The invention relates generally to ball striking devices, such as golf clubs and heads. Certain aspects of this invention relate to golf clubs and golf club heads having a face that exhibits thermoreactive behavior to change the modulus of at least a portion of the face.
Golf is enjoyed by a wide variety of players—players of different genders, and players of dramatically different ages and skill levels. Golf is somewhat unique in the sporting world in that such diverse collections of players can play together in golf outings or events, even in direct competition with one another (e.g., using handicapped scoring, different tee boxes, etc.), and still enjoy the golf outing or competition. These factors, together with increased golf programming on television (e.g., golf tournaments, golf news, golf history, and/or other golf programming) and the rise of well known golf superstars, at least in part, have increased golf's popularity in recent years, both in the United States and across the world.
Golfers at all skill levels seek to improve their performance, lower their golf scores, and reach that next performance “level.” Manufacturers of all types of golf equipment have responded to these demands, and recent years have seen dramatic changes and improvements in golf equipment. For example, a wide range of different golf ball models now are available, with some balls designed to fly farther and straighter, provide higher or flatter trajectory, provide more spin, control, and feel (particularly around the greens), etc.
Being the sole instrument that sets a golf ball in motion during play, the golf club also has been the subject of much technological research and advancement in recent years. For example, the market has seen improvements in golf club heads, shafts, and grips in recent years. Additionally, other technological advancements have been made in an effort to better match the various elements of the golf club and characteristics of a golf ball to a particular user's swing features or characteristics (e.g., club fitting technology, ball launch angle measurement technology, etc.).
Despite the various technological improvements, golf remains a difficult game to play at a high level. For a golf ball to reliably fly straight and in the desired direction, a golf club should meet the golf ball square (or substantially square) to the desired target path. Moreover, the golf club should meet the golf ball at or close to a desired location on the club head face (i.e., on or near a “desired” or “optimal” ball contact location) to reliably fly straight, in the desired direction, and for a desired distance. Off-center hits that deviate from squared contact and/or are located away from the club's desired ball contact location may tend to “twist” the club face when it contacts the ball, thereby sending the ball in the wrong direction, often imparting undesired hook or slice spin, and/or robbing the shot of distance. Thus, when the club face is not square at the point of engagement, the golf ball may fly in an unintended direction and/or may follow a route that curves left or right, ball flights that are often referred to as “pulls,” “pushes,” “draws,” “fades,” “hooks,” or “slices,” or may exhibit more boring or climbing trajectories.
The energy and velocity transferred to the ball by a golf club may be related, at least in part, to the flexibility of the club face at the point of contact, and can be expressed using a measurement called “coefficient of restitution” (or “COR”). The maximum COR for golf club heads is currently limited by the USGA at 0.83. Generally, a club head will have an area of highest response relative to other areas of the face, such as having the highest COR, which imparts the greatest energy and velocity to the ball, and this area is typically positioned at the center of the face. In one example, the area of highest response may have a COR that is equal to the prevailing USGA limit (e.g. 0.83), which may change over time. However, because golf clubs are typically designed to contact the ball at or around the center of the face, off-center hits may result in less energy being transferred to the ball, decreasing the distance of the shot. The COR at a specific location on the club head can be related to the modulus of elasticity at the impact location, as well as the modulus of other areas of the face spaced away from the impact location. Similarly, the contact time between the ball and the face during impact can affect energy transfer. Generally, a more flexible (lower modulus) face will produce higher contact times, resulting in greater energy transfer. The contact time is currently limited by the USGA at 257 μs, according to the USGA Characteristic Time (CT) test. Club head features that can increase the energy transferred to a ball during impact can be advantageous.
It is common for professional golfers and other experienced golfers to have higher swing speeds (i.e., the speed of the club head at or around impact with the ball) than less experienced golfers. Many club heads are designed to deliver optimal performance at higher swing speeds, and may offer less optimal performance at lower swing speeds. Accordingly, club head features that can improve performance at lower swing speeds can prove to be advantageous for use by less experienced golfers.
