998 S
5863261 Eggiman Jan 1999 A
D405488 Burrows Feb 1999 S
5873791 Allen Feb 1999 A
5888148 Allen Mar 1999 A
5908356 Nagamoto Jun 1999 A
5908357 Hsieh Jun 1999 A
5928087 Emberton et al. Jul 1999 A
5941782 Cook Aug 1999 A
D413952 Oyer Sep 1999 S
D414234 Darrah Sep 1999 S
5947841 Silvestro Sep 1999 A
5951410 Butler et al. Sep 1999 A
5955667 Fyfe Sep 1999 A
5971868 Kosmatka Oct 1999 A
5973596 French et al. Oct 1999 A
5993329 Shieh Nov 1999 A
5997415 Wood Dec 1999 A
6001028 Tang et al. Dec 1999 A
6001030 Delaney Dec 1999 A
6007432 Kosmatka Dec 1999 A
6012988 Burke Jan 2000 A
6015354 Ahn et al. Jan 2000 A
6018705 Gaudet et al. Jan 2000 A
D422041 Bradford Mar 2000 S
6042486 Gallagher Mar 2000 A
6044704 Sacher Apr 2000 A
6045364 Dugan et al. Apr 2000 A
6048278 Meyer et al. Apr 2000 A
6052654 Gaudet et al. Apr 2000 A
6074308 Domas Jun 2000 A
6074309 Mahaffey Jun 2000 A
6080068 Takeda Jun 2000 A
6086485 Hamada et al. Jul 2000 A
6095931 Hettinger et al. Aug 2000 A
6117022 Crawford et al. Sep 2000 A
6120384 Drake Sep 2000 A
6123627 Antonious Sep 2000 A
6149533 Finn Nov 2000 A
6149534 Peters et al. Nov 2000 A
6159109 Langslet Dec 2000 A
6176791 Wright Jan 2001 B1
6193614 Sasamoto et al. Feb 2001 B1
6196932 Marsh et al. Mar 2001 B1
6203449 Kenmi Mar 2001 B1
6206788 Krenzler Mar 2001 B1
6217461 Galy Apr 2001 B1
6224493 Lee et al. May 2001 B1
6248021 Ognjanovic Jun 2001 B1
6261102 Dugan et al. Jul 2001 B1
6270422 Fisher Aug 2001 B1
6270423 Webb Aug 2001 B1
6299546 Wang Oct 2001 B1
6299553 Petuchowski et al. Oct 2001 B1
6302807 Rohrer Oct 2001 B1
6319149 Lee Nov 2001 B1
6319150 Werner et al. Nov 2001 B1
6332848 Long et al. Dec 2001 B1
6338683 Kosmatka Jan 2002 B1
6342018 Mason Jan 2002 B1
6344000 Hamada et al. Feb 2002 B1
6344001 Hamada et al. Feb 2002 B1
6348009 Dischler Feb 2002 B1
6348013 Kosmatka Feb 2002 B1
6354956 Doong Mar 2002 B1
6354961 Allen Mar 2002 B1
RE37647 Wolf Apr 2002 E
6368232 Hamada et al. Apr 2002 B1
6368234 Galloway Apr 2002 B1
6386987 Lejeune, Jr. May 2002 B1
6390932 Kosmatka et al. May 2002 B1
6390933 Galloway May 2002 B1
6394910 McCarthy May 2002 B1
6402634 Lee et al. Jun 2002 B2
6402637 Sasamoto et al. Jun 2002 B1
6402638 Kelley Jun 2002 B1
6413167 Burke Jul 2002 B1
6422951 Burrows Jul 2002 B1
6428423 Merko Aug 2002 B1
6430843 Potter et al. Aug 2002 B1
6431990 Manwaring Aug 2002 B1
6435982 Galloway et al. Aug 2002 B1
6441745 Gates Aug 2002 B1
6443857 Chuang Sep 2002 B1
6447405 Chen Sep 2002 B1
6454665 Antonious Sep 2002 B2
6456938 Barnard Sep 2002 B1
6471603 Kosmatka Oct 2002 B1
D465251 Wood et al. Nov 2002 S
6475100 Helmstetter Nov 2002 B1
6478690 Helmstetter et al. Nov 2002 B2
6482107 Urbanski et al. Nov 2002 B1
6506126 Goodman Jan 2003 B1
6506129 Chen Jan 2003 B2
6514154 Finn Feb 2003 B1
6524194 McCabe Feb 2003 B2
6524197 Boone Feb 2003 B2
6524198 Takeda Feb 2003 B2
6530847 Antonious Mar 2003 B1
6533679 McCabe et al. Mar 2003 B1
6551199 Viera Apr 2003 B2
6558268 Tindale May 2003 B2
6558271 Beach et al. May 2003 B1
6561917 Manwaring May 2003 B2
6575854 Yang et al. Jun 2003 B1
6602149 Jacobson Aug 2003 B1
6605007 Bissonnette et al. Aug 2003 B1
6607450 Hackman Aug 2003 B1
6607451 Kosmatka et al. Aug 2003 B2
6616547 Vincent et al. Sep 2003 B2
6634956 Pegg Oct 2003 B1
6638175 Lee et al. Oct 2003 B2
D482089 Burrows Nov 2003 S
D482090 Burrows Nov 2003 S
D482420 Burrows Nov 2003 S
6641490 Ellemor Nov 2003 B2
6648769 Lee et al. Nov 2003 B2
6652390 Bradford Nov 2003 B2
6652391 Kubica et al. Nov 2003 B1
D484208 Burrows Dec 2003 S
6663503 Kenmi Dec 2003 B1
6663506 Nishimoto et al. Dec 2003 B2
6676533 Hsien Jan 2004 B1
6679786 McCabe Jan 2004 B2
D486542 Burrows Feb 2004 S
6688989 Best Feb 2004 B2
6695715 Chikaraishi Feb 2004 B1
6697820 Tarlie Feb 2004 B1
6719641 Dabbs et al. Apr 2004 B2
6719645 Kouno Apr 2004 B2
6739983 Helmstetter et al. May 2004 B2
6743112 Nelson Jun 2004 B2
6743118 Soracco Jun 2004 B1
6757572 Forest Jun 2004 B1
6767292 Skalla, Sr. Jul 2004 B1
6773360 Willett et al. Aug 2004 B2
6780123 Hasebe Aug 2004 B2
6783465 Matsunaga Aug 2004 B2
6800037 Kosmatka Oct 2004 B2
6800038 Willett et al. Oct 2004 B2
6800039 Tseng Oct 2004 B1
6802772 Kunzle et al. Oct 2004 B1
D498508 Antonious Nov 2004 S