The present device and method are provided to address the problems discussed above and other problems, and to provide advantages and aspects not provided by prior ball striking devices of this type. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
The following presents a general summary of aspects of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a general form as a prelude to the more detailed description provided below.
Aspects of the invention relate to ball striking devices, such as golf clubs, with a head that includes a face having a ball striking surface configured for striking a ball and a body connected to the face and extending rearward from the face. The face has an area of highest response located proximate a center of the ball striking surface. The face is formed of a first material and includes an insert forming at least a portion of the area of highest response, with the insert being formed of a second material. The second material has a thermal modulus response that is different from a thermal modulus response of the first material.
According to one aspect, the insert may be located behind the ball striking surface, such that an entirety of the ball striking surface is formed of the first material, for example, the insert may be located within a recess on the inner surface, such that an entirety of the ball striking surface is formed of the first material. In another embodiment, the insert may form at least a portion of the ball striking surface.
According to another aspect, the second material has a modulus at ambient conditions that is within 5% of a modulus of the first material at ambient conditions. The heat generated by an impact of a golf ball on the ball striking surface of at least 90 ft/s is sufficient to reduce the modulus of the second material to at least 20% lower than the modulus of the first material, due to the different thermal responses of the first and second materials.
Additional aspects of the invention relate to a golf club head that includes a face having a ball striking surface and an inner surface opposite the ball striking surface, and body connected to the face and extending rearward from the face, with the body and the face defining an internal cavity behind the face. The face has an area of highest response located proximate a center of the ball striking surface, and at least a portion of the area of highest response is formed of a material with a thermally-variable modulus. As such, the material has a first modulus due to heat generated by an impact of a golf ball on the ball striking surface at about 90 to 130 ft/s and a second modulus due to heat generated by an impact of the golf ball on the ball striking surface at about 160 ft/s, the second modulus being no more than 5% different from the first modulus.
According to one aspect, the material forming the at least a portion of the area of highest response is formed by an insert connected to the face, and a majority of the face is formed of a second material having a thermal modulus response that is different from a thermal modulus response of the material of the insert.
According to another aspect, the material may be formed in a first molecular phase at ambient conditions, and the heat generated by an impact of a golf ball on the ball striking surface at about 90 ft/s or more is sufficient to cause a portion of the material local to an impact site to change to a second molecular phase, the second molecular phase having a lower modulus than the first molecular phase.
According to a further aspect, the material has a third modulus at ambient conditions, the third modulus being at least 20% greater than the first modulus.
Further aspects of the invention relate to a golf club head that includes a face having a ball striking surface and an inner surface opposite the ball striking surface, a body connected to the face and extending rearward from the face, and a thermally-active device connected to the face. The thermally-active device is configured to change a temperature of at least a portion of the face to change a modulus of the at least a portion of the face.
According to one aspect, the thermally-active device may be a heating device configured to heat the at least a portion of the face and/or a cooling device configured to cool the at least a portion of the face.
According to another aspect, the thermally-active device may be a thermoelectric device or may change temperature based on a chemical reaction.
According to a further aspect, the face has an area of highest response located proximate a center of the ball striking surface, and the thermally-active device is configured to change the temperature of at least a portion of the area of highest response.
According to yet another aspect, the thermally-active device is configured to change the temperature of a portion of the face local to the thermally-active device, relative to a portion of the face spaced from the thermally-active device. In one embodiment, the thermally-active device is configured to change the temperature of a majority of the face.
According to a still further aspect, the head may further include a power generation device in communication with the thermally-active device. The power generation device is configured to supply power to the thermally-active device.
According to an additional aspect, the head may further include an actuator in communication with the thermally-active device. The actuator is configured to activate the thermally-active device to change the temperature of the at least a portion of the face. The actuator may be located on the shaft of a golf club that includes the head.