6811496 Wahl et al. Nov 2004 B2
6819247 Birnbach et al. Nov 2004 B2
6821209 Manwaring et al. Nov 2004 B2
D501036 Burrows Jan 2005 S
6837800 Rollinson et al. Jan 2005 B2
6840872 Yoneyama Jan 2005 B2
D501523 Dogan et al. Feb 2005 S
D501903 Tanaka Feb 2005 S
D502232 Antonious Feb 2005 S
6855068 Antonious Feb 2005 B2
6863620 Tucker, Sr. Mar 2005 B2
D504478 Burrows Apr 2005 S
6876947 Darley et al. Apr 2005 B1
6878071 Schwieger et al. Apr 2005 B1
6882955 Ohlenbusch et al. Apr 2005 B1
6887165 Tsurumaki May 2005 B2
6899638 Iwata et al. May 2005 B2
6900759 Katayama May 2005 B1
D506236 Evans et al. Jun 2005 S
D508274 Burrows Aug 2005 S
6923729 McGinty et al. Aug 2005 B2
6923733 Chen Aug 2005 B2
6926618 Sanchez et al. Aug 2005 B2
6929558 Manwaring et al. Aug 2005 B2
6960142 Bissonnette et al. Nov 2005 B2
6979270 Allen Dec 2005 B1
6991552 Burke Jan 2006 B2
6991555 Reese Jan 2006 B2
6991560 Tseng Jan 2006 B2
D515642 Antonious Feb 2006 S
6994635 Poynor Feb 2006 B2
7004848 Konow Feb 2006 B2
7018303 Yamamoto Mar 2006 B2
7018304 Bradford Mar 2006 B2
7021140 Perkins Apr 2006 B2
7025692 Erickson et al. Apr 2006 B2
D520585 Hasebe May 2006 S
7037198 Hameen-Anttila May 2006 B2
7041003 Bissonnette et al. May 2006 B2
7041014 Wright et al. May 2006 B2
7048646 Yamanaka et al. May 2006 B2
D523104 Hasebe Jun 2006 S
D523498 Chen et al. Jun 2006 S
7056229 Chen Jun 2006 B2
7066835 Evans et al. Jun 2006 B2
D524392 Madore et al. Jul 2006 S
7070513 Takeda et al. Jul 2006 B2
7070515 Liu Jul 2006 B1
7077757 Payne et al. Jul 2006 B1
7083530 Wahl et al. Aug 2006 B2
7086964 Chen et al. Aug 2006 B2
7090590 Chen Aug 2006 B2
7097572 Yabu Aug 2006 B2
7118498 Meadows et al. Oct 2006 B2
7121956 Lo Oct 2006 B2
7121962 Reeves Oct 2006 B2
7125340 Priester et al. Oct 2006 B1
7128660 Gillig Oct 2006 B2
7128663 Bamber Oct 2006 B2
7134971 Franklin et al. Nov 2006 B2
7137907 Gibbs et al. Nov 2006 B2
7140974 Chao et al. Nov 2006 B2
7140975 Bissonnette et al. Nov 2006 B2
7140977 Atkins, Sr. Nov 2006 B2
7147569 Tang et al. Dec 2006 B2
7156750 Nishitani et al. Jan 2007 B2
7160200 Grober Jan 2007 B2
7163468 Gibbs et al. Jan 2007 B2
7163470 Galloway et al. Jan 2007 B2
7166041 Evans Jan 2007 B2
7169059 Rice et al. Jan 2007 B2
D536402 Kawami Feb 2007 S
7175177 Meifu et al. Feb 2007 B2
7175511 Ueda et al. Feb 2007 B2
7175541 Lo Feb 2007 B2
7186185 Nagy Mar 2007 B2
7186188 Gilbert et al. Mar 2007 B2
7192364 Long Mar 2007 B2
7201668 Pamias Apr 2007 B1
7207898 Rice et al. Apr 2007 B2
7211006 Chang May 2007 B2
7214138 Stivers et al. May 2007 B1
7226362 Schell et al. Jun 2007 B1
7226366 Galloway Jun 2007 B2
7234351 Perkins Jun 2007 B2
7235020 Christensen Jun 2007 B1
7241230 Tsunoda Jul 2007 B2
7244189 Stobbe Jul 2007 B1
7247104 Poynor Jul 2007 B2
7255653 Saso Aug 2007 B2
7258631 Galloway et al. Aug 2007 B2
7261643 Rice et al. Aug 2007 B2
D551310 Kuan et al. Sep 2007 S
7264554 Bentley Sep 2007 B2
7264555 Lee et al. Sep 2007 B2
D552701 Ruggiero et al. Oct 2007 S
7278926 Frame Oct 2007 B2
7281985 Galloway Oct 2007 B2
7294064 Tsurumaki et al. Nov 2007 B2
7297071 Hyman Nov 2007 B2
7297073 Jung Nov 2007 B2
7310895 Whittlesey et al. Dec 2007 B2
7318782 Imamoto et al. Jan 2008 B2
7326121 Roake Feb 2008 B2
7335112 Bitondo Feb 2008 B1
7344452 Imamoto et al. Mar 2008 B2
7347795 Yamagishi et al. Mar 2008 B2
D566214 Evans et al. Apr 2008 S
7351157 Priester et al. Apr 2008 B2
7351161 Beach Apr 2008 B2
7367898 Hawkins et al. May 2008 B2
7371184 Tao May 2008 B2
7387579 Lin et al. Jun 2008 B2
7396289 Soracco et al. Jul 2008 B2
7396293 Soracco Jul 2008 B2
7396296 Evans Jul 2008 B2
7407443 Franklin et al. Aug 2008 B2
7419439 Aleamoni Sep 2008 B1
7431660 Hasegawa Oct 2008 B2
7431663 Pamias Oct 2008 B2
7435189 Hirano Oct 2008 B2
7438649 Ezaki et al. Oct 2008 B2
7442132 Nishio Oct 2008 B2
7445563 Werner Nov 2008 B1
7470201 Nakahara et al. Dec 2008 B2
7473186 Best et al. Jan 2009 B2
7476161 Williams et al. Jan 2009 B2
7494426 Nishio et al. Feb 2009 B2
D588223 Kuan Mar 2009 S
7500924 Yokota Mar 2009 B2
7509842 Kostuj Mar 2009 B2
7520820 Dimarco Apr 2009 B2
7530901 Imamoto et al. May 2009 B2
7530903 Imamoto et al. May 2009 B2
7540810 Hettinger et al. Jun 2009 B2
7559850 Gilbert et al. Jul 2009 B2