More additional aspects of the invention relate to a golf club head including a face having a ball striking surface and an inner surface opposite the ball striking surface, and a body connected to the face and extending rearward from the face. The face has an area of highest response located proximate a center of the ball striking surface. At least a portion of the area of highest response is formed of a material that is formed in a first molecular phase at ambient conditions. The heat generated by an impact of a golf ball on the ball striking surface at about 90 ft/s or more is sufficient to cause a portion of the material local to an impact site to change to a second molecular phase having a different modulus than the first molecular phase.
According to one aspect, the material is formed in the second molecular phase as a result of the impact of the golf ball on the ball striking surface at about 90 to 130 ft/s and is also formed in the second molecular phase as a result of the impact of the golf ball on the ball striking surface at about 160 ft/s.
According to another aspect, the material may be formed by an insert connected to the face. In one embodiment, a majority of the face may be formed of a second material having a thermal modulus response that is different from a thermal modulus response of the material of the insert. The insert may be located behind the ball striking surface, such that an entirety of the ball striking surface is formed of the first material, or the insert may form at least a portion of the ball striking surface.
Still further aspects of the invention relate to a method that includes providing a golf club head as described above, and connecting an insert to the face, as described above.
Other aspects of the invention relate to golf clubs that include a golf club head as described above and a shaft connected to the head, or a set of golf clubs including at least one golf club having a head as described above.
Other features and advantages of the invention will be apparent from the following description taken in conjunction with the attached drawings.
To allow for a more full understanding of the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
In the following description of various example structures according to the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example devices, systems, and environments in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, example devices, systems, and environments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “front,” “back,” “side,” “rear,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures or the orientation during typical use. Additionally, the term “plurality,” as used herein, indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention. Also, the reader is advised that the attached drawings are not necessarily drawn to scale.
The following terms are used in this specification, and unless otherwise noted or clear from the context, these terms have the meanings provided below.
“Ball striking device” means any device constructed and designed to strike a ball or other similar objects (such as a hockey puck). In addition to generically encompassing “ball striking heads,” which are described in more detail below, examples of “ball striking devices” include, but are not limited to: golf clubs, putters, croquet mallets, polo mallets, baseball or softball bats, cricket bats, tennis rackets, badminton rackets, field hockey sticks, ice hockey sticks, and the like.
“Ball striking head” means the portion of a “ball striking device” that includes and is located immediately adjacent (optionally surrounding) the portion of the ball striking device designed to contact the ball (or other object) in use. In some examples, such as many golf clubs and putters, the ball striking head may be a separate and independent entity from any shaft or handle member, and it may be attached to the shaft or handle in some manner.
The terms “shaft” and “handle” are used synonymously and interchangeably in this specification, and they include the portion of a ball striking device (if any) that the user holds during a swing of a ball striking device.
“Integral joining technique” means a technique for joining two pieces so that the two pieces effectively become a single, integral piece, including, but not limited to, irreversible joining techniques, such as adhesively joining, cementing, and welding (including brazing, soldering, or the like), where separation of the joined pieces cannot be accomplished without structural damage thereto.
“Modulus” means the elastic modulus of a material, specifically Young's modulus, which can be determined using standardized testing procedures.
“Thermal modulus response” is a material property reflecting the degree with which the modulus of the material changes due to changes in temperature. The thermal modulus responses of several materials are graphically illustrated in a conceptual manner in
In general, aspects of this invention relate to ball striking devices, such as golf club heads, golf clubs, and the like. Such ball striking devices, according to at least some examples of the invention, may include a ball striking head and a ball striking surface. In the case of a golf club, the ball striking surface is a substantially flat surface on one face of the ball striking head. It is understood that some golf clubs or other ball striking devices may have more than one ball striking surface. Some more specific aspects of this invention relate to wood-type golf clubs and golf club heads. Alternately, some aspects of this invention may be practiced with iron-type golf clubs and golf club heads, hybrid clubs, chippers, putters, etc.
According to various aspects of this invention, the ball striking device may be formed of one or more of a variety of materials, such as metals (including metal alloys), ceramics, polymers, elastomers, composites (including fiber-reinforced composites or nano- and micro-particle reinforced composites), and wood, and may be formed in one of a variety of configurations, without departing from the scope of the invention. In one illustrative embodiment, some or all components of the head, including the face and at least a portion of the body of the head, are made of metal. It is understood that the head may contain components made of several different materials, including carbon-fiber and other components. Additionally, the components may be formed by various forming methods. For example, metal components (such as titanium, aluminum, titanium alloys, aluminum alloys, steels (including stainless steels), and the like) may be formed by forging, molding, casting, stamping, machining, and/or other known techniques. In another example, composite components, such as carbon fiber-polymer composites, can be manufactured by a variety of composite processing techniques, such as prepreg processing, powder-based techniques, mold infiltration, filament winding, compression molding, and/or other known techniques.
The various figures in this application illustrate examples of ball striking devices according to this invention. When the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings refer to the same or similar parts throughout.
At least some examples of ball striking devices according to the invention relate to golf club head structures, including heads for wood-type golf clubs, such as drivers, fairway woods, etc. Other examples of ball striking devices according to the invention may relate to iron-type golf clubs, such as long iron clubs (e.g., driving irons, zero irons through five irons), short iron clubs (e.g., six irons through pitching wedges, as well as sand wedges, lob wedges, gap wedges, and/or other wedges), as well as hybrid clubs, putters, chippers, and other types of clubs. Such devices may include a one-piece construction or a multiple-piece construction. Example structures of ball striking devices according to this invention will be described in detail below in conjunction with
In the illustrative embodiment illustrated in
The face 112 is located at the front 124 of the head 102, and has a ball striking surface 110 located thereon and an inner surface 111 opposite the ball striking surface 110. The ball striking surface 110 is typically an outer surface of the face 112 configured to face a ball 106 in use, and is adapted to strike the ball when the device 100 is set in motion, such as by swinging. The face 112 is defined by a plurality of peripheral edges, including a top edge 113, a bottom edge 115, a heel edge 117, and a toe edge 119. Additionally, in this embodiment, the face 112 has a plurality of face grooves 121 on the ball striking surface 110, which do not extend across the geometric center of the face 112. In another embodiment, such as a fairway wood head a hybrid wood-type head, the face 112 may have grooves 121 that extend across at least a portion of the hot zone of the face 112.
As shown, the ball striking surface 110 is relatively flat, occupying most of the face 112. For reference purposes, the portion of the face 112 nearest the top face edge 113 and the heel 120 of the head 102 is referred to as the “high-heel area” the portion of the face 112 nearest the top face edge 113 and toe 122 of the head 102 is referred to as the “high-toe area”; the portion of the face 112 nearest the bottom face edge 115 and heel 120 of the head 102 is referred to as the “low-heel area”; and the portion of the face 112 nearest the bottom face edge 115 and toe 122 of the head 102 is referred to as the “low-toe area”. Conceptually, these areas may be recognized and referred to as quadrants of substantially equal size (and/or quadrants extending from a geometric center of the face 112), though not necessarily with symmetrical dimensions. The face 112 may include some curvature in the top to bottom and/or heel to toe directions (e.g., bulge and roll characteristics), as is known and is conventional in the art. In other embodiments, the surface 110 may occupy a different proportion of the face 112, or the body 108 may have multiple ball striking surfaces 110 thereon. In the illustrative embodiment shown in
It is understood that the face 112, the body 108, and/or the hosel 109 can be formed as a single piece or as separate pieces that are joined together. For example, in one embodiment, face 112 may be formed as part of a face frame member with the body 108 being partially or wholly formed by one or more separate pieces connected to the face frame member, with a wall or walls extending rearward from the edges of the face 112. This configuration (not shown) is also known as a “cup face” structure. Additionally, at least a portion of the body 108 may be formed as a separate piece or pieces joined to the wall(s) of the face frame member, such as by a backbody member attached to the cup face structure, composed of a single piece or multiple pieces. These pieces may be connected by an integral joining technique, such as welding, cementing, or adhesively joining Other known techniques for joining these parts can be used as well, including many mechanical joining techniques, including releasable mechanical engagement techniques. If desired, the hosel 109 may be integrally formed as part of the face frame member. Further, a gasket (not shown) may be included between the cup face structure and the backbody member.