7563176 Roberts et al. Jul 2009 B2
7572193 Yokota Aug 2009 B2
7575523 Yokota Aug 2009 B2
7575524 Willett et al. Aug 2009 B2
7582024 Shear Sep 2009 B2
7585233 Horacek et al. Sep 2009 B2
7602301 Stirling et al. Oct 2009 B1
7618331 Hirano Nov 2009 B2
7621820 Clausen et al. Nov 2009 B2
7627451 Vock et al. Dec 2009 B2
7632193 Thielen Dec 2009 B2
7641568 Hoffman et al. Jan 2010 B2
7641569 Best et al. Jan 2010 B2
7647071 Rofougaran et al. Jan 2010 B2
7651409 Mier Jan 2010 B1
7682264 Hsu et al. Mar 2010 B2
D613357 Utz Apr 2010 S
7691004 Lueders Apr 2010 B1
7713138 Sato et al. May 2010 B2
7717803 DiMarco May 2010 B2
7717807 Evans et al. May 2010 B2
7722478 Ebner May 2010 B2
D616952 Oldknow Jun 2010 S
7736242 Stites et al. Jun 2010 B2
D619666 DePaul Jul 2010 S
7749101 Imamoto et al. Jul 2010 B2
7753809 Cackett et al. Jul 2010 B2
7758452 Soracco Jul 2010 B2
7766760 Priester et al. Aug 2010 B2
7771263 Telford Aug 2010 B2
7771285 Porter Aug 2010 B2
7771290 Bezilla et al. Aug 2010 B2
7780535 Hagood et al. Aug 2010 B2
7789742 Murdock et al. Sep 2010 B1
7800480 Joseph et al. Sep 2010 B1
7801575 Balardeta et al. Sep 2010 B1
7803066 Solheim et al. Sep 2010 B2
7804404 Balardeta et al. Sep 2010 B1
7811182 Ligotti, III et al. Oct 2010 B2
7821407 Shears et al. Oct 2010 B2
7824277 Bennett et al. Nov 2010 B2
7825815 Shears et al. Nov 2010 B2
7831212 Balardeta et al. Nov 2010 B1
7837574 Brunner Nov 2010 B2
7837575 Lee et al. Nov 2010 B2
7837577 Evans Nov 2010 B2
7846036 Tanaka Dec 2010 B2
7853211 Balardeta et al. Dec 2010 B1
7857705 Galloway Dec 2010 B1
7857711 Shear Dec 2010 B2
7867105 Moon Jan 2011 B2
7871336 Breier et al. Jan 2011 B2
7878924 Clausen et al. Feb 2011 B2
7881499 Bissonnette et al. Feb 2011 B2
7883428 Balardeta et al. Feb 2011 B1
7887440 Wright et al. Feb 2011 B2
7892102 Galloway Feb 2011 B1
7896753 Boyd et al. Mar 2011 B2
7918745 Morris et al. Apr 2011 B2
7922596 Vanderbilt et al. Apr 2011 B2
7922603 Boyd et al. Apr 2011 B2
7927231 Sato et al. Apr 2011 B2
7931545 Soracco et al. Apr 2011 B2
7934998 Yokota May 2011 B2
7934999 Cackett et al. May 2011 B2
7935003 Matsunaga et al. May 2011 B2
7938739 Cole et al. May 2011 B2
7941097 Balardeta et al. May 2011 B1
7946926 Balardeta et al. May 2011 B1
7957767 Rofougaran Jun 2011 B2
7959519 Zielke et al. Jun 2011 B2
7959523 Rae et al. Jun 2011 B2
7967699 Soracco Jun 2011 B2
7978081 Shears et al. Jul 2011 B2
7988565 Abe Aug 2011 B2
7993211 Bardha Aug 2011 B2
7993213 D'Eath Aug 2011 B1
7997999 Roach et al. Aug 2011 B2
8007371 Breier et al. Aug 2011 B2
8012041 Gibbs et al. Sep 2011 B2
8016694 Llewellyn et al. Sep 2011 B2
8025586 Teramoto Sep 2011 B2
8043166 Cackett et al. Oct 2011 B2
8052539 Kimber Nov 2011 B2
8070622 Schmidt Dec 2011 B2
8074495 Kostuj Dec 2011 B2
8092316 Breier et al. Jan 2012 B2
8100779 Solheim et al. Jan 2012 B2
8105175 Breier et al. Jan 2012 B2
8117903 Golden et al. Feb 2012 B2
D659781 Oldknow May 2012 S
8172697 Cackett et al. May 2012 B2
8177661 Beach et al. May 2012 B2
8177664 Horii et al. May 2012 B2
8182364 Cole et al. May 2012 B2
8187116 Boyd et al. May 2012 B2
8206241 Boyd et al. Jun 2012 B2
8210961 Finn et al. Jul 2012 B2
8226495 Savarese et al. Jul 2012 B2
D665472 McDonnell Aug 2012 S
8235841 Stites et al. Aug 2012 B2
8235844 Albertsen et al. Aug 2012 B2
8241143 Albertsen et al. Aug 2012 B2
8241144 Albertsen et al. Aug 2012 B2
8251834 Curtis et al. Aug 2012 B2
8251836 Brandt Aug 2012 B2
8257195 Erickson Sep 2012 B1
8257196 Abbott et al. Sep 2012 B1
8272974 Mickelson et al. Sep 2012 B2
8277337 Shimazaki Oct 2012 B2
8282506 Holt Oct 2012 B1
8303434 DePaul Nov 2012 B1
8308583 Morris et al. Nov 2012 B2
8328659 Shear Dec 2012 B2
8330284 Weston et al. Dec 2012 B2
8333668 De La Cruz et al. Dec 2012 B2
8337319 Sargent Dec 2012 B2
8337325 Boyd et al. Dec 2012 B2
8337335 Dugan Dec 2012 B2
8342978 Tamura Jan 2013 B2
8353782 Beach et al. Jan 2013 B1
8353786 Beach et al. Jan 2013 B2
D675691 Oldknow et al. Feb 2013 S
D675692 Oldknow et al. Feb 2013 S
D676512 Oldknow et al. Feb 2013 S
D676909 Oldknow et al. Feb 2013 S
D676913 Oldknow et al. Feb 2013 S
D676914 Oldknow et al. Feb 2013 S
D676915 Oldknow et al. Feb 2013 S
8382604 Billings Feb 2013 B2