The ball striking device 100 may include a shaft 104 connected to or otherwise engaged with the ball striking head 102, as shown in
The shaft 104 may be constructed from one or more of a variety of materials, including metals, ceramics, polymers, composites, or wood. In some illustrative embodiments, the shaft 104, or at least portions thereof, may be constructed of a metal, such as stainless steel or titanium, or a composite, such as a carbon/graphite fiber-polymer composite. However, it is contemplated that the shaft 104 may be constructed of different materials without departing from the scope of the invention, including conventional materials that are known and used in the art. A grip element 105 may be positioned on the shaft 104 to provide a golfer with a slip resistant surface with which to grasp golf club shaft 104, as shown in
In general,
As one example, a material with a thermally variable modulus can produce an increased “trampoline” effect and increased response (i.e. energy and/or velocity transfer) during impact. In such an example, the heat that is generated during impact can reduce the modulus of the material in the impact zone 125 to make the local material more flexible, while the surrounding material remains relatively stiffer. This creates an impact structure similar to an edge-supported trampoline, having a flexible center suspended by a stiff perimeter, leading to increased trampoline effect and/or increased contact time, and thus increased energy transfer.
As another example, a material with a thermally variable modulus can produce increased face flexibility at a wider range of swing speeds. For example, many golf clubs are designed based on performance at a typical professional golfer swing speed of 160 ft/s. The COR (coefficient of restitution) test is performed at this swing speed, and many existing club heads 102 offer optimal performance at or around this swing speed. However, the faces 112 of such club heads 102 may have less flexibility, and consequently less deformation and trampoline effect, at lower swing speeds. A material with a thermally variable modulus can be selected to provide a decreased modulus due to heat produced at a lower swing speeds such as 90 to 130 ft/s, allowing for more flexibility at such swing speeds. Additionally, the material may be selected to provide a decreased modulus at such lower swing speeds, with little to no further decrease in modulus at higher swing speeds, as seen in the graph in
Below are described several different general and specific embodiments for creating a face having a thermally variable modulus response in accordance with aspects of the present invention. Generally, such embodiments may utilize a single material having a selected thermal modulus response, or multiple materials having different thermal modulus responses.
In one embodiment, a head 102 as shown in
In one embodiment, the thermal modulus response of a material used in the face 112 may be affected by a molecular phase change in the material, due to heat generated during impact of a ball on the ball striking surface. In other words, the material may be formed in a first molecular phase at ambient conditions, and the heat generated by an impact of a ball 106 on the ball striking surface 110 may be sufficient to change the molecular phase of a material to a second molecular phase. The second molecular phase may have a different modulus and/or a different thermal modulus response than the first molecular phase. It is understood that the material may change back to the first molecular phase after impact, and that a molecular phase change of the material may be effected in part by the pressure resulting from an impact, in addition to the resulting heat.
At least a portion of the face 112 may be formed of such a phase-change material, and in one embodiment, at least a portion of the area of highest response 127 of the face 112 is formed of the phase-change material. Additionally, the phase-change material may be incorporated into an insert that is connected to the face 112, such as the inserts 230, 330, 430 of
In another embodiment, as shown in
As shown in
As described above, the insert 230 may be wholly or partially formed of a material that has a thermal modulus response that is different from the thermal modulus response of the material of the face 212. In other words, the material of the insert 230 may have a modulus that changes at a different rate than the material of the face 112 as a result of heat generated by an impact of a ball 106 on the face 212. This can be used to produce increased trampoline effect at any swing speed, or to produce greater flexibility at a particular swing speed, among other effects. In one embodiment, the material of the insert 230 has a modulus at ambient conditions that is within 5% of the modulus of the material of the face 212 at ambient conditions (e.g., room temperature), and the heat and/or pressure generated by an impact of the ball 106 on the ball striking surface 210 of at least 90 ft/s (or about 90 to 130 ft/s) is sufficient to reduce the modulus of the insert material to at least 20% lower than the modulus of the face material, due to the different thermal modulus responses of the two materials. It is understood that the insert 230 may be formed of multiple materials, any of which may be different from the face material.