D677353 Oldknow et al. Mar 2013 S
D678913 Chu Mar 2013 S
D678964 Oldknow et al. Mar 2013 S
D678965 Oldknow et al. Mar 2013 S
D678968 Oldknow et al. Mar 2013 S
D678969 Oldknow et al. Mar 2013 S
D678970 Oldknow et al. Mar 2013 S
D678971 Oldknow et al. Mar 2013 S
D678972 Oldknow et al. Mar 2013 S
D678973 Oldknow et al. Mar 2013 S
8403771 Rice et al. Mar 2013 B1
D679354 Oldknow et al. Apr 2013 S
8430763 Beach et al. Apr 2013 B2
8430764 Bennett et al. Apr 2013 B2
8430770 Dugan Apr 2013 B2
8435134 Tang et al. May 2013 B2
8435135 Stites et al. May 2013 B2
D684230 Roberts Jun 2013 S
8491416 Demille et al. Jul 2013 B1
8517851 Cackett et al. Aug 2013 B2
8517855 Beach et al. Aug 2013 B2
8517860 Albertsen et al. Aug 2013 B2
8529368 Rice et al. Sep 2013 B2
8535171 McGinnis, Jr. Sep 2013 B2
8562453 Sato Oct 2013 B2
8579728 Morales et al. Nov 2013 B2
8591351 Albertsen et al. Nov 2013 B2
8591352 Hirano Nov 2013 B2
8591353 Honea et al. Nov 2013 B1
8593286 Razoumov et al. Nov 2013 B2
8608587 Henrikson et al. Dec 2013 B2
D697152 Harbert Jan 2014 S
8628433 Stites et al. Jan 2014 B2
8632419 Tang et al. Jan 2014 B2
8641555 Stites et al. Feb 2014 B2
8663027 Morales et al. Mar 2014 B2
8690704 Thomas Apr 2014 B2
8696450 Rose et al. Apr 2014 B2
8696491 Myers Apr 2014 B1
8702531 Boyd et al. Apr 2014 B2
8715096 Cherbini May 2014 B2
8734265 Soracco May 2014 B2
D707768 Oldknow et al. Jun 2014 S
D707769 Oldknow et al. Jun 2014 S
D707773 Oldknow et al. Jun 2014 S
8758153 Sargent Jun 2014 B2
D708281 Oldknow et al. Jul 2014 S
D709575 Oldknow et al. Jul 2014 S
8784228 Morin et al. Jul 2014 B2
8801532 Katayama Aug 2014 B2
8821312 Burnett et al. Sep 2014 B2
8827831 Burnett et al. Sep 2014 B2
8827836 Thomas Sep 2014 B2
8834289 de la Cruz et al. Sep 2014 B2
8834290 Bezilla et al. Sep 2014 B2
8840483 Steusloff et al. Sep 2014 B1
8845454 Boyd et al. Sep 2014 B2
D714893 Atwell Oct 2014 S
8858360 Rice et al. Oct 2014 B2
8870679 Oldknow Oct 2014 B2
8888607 Harbert Nov 2014 B2
8941723 Bentley et al. Jan 2015 B2
D722122 Greensmith Feb 2015 S
D725729 Song Mar 2015 S
8986133 Bennett et al. Mar 2015 B2
8994826 Bentley Mar 2015 B2
D726847 Song Apr 2015 S
9072948 Franklin et al. Jul 2015 B2
9089747 Boyd et al. Jul 2015 B2
9101805 Stites et al. Aug 2015 B2
9101808 Stites et al. Aug 2015 B2
20010005695 Lee et al. Jun 2001 A1
20010035880 Musatov et al. Nov 2001 A1
20010041628 Thorne et al. Nov 2001 A1
20010053720 Lee et al. Dec 2001 A1
20020004723 Meifu et al. Jan 2002 A1
20020019265 Allen Feb 2002 A1
20020019677 Lee Feb 2002 A1
20020049507 Hameen-Anttila Apr 2002 A1
20020052246 Burke May 2002 A1
20020052750 Hirooka May 2002 A1
20020055396 Nishimoto et al. May 2002 A1
20020072815 McDonough et al. Jun 2002 A1
20020077189 Tuer et al. Jun 2002 A1
20020082775 Meadows et al. Jun 2002 A1
20020107085 Lee et al. Aug 2002 A1
20020123386 Perlmutter Sep 2002 A1
20020137576 Dammen Sep 2002 A1
20020151994 Sisco Oct 2002 A1
20020160848 Burke Oct 2002 A1
20020173364 Boscha Nov 2002 A1
20020173365 Boscha Nov 2002 A1
20020183134 Allen et al. Dec 2002 A1
20020183657 Socci et al. Dec 2002 A1
20020189356 Bissonnette et al. Dec 2002 A1
20030008722 Konow Jan 2003 A1
20030009913 Potter et al. Jan 2003 A1
20030013545 Vincent et al. Jan 2003 A1
20030014134 Morgan Jan 2003 A1
20030036436 Casanova et al. Feb 2003 A1
20030040380 Wright et al. Feb 2003 A1
20030045371 Wood et al. Mar 2003 A1
20030054900 Tindale Mar 2003 A1
20030130059 Billings Jul 2003 A1
20030132844 Walker Jul 2003 A1
20030190975 Fagot Oct 2003 A1
20030191547 Morse Oct 2003 A1
20030207718 Perlmutter Nov 2003 A1
20030220154 Anelli Nov 2003 A1
20040009829 Kapilow Jan 2004 A1
20040018890 Stites et al. Jan 2004 A1
20040023729 Nagai et al. Feb 2004 A1
20040067797 Knecht Apr 2004 A1
20040106460 Lee et al. Jun 2004 A1
20040121852 Tsurumaki Jun 2004 A1
20040132541 MacIlraith Jul 2004 A1
20040142603 Walker Jul 2004 A1
20040176183 Tsurumaki Sep 2004 A1
20040177531 DiBenedetto et al. Sep 2004 A1
20040180730 Franklin et al. Sep 2004 A1
20040192463 Tsurumaki et al. Sep 2004 A1
20040204257 Boscha et al. Oct 2004 A1
20040219991 Suprock et al. Nov 2004 A1
20040225199 Evanyk et al. Nov 2004 A1
20040229707 Lin Nov 2004 A1
20040259651 Storek Dec 2004 A1
20050009630 Chao et al. Jan 2005 A1
20050017454 Endo et al. Jan 2005 A1
20050032582 Mahajan et al. Feb 2005 A1
20050032586 Willett et al. Feb 2005 A1
20050037862 Hagood et al. Feb 2005 A1
20050043109 Buckley et al. Feb 2005 A1
20050049075 Chen et al. Mar 2005 A1
20050049081 Boone Mar 2005 A1
20050054457 Eyestone et al. Mar 2005 A1
20050070371 Chen et al. Mar 2005 A1
20050079922 Priester et al. Apr 2005 A1
20050096151 Hou et al. May 2005 A1
20050096761 Hanover et al. May 2005 A1
20050101407 Hirano May 2005 A1
20050119068 Onoda et al. Jun 2005 A1
20050119070 Kumamoto Jun 2005 A1
20050124435 Gambetta et al. Jun 2005 A1
20050137024 Stites et al. Jun 2005 A1
20050188566 Whittlesey et al. Sep 2005 A1
20050192118 Rice et al. Sep 2005 A1
20050215340 Stites et al. Sep 2005 A1
20050215350 Reyes et al. Sep 2005 A1
20050227775 Cassady et al. Oct 2005 A1
20050227780 Cover et al. Oct 2005 A1
20050227781 Huang et al. Oct 2005 A1
20050240294 Jones et al. Oct 2005 A1
20050261073 Farrington et al. Nov 2005 A1
20050266933 Galloway Dec 2005 A1
20050282650 Miettinen et al. Dec 2005 A1
20050288119 Wang et al. Dec 2005 A1
20060000528 Galloway Jan 2006 A1
20060019770 Meyer et al. Jan 2006 A1
20060025229 Mahajan et al. Feb 2006 A1
20060029916 Boscha Feb 2006 A1
20060035718 Soracco et al. Feb 2006 A1
20060040757 Rosselli Feb 2006 A1
20060040765 Sano Feb 2006 A1
20060046868 Murphy Mar 2006 A1
20060052173 Telford Mar 2006 A1
20060063600 Grober Mar 2006 A1
20060068932 Rice et al. Mar 2006 A1
20060073908 Tavares et al. Apr 2006 A1
20060073910 Imamoto et al. Apr 2006 A1
20060079349 Rae et al. Apr 2006 A1
20060084516 Eyestone et al. Apr 2006 A1
20060084525 Imamoto et al. Apr 2006 A1
20060089845 Marcell et al. Apr 2006 A1
20060090549 Kostuj May 2006 A1
20060094520 Kostuj May 2006 A1
20060094524 Kostuj May 2006 A1
20060094531 Bissonnette et al. May 2006 A1
20060105849 Brunner May 2006 A1
20060105853 Glass May 2006 A1
20060105857 Stark May 2006 A1
20060109116 Keays May 2006 A1
20060111201 Nishio et al. May 2006 A1
20060122002 Konow Jun 2006 A1
20060122004 Chen et al. Jun 2006 A1
20060166737 Bentley Jul 2006 A1
20060166738 Eyestone et al. Jul 2006 A1
20060183564 Park Aug 2006 A1
20060184336 Kolen Aug 2006 A1
20060189407 Soracco Aug 2006 A1
20060194178 Goldstein Aug 2006 A1
20060194644 Nishio Aug 2006 A1
20060199659 Caldwell Sep 2006 A1
20060224306 Workman et al. Oct 2006 A1
20060240908 Adams et al. Oct 2006 A1
20060276256 Storek Dec 2006 A1
20060281582 Sugimoto Dec 2006 A1
20060287118 Wright et al. Dec 2006 A1
20070006489 Case et al. Jan 2007 A1
20070010341 Miettinen et al. Jan 2007 A1
20070011919 Case Jan 2007 A1
20070015601 Tsunoda et al. Jan 2007 A1
20070021234 Tsurumaki et al. Jan 2007 A1
20070026961 Hou Feb 2007 A1
20070049400 Imamoto et al. Mar 2007 A1
20070049407 Tateno et al. Mar 2007 A1
20070049415 Shear Mar 2007 A1
20070049417 Shear Mar 2007 A1
20070082751 Lo et al. Apr 2007 A1
20070087866 Meadows et al. Apr 2007 A1
20070111811 Grober May 2007 A1
20070117648 Yokota May 2007 A1
20070129178 Reeves Jun 2007 A1
20070135225 Nieminen et al. Jun 2007 A1
20070135237 Reeves Jun 2007 A1
20070149309 Ford Jun 2007 A1
20070155538 Rice et al. Jul 2007 A1
20070191126 Mandracken Aug 2007 A1
20070225085 Koide et al. Sep 2007 A1
20070238538 Priester Oct 2007 A1
20070238551 Yokota Oct 2007 A1
20070270214 Bentley Nov 2007 A1
20080009360 Purtill Jan 2008 A1
20080015047 Rice et al. Jan 2008 A1
20080032817 Lo Feb 2008 A1
20080039222 Kiraly Feb 2008 A1
20080039228 Breier et al. Feb 2008 A1
20080051208 Lee et al. Feb 2008 A1
20080064523 Chen Mar 2008 A1
20080076580 Murdock et al. Mar 2008 A1
20080085778 Dugan Apr 2008 A1
20080085788 Rainer et al. Apr 2008 A1
20080119303 Bennett et al. May 2008 A1
20080125239 Clausen et al. May 2008 A1
20080125244 Meyer et al. May 2008 A1
20080125246 Matsunaga May 2008 A1
20080125288 Case May 2008 A1
20080139339 Cheng Jun 2008 A1
20080146370 Beach et al. Jun 2008 A1
20080171610 Shin Jul 2008 A1
20080182682 Rice et al. Jul 2008 A1
20080188310 Murdock Aug 2008 A1
20080200275 Wagen et al. Aug 2008 A1
20080218343 Lee et al. Sep 2008 A1
20080242354 Rofougaran Oct 2008 A1
20080248896 Hirano Oct 2008 A1