In another embodiment, the head 102 may include a thermally-active device that is connected to the face 112 and is configured to change the temperature of at least a portion of the face 112 to effect a change in the modulus of the portion of the face 112.
The thermally-active device 540 may be a heating device designed to heat the face 512, a cooling device designed to cool the face 512, or a device that can selectively heat or cool the face 512. Heating or cooling the face 512 can change the modulus at an area of the face 512, similarly to the heat produced during an impact as described above. The change in modulus may depend on the thermal modulus response of the affected material of the face 512, as described above. Additionally, the change in temperature produced by the device 540 can effect a molecular phase change, as also described above. Accordingly, the thermally-active device 540 may be used in conjunction with the embodiments described above, utilizing materials with thermally-variable moduli.
The device 540 can effect a temperature change by using electrical power, chemical or thermodynamic reaction, or other means or combination of means. In one embodiment, illustrated in
The device 540 may be utilized to change the temperature of any a portion of the face 512, including the entire face 512, the majority of the face 512, or a selected area of the face 512. It is understood that the device 540 may change the temperature of a portion of the face 512 local to the device 540, relative to a portion of the face 512 spaced from the device 540. In one embodiment, as illustrated in
The device 540 may also be controllable by the user of the ball striking device 500. In the embodiment illustrated in
As shown in
The face 612 is located at the front 624 of the head 602, and has an outer surface 610, as well as a rear surface 611 located opposite the outer surface 610, which may be considered an inner surface of the face 612. The face 612 is defined by a plurality of peripheral edges, including a top edge 613, a bottom edge 615, a heel edge 617, and a toe edge 619. The face 612 also has a plurality of face grooves 621 on the ball striking surface 610. For reference purposes, the portion of the face 612 nearest the top face edge 613 and the heel 620 of the head 602 is referred to as the “high-heel area”; the portion of the face 612 nearest the top face edge 613 and toe 622 of the head 602 is referred to as the “high-toe area”; the portion of the face 612 nearest the bottom face edge 615 and heel 620 of the head 602 is referred to as the “low-heel area”; and the portion of the face 612 nearest the bottom face edge 615 and toe 622 of the head 602 is referred to as the “low-toe area”. Conceptually, these areas may be recognized and referred to as quadrants of substantially equal size (and/or quadrants extending from a geometric center of the face 612), though not necessarily with symmetrical dimensions. The face 612 may include some curvature in the top to bottom and/or heel to toe directions (e.g., bulge and roll characteristics), as is known and is conventional in the art. The ball striking surface 610 is inclined (i.e., at a loft angle), to give the ball an appreciable degree of lift and spin when struck. In various embodiments, the ball striking surface 610 may have a different incline or loft angle, to affect the trajectory of the ball.
The body member 608 of the golf club head 602 may be constructed from a wide variety of different materials, including materials conventionally known and used in the art, such as steel, titanium, aluminum, tungsten, graphite, polymers, or composites, or combinations thereof. Also, if desired, the club head 602 may be made from any number of pieces (e.g., having a separate face plate, etc.) and/or by any construction technique, including, for example, casting, forging, welding, and/or other methods known and used in the art.