20080287205 Katayama Nov 2008 A1
20080318703 Mooney Dec 2008 A1
20090018795 Priester et al. Jan 2009 A1
20090048070 Vincent et al. Feb 2009 A1
20090062032 Boyd et al. Mar 2009 A1
20090075751 Gilbert et al. Mar 2009 A1
20090098949 Chen Apr 2009 A1
20090111602 Savarese et al. Apr 2009 A1
20090118035 Roenick May 2009 A1
20090120197 Golden et al. May 2009 A1
20090124410 Rife May 2009 A1
20090131190 Kimber May 2009 A1
20090131191 Priester et al. May 2009 A1
20090163285 Kwon et al. Jun 2009 A1
20090163294 Cackett et al. Jun 2009 A1
20090165530 Golden et al. Jul 2009 A1
20090165531 Golden et al. Jul 2009 A1
20090186717 Stites et al. Jul 2009 A1
20090203460 Clark Aug 2009 A1
20090203462 Stites et al. Aug 2009 A1
20090209358 Niegowski Aug 2009 A1
20090221380 Breier et al. Sep 2009 A1
20090221381 Breier et al. Sep 2009 A1
20090247312 Sato et al. Oct 2009 A1
20090254204 Kostuj Oct 2009 A1
20090260426 Lieberman et al. Oct 2009 A1
20090264214 De La Cruz et al. Oct 2009 A1
20090270743 Dugan et al. Oct 2009 A1
20090286611 Beach et al. Nov 2009 A1
20090318245 Yim et al. Dec 2009 A1
20100016095 Burnett et al. Jan 2010 A1
20100029402 Noble et al. Feb 2010 A1
20100029408 Abe Feb 2010 A1
20100035701 Kusumoto Feb 2010 A1
20100048314 Hsu et al. Feb 2010 A1
20100049468 Papadourakis Feb 2010 A1
20100056298 Jertson et al. Mar 2010 A1
20100063778 Schrock et al. Mar 2010 A1
20100063779 Schrock et al. Mar 2010 A1
20100067566 Rofougaran et al. Mar 2010 A1
20100069171 Clausen et al. Mar 2010 A1
20100093457 Ahern et al. Apr 2010 A1
20100093458 Davenport et al. Apr 2010 A1
20100093463 Davenport et al. Apr 2010 A1
20100099509 Ahem et al. Apr 2010 A1
20100113174 Ahern May 2010 A1
20100113176 Boyd May 2010 A1
20100113183 Soracco May 2010 A1
20100113184 Kuan et al. May 2010 A1
20100117837 Stirling et al. May 2010 A1
20100121227 Stirling et al. May 2010 A1
20100121228 Stirling et al. May 2010 A1
20100130298 Dugan et al. May 2010 A1
20100144455 Ahern Jun 2010 A1
20100144456 Ahern Jun 2010 A1
20100154255 Robinson et al. Jun 2010 A1
20100190573 Boyd Jul 2010 A1
20100197423 Thomas et al. Aug 2010 A1
20100197426 De La Cruz et al. Aug 2010 A1
20100201512 Stirling et al. Aug 2010 A1
20100210371 Sato et al. Aug 2010 A1
20100216563 Stites et al. Aug 2010 A1
20100216564 Stites et al. Aug 2010 A1
20100216565 Stites et al. Aug 2010 A1
20100222152 Jaekel et al. Sep 2010 A1
20100234127 Snyder et al. Sep 2010 A1
20100255922 Lueders Oct 2010 A1
20100261546 Nicodem Oct 2010 A1
20100273569 Soracco Oct 2010 A1
20100292024 Hagood et al. Nov 2010 A1
20100304877 Iwahashi et al. Dec 2010 A1
20100304887 Bennett et al. Dec 2010 A1
20100308105 Savarese et al. Dec 2010 A1
20110021284 Stites et al. Jan 2011 A1
20110028230 Balardeta et al. Feb 2011 A1
20110053698 Stites et al. Mar 2011 A1
20110081978 Murdock et al. Apr 2011 A1
20110082571 Murdock et al. Apr 2011 A1
20110087344 Murdock et al. Apr 2011 A1
20110092260 Murdock et al. Apr 2011 A1
20110092310 Breier et al. Apr 2011 A1
20110098127 Yamamoto Apr 2011 A1
20110098128 Clausen et al. Apr 2011 A1
20110118051 Thomas May 2011 A1
20110130223 Murdock et al. Jun 2011 A1
20110151977 Murdock et al. Jun 2011 A1
20110151997 Shear Jun 2011 A1
20110152001 Hirano Jun 2011 A1
20110195798 Sander et al. Aug 2011 A1
20110207552 Finn et al. Aug 2011 A1
20110212757 Murdock et al. Sep 2011 A1
20110217757 Chaplin et al. Sep 2011 A1
20110218053 Tang Sep 2011 A1
20110224011 Denton et al. Sep 2011 A1
20110224025 Balardeta et al. Sep 2011 A1
20110230273 Niegowski et al. Sep 2011 A1
20110256951 Soracco et al. Oct 2011 A1
20110256954 Soracco Oct 2011 A1
20110281621 Murdock et al. Nov 2011 A1
20110294599 Albertsen et al. Dec 2011 A1
20110306435 Seo Dec 2011 A1
20110312437 Sargent Dec 2011 A1
20120019140 Maxik et al. Jan 2012 A1
20120052972 Bentley Mar 2012 A1
20120077615 Schmidt Mar 2012 A1
20120083362 Albertsen et al. Apr 2012 A1
20120083363 Albertsen et al. Apr 2012 A1
20120120572 Bentley May 2012 A1
20120122601 Beach et al. May 2012 A1
20120142447 Boyd et al. Jun 2012 A1
20120142452 Burnett et al. Jun 2012 A1
20120165110 Cheng Jun 2012 A1
20120165111 Cheng Jun 2012 A1
20120184393 Franklin Jul 2012 A1
20120191405 Molyneux et al. Jul 2012 A1
20120196701 Stites et al. Aug 2012 A1
20120202615 Beach et al. Aug 2012 A1
20120225731 Suwa Sep 2012 A1
20120244960 Tang et al. Sep 2012 A1
20120270676 Burnett et al. Oct 2012 A1
20120277029 Albertsen et al. Nov 2012 A1
20120277030 Albertsen et al. Nov 2012 A1
20120289354 Cottam et al. Nov 2012 A1
20120302366 Murphy Nov 2012 A1
20130017901 Sargent Jan 2013 A1
20130041590 Burich et al. Feb 2013 A1
20130065705 Morales et al. Mar 2013 A1
20130065711 Ueda et al. Mar 2013 A1
20130102410 Stites et al. Apr 2013 A1
20130130834 Stites et al. May 2013 A1
20130165254 Rice et al. Jun 2013 A1
20130210542 Harbert et al. Aug 2013 A1
20130260922 Yontz et al. Oct 2013 A1
20130324274 Stites Dec 2013 A1
20130324284 Stites et al. Dec 2013 A1
20140018184 Bezilla et al. Jan 2014 A1
20140080627 Bennett et al. Mar 2014 A1
20140080629 Sargent et al. Mar 2014 A1
20140228649 Rayner et al. Aug 2014 A1
20140256461 Beach Sep 2014 A1
20140364246 Davenport Dec 2014 A1
20150217167 Frame et al. Aug 2015 A1
20150231453 Harbert Aug 2015 A1
Foreign Referenced Citations (160)
Number Date Country
2139690 Jul 1996 CA
2258782 Aug 1997 CN
1198955 Nov 1998 CN
2411030 Dec 2000 CN
2429210 May 2001 CN
2431912 May 2001 CN
2487416 Apr 2002 CN
2688331 Mar 2005 CN
1602981 Apr 2005 CN
1984698 Jun 2007 CN
101352609 Jan 2009 CN
101918090 Dec 2010 CN
101927084 Dec 2010 CN
102218209 Oct 2011 CN
104168965 Nov 2014 CN
202007013632 Dec 2007 DE
2332619 Jun 2011 EP
2377586 Oct 2011 EP
2672226 Aug 1992 FR
2717701 Sep 1995 FR
2717702 Sep 1995 FR
2280380 Feb 1995 GB
2388792 Nov 2003 GB
2422554 Aug 2006 GB
S5163452 May 1976 JP
01259876 Oct 1989 JP
H05317465 Dec 1993 JP
H06237 Jan 1994 JP
H06114127 Apr 1994 JP
H0639036 May 1994 JP
06190088 Jul 1994 JP
H07255886 Oct 1995 JP
H07275407 Oct 1995 JP
H07284546 Oct 1995 JP
H08000785 Jan 1996 JP
H08131599 May 1996 JP
H08141117 Jun 1996 JP
08-173586 Jul 1996 JP
H08243195 Sep 1996 JP
H0947528 Feb 1997 JP
3035480 Mar 1997 JP
H09135932 May 1997 JP
H9-239075 Sep 1997 JP
H09239074 Sep 1997 JP
H09276455 Oct 1997 JP
H9-299521 Nov 1997 JP
H10277180 Oct 1998 JP
H10305119 Nov 1998 JP
H1157082 Mar 1999 JP
11114102 Apr 1999 JP
H11169493 Jun 1999 JP
H11244431 Sep 1999 JP
2980002 Nov 1999 JP
11299938 Nov 1999 JP
2000-126340 May 2000 JP
2000176056 Jun 2000 JP
2000197718 Jul 2000 JP
2000271253 Oct 2000 JP
2001009069 Jan 2001 JP
2001054596 Feb 2001 JP
2001058015 Mar 2001 JP
2001062004 Mar 2001 JP
2001137396 May 2001 JP
2001145712 May 2001 JP
2001264016 Sep 2001 JP
2001-293113 Oct 2001 JP
3216041 Oct 2001 JP
2002017908 Jan 2002 JP
2002017912 Jan 2002 JP
2002052099 Feb 2002 JP
2002052099 Feb 2002 JP
2002165905 Jun 2002 JP
2002177416 Jun 2002 JP
2002239040 Aug 2002 JP
2002248183 Sep 2002 JP
2002306646 Oct 2002 JP
2002306647 Oct 2002 JP
2002320692 Nov 2002 JP
2003000774 Jan 2003 JP
2003079769 Mar 2003 JP
2003093554 Apr 2003 JP
2003180887 Jul 2003 JP
2003210627 Jul 2003 JP
2004174224 Jun 2004 JP
2004216131 Aug 2004 JP
2004313762 Nov 2004 JP
2004329544 Nov 2004 JP
2004351054 Dec 2004 JP
2004351173 Dec 2004 JP
2004351173 Dec 2004 JP
2005013529 Jan 2005 JP
2005131280 May 2005 JP
2005193069 Jul 2005 JP
2005253973 Sep 2005 JP
2005305178 Nov 2005 JP
2006000435 Jan 2006 JP
2006020817 Jan 2006 JP
2006175135 Jul 2006 JP
2006198251 Aug 2006 JP
2006223701 Aug 2006 JP
2006247023 Sep 2006 JP
20060231063 Sep 2006 JP
2007209722 Aug 2007 JP
2007530151 Nov 2007 JP
2008036050 Feb 2008 JP
2008036315 Feb 2008 JP
2008506421 Mar 2008 JP
2008073210 Apr 2008 JP
2008515560 May 2008 JP
2008200118 Sep 2008 JP
2008237689 Oct 2008 JP
2008289866 Dec 2008 JP
2009201744 Sep 2009 JP
2009534546 Sep 2009 JP
2010148652 Jul 2010 JP
2010148653 Jul 2010 JP
2010154875 Jul 2010 JP
2010154887 Jul 2010 JP
2010279847 Dec 2010 JP
2011024999 Feb 2011 JP
2011206535 Oct 2011 JP
20060090501 Aug 2006 KR
1020060114969 Nov 2006 KR
1020070095407 Sep 2007 KR
20090129246 Dec 2009 KR
1020100020131 Feb 2010 KR
20100051153 May 2010 KR
10-2010-0095917 Sep 2010 KR
101002846 Dec 2010 KR
20110005247 Jan 2011 KR
498774 Aug 2002 TW
I292575 Jan 2008 TW
I309777 May 2009 TW
9920358 Apr 1999 WO
9965574 Dec 1999 WO
0149376 Jul 2001 WO
0215993 Feb 2002 WO
2004056425 Jul 2004 WO
20040071594 Aug 2004 WO
200505842 Jan 2005 WO