The ball striking device 600 may include a shaft 604 connected to or otherwise engaged with the ball striking head 602, as shown in
In general,
Several different embodiments have been described above, including the various embodiments of golf clubs 100, 500, 600 and heads 102, 202, 302, 402, 502, 602, 702, 802 and portions thereof described herein. It is understood that any of the features of these various embodiments may be combined and/or interchanged. For example, as described above, various different combinations of club heads 102, et seq. with differently configured face materials, including different inserts, may be used, including the configurations described herein, variations or combinations of such configurations, or other configurations. In further embodiments, at least some of the features described herein can be used in connection with other configurations of iron-type clubs, wood-type clubs, other golf clubs, or other types of ball-striking devices.
Heads 102, et seq. incorporating the features disclosed herein may be used as a ball striking device or a part thereof. For example, a golf club 100 as shown in
Additionally, as described above, the head 102, et seq., golf club 100, et seq., or other ball striking device may be fitted or customized for a person by selecting a material or combination of materials that have an appropriate thermal modulus response based on the typical swing speed of a particular golfer. Additionally, the size, shape, and location of any face inserts 230, et seq., utilized herein may be adjusted based on a common hitting pattern of a golfer. Further, inserts may be interchanged or replaced based on customization to a particular golfer or customization to specific play conditions. Still other options for customization are possible.
The ball striking devices and heads therefor as described herein provide many benefits and advantages over existing products. For example, the thermal modulus response of one or more selected materials can be used to produce increased trampoline effect at any swing speed, or to produce greater flexibility at a particular swing speed, among other effects. The use of inserts provide further options for customization to a particular golfer and/or swing speed. A thermally-active device may permit the golfer to have greater control over the modulus of the face of his/her golf club. Thus, the golfer can adjust the flexibility of the face based on the golfer's typical performance and/or specific play conditions. Further benefits and advantages are readily recognizable to those skilled in the art.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and methods. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4681322 | Straza et al. | Jul 1987 | A |
5176384 | Sata et al. | Jan 1993 | A |
5299807 | Hutin | Apr 1994 | A |
5425535 | Gee | Jun 1995 | A |
5620382 | Cho et al. | Apr 1997 | A |
5647808 | Hosokawa | Jul 1997 | A |
5674132 | Fisher | Oct 1997 | A |
5769735 | Hosokawa | Jun 1998 | A |
5807189 | Martin et al. | Sep 1998 | A |
5807190 | Krumme et al. | Sep 1998 | A |
5899818 | Zider et al. | May 1999 | A |
6165081 | Chou | Dec 2000 | A |
6277033 | Krumme et al. | Aug 2001 | B1 |
6319149 | Lee | Nov 2001 | B1 |
6364789 | Kosmatka | Apr 2002 | B1 |
6979270 | Allen | Dec 2005 | B1 |
7281990 | Hagood et al. | Oct 2007 | B2 |
7651408 | Hagood et al. | Jan 2010 | B2 |
7682262 | Soracco et al. | Mar 2010 | B2 |
7785213 | Matsunaga et al. | Aug 2010 | B2 |
8128509 | Soracco et al. | Mar 2012 | B2 |
8409032 | Myrhum et al. | Apr 2013 | B2 |
20020037776 | Krumme et al. | Mar 2002 | A1 |
20030207722 | Hess et al. | Nov 2003 | A1 |
20030207727 | Kakiuchi | Nov 2003 | A1 |
20040043832 | Lee et al. | Mar 2004 | A1 |
20040176182 | Krumme et al. | Sep 2004 | A1 |
20060154746 | Hagood et al. | Jul 2006 | A1 |
20080032813 | Hagood et al. | Feb 2008 | A1 |
20130040756 | Myrhum et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
737493 | Oct 1996 | EP |
8196666 | Aug 1996 | JP |
Entry |
---|
JmMedical, Nitional Technical Properties, Jan. 29, 2014, Johnson Matthey Medical Components, 3 pages. |
NDC, The Shape Memory Effect, 1995, NDC, 1-13. |
ISR & WO mailed Dec. 13, 2012, for PCT Application No. PCT/US2012/057532. |
Number | Date | Country | |
---|---|---|---|
20130085012 A1 | Apr 2013 | US |