2005035073 Apr 2005 WO
2005058427 Jun 2005 WO
2005079933 Sep 2005 WO
2005094953 Oct 2005 WO
2005118086 Dec 2005 WO
2006014459 Feb 2006 WO
2006073930 Jul 2006 WO
2007123970 Nov 2007 WO
2008093710 Aug 2008 WO
2008157691 Dec 2008 WO
20080154684 Dec 2008 WO
2009035345 Mar 2009 WO
2009091636 Jul 2009 WO
2009152456 Dec 2009 WO
2010090814 Aug 2010 WO
2011153067 Dec 2011 WO
2012027726 Mar 2012 WO
2012138543 Oct 2012 WO
2012149385 Nov 2012 WO
2014070343 May 2014 WO
Non-Patent Literature Citations (39)
Entry
Aug. 14, 2013—(WO) International Search Report and Written Opinion—App. PCT/US2013/025615.
United States Golf Association; Procedure for Measuring the Flexibility of a Golf Clubhead, USGA-TPX3004; Revision 1.0.0; May 1, 2008; p. 1-11.
Jan. 7, 2010—(WO) International Preliminary Report on Patentability App. PCT/US2008/067499.
May 19, 2009—(WO) International Search Report and Written Opinion App. No. PCT/US2008/067499.
Feb. 27, 2013—(WO) International Search Report and Written Opinion—App. PCT/US2012/067050.
Sep. 10, 2012—(WO) International Search Report App No. PCT/US2012/03542.
Jul. 31, 2013—(WO) International Search Report and Written Opinion—App. No. PCT/US2013/043700.
Aug. 2, 2013—(WO) International Search Report and Written Opinion—App. PCT/US2013/043656.
Sep. 4, 2014—(WO) International Search Report and Written Opinion—App. PCT/US2014/029044.
Nov. 30, 2012—(WO) International Search Report and Written Opinion App. PCT/US2012/052107.
May 6, 2011—(WO) International Search Report and Written Opinion—App. PCT/US2011/023968.
Mar. 24, 2014—(WO) International Search Report and Written Opinion—App. PCT/US2013/061812.
Aug. 21, 2015—(WO) International Search Report—App PCT/US2015/036578.
Oct. 28, 2015—(WO) International Searh Report and Written Opinion—App PCT/US2015/033371.
Sep. 28, 2015—(WO) International Search Report and Written Opinion—App PCT/US2015/032819.
hittp://www.sureshotgps.com/sureshotgps.php, Feb. 7, 2007.
Oct. 8, 2013—(WO) IPER PCT/US2012/031101.
Oct. 8, 2013—(WO) IPER PCT/US2012/031131.
Oct. 8, 2013—(WO) IPER PCT/US2012/031233.
Jan. 30, 2013—(WO) ISR PCT/US2012/031233.
Sep. 5, 2012—(WO) ISR PCT/US2012/031131.
Jan. 2, 2013—(WO) ISR PCT/US2012/031101.
Aug. 2, 2012—(WO) Partial International Search Report PCT/US2012/031233.
Aug. 2, 2012—(WO) Partial International Search Report PCT/US2012/031844.
Aug. 16, 2013—(WO) International Search Report and Written Opinion PCT/US2013/021466.
Jan. 30, 2013—(WO) International Search Report and Written Opinion PCT/US2012/031844.
Mar. 3, 2016—(WO) International Search Report and Written Opinion—App PCT/US2015/064755.
Dec. 18, 2012—(WO) International Search Report and Written Opinion App. No. PCT/US2012/057490.
Aug. 24, 2012—(WO) International Search Report and Written Opinion—App. PCT/US12/35476.
Aug. 8, 2013—(WO) International Preliminary Report on Patentability App. No. PCT/US2012/022027.
May 30, 2012—(WO) International Search Report and Written Opinion App. No. PCT/US2012/022027.
Nov. 26, 2010—(WO) International Search Report and Written Opinion App. No. PCT/US2010/043070.
“Photographs 1, 2 and 3”, presented in U.S. Appl. No. 12/842,650, of unknown source, taken after the filing date of the U.S. Appl. No. 12/842,650, depicting a golf club product; presented to the Patent Office for consideration on Oct. 7, 2011.
Nov. 5, 2010—(WO) International Search Report & Written Opinion, App. No. PCT/US2009/064164.
Mar. 20, 2014—(WO) International Search Report and Written Opinion App. No. PCT/US2013/043641.
Nov. 6, 2013—(WO) Partial Search Report, App.No. PCT/US2013/043641.
Apr. 12, 2010—(WO) Partial Search Report App. No. PCT/US2010/021355.
Sep. 9, 2011—(WO) International Search Report and Written Opinion, App. No. PCT/US2011/023678.
Jul. 7, 2010—(WO) International Search Report and Written Opinion, App. PCT/US2010/021355.
Related Publications (1)
Number Date Country
20150273293 A1 Oct 2015 US
Provisional Applications (3)
Number Date Country
61653937 May 2012 US
61418240 Nov 2010 US
61541767 Sep 2011 US
Continuations (1)
Number Date Country
Parent 13795881 Mar 2013 US
Child 14734847 US
Continuation in Parts (1)
Number Date Country
Parent 13308036 Nov 2011 US
Child 13795881 US