Golf club head with coated striking plate

Information

  • Patent Grant
  • 6428427
  • Patent Number
    6,428,427
  • Date Filed
    Tuesday, October 3, 2000
    23 years ago
  • Date Issued
    Tuesday, August 6, 2002
    22 years ago
Abstract
A golf club head (20) having a thin striking plate (30) with a smooth exterior surface and a thin layer (35) disposed on the exterior surface (53). The thin layer (35) has a plurality of scorelines (75) that absorb the shock during impact with a golf ball. The striking plate (30) has a thickness in the range of 0.010 inch to 0.200 inch, and the thin layer (35) has a thickness in the range of 0.003 inch to 0.050 inch. The striking plate (30) may have a uniform thickness or a variable thickness.
Description




CROSS REFERENCES TO RELATED APPLICATIONS




Not Applicable




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not Applicable




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a golf club having a relatively thin striking plate. More specifically, the present invention relates to a golf club having a thin striking plate with a coating on the exterior surface of the striking plate.




2. Description of the Related Art




Present golf clubs have repositioned weight in order to lower the center of gravity for better performance. This repositioning of weight has for the most part attempted to thin the crown and striking plate of the golf club while precisely placing the weight in the sole of the golf club. However, thinning the striking plate too much may lead to failure of the golf club.




When the striking plate impacts a golf ball during a swing, large impact forces (in excess of 2000 pounds) are produced thereby loading the striking plate. In the relatively thin striking plates of hollow metal woods and cavity-back irons, these forces tend to produce large internal stresses in the striking plate. These internal stresses often cause catastrophic material cracking which leads to failure of the club head.




Computational and experimental studies on hollow metal woods and cavity-backed irons have demonstrated that such catastrophic material cracking most often occurs at impact points on the striking plate. These impact points require added strength to prevent club head failure.




In designing golf club heads, the striking plate must be structurally adequate to withstand large repeated forces such as those associated with impacting a golf ball at high speeds. Such structural adequacy may be achieved by increasing the striking plate stiffness so that the stress levels are below the critical stress levels of the material used in the striking plate. Typically, for metal woods, the striking plates are stiffened by uniformly increasing the thickness of the striking plate and/or by adding one or more ribs to the interior surface of the striking plate.




Uniformly increasing the thickness of the striking plate portion typically requires the addition of large amounts of material to adequately reduce the stress sufficient to prevent impact and/or fatigue cracking. However, the addition of such a large amount of material to a striking plate generally adversely affects the performance of the golf club.




One of the first patents to disclose variable face thickness was U.S. Pat. No. 5,318,300 to Schmidt et al., for a Metal Wood Golf Club With Variable Faceplate Thickness which was filed on Nov. 2, 1992. Schmidt et al discloses thickening the faceplate to prevent cracking.




A further disclosure of variable face thickness is disclosed in U.S. Pat. No. 5,830,084 to Kosmatka for a Contoured Golf Club Face which was filed on Oct. 23, 1996. Kosmatka addresses contouring the face to thicken certain regions while thinning other regions depending on the stress load experienced by such regions. Kosmatka also discloses a method for designing a face plate according to measured stress levels experienced during impact with a golf ball. Kosmatka, U.S. Pat. No. 5,971,868 for a Contoured Back Surface Of Golf Club Face, filed on Nov. 18, 1997, discloses similar contouring for an iron.




A more recent disclosure is Noble et al., U.S. Pat. No. 5,954,596, for a Golf Club Head With Reinforced Front Wall, which was filed on Dec. 4, 1997. Noble et al. discloses a face plate with the thickness portion at the geometric center, and gradually decreasing toward the top and bottom, and the sole and heel. The top and bottom ends along a line through geometric center have the same thickness, and the heel and sole ends along a line through geometric center have the same thickness.




Other references make partial disclosure of varying face thickness. One example is FIG. 8 of U.S. Pat. No. 5,505,453 which illustrates an interior surface of a face with a bulging center and decreasing thickness towards the heel and sole ends, similar to Noble et al. Another example is FIGS. 4C and 4D of U.S. Pat. No. 5,346,216 which discloses a bulging center that decreases in thickness toward the heel and sole ends, and the top and bottom end of the face, similar to Noble et al. However, the prior art has failed to design a striking plate or face plate that is thin and reduces scoreline concentration of the initial shock load during impact with a golf ball.




BRIEF SUMMARY OF THE INVENTION




The present invention is directed at a golf club head having a thin striking plate that has a smooth exterior surface with a thin layer disposed on the exterior surface. The thin layer has a plurality of scorelines to absorb the initial shock load during impact with a golf ball and to distribute and reduce stress loads in the body of the golf club head.




One aspect of the present invention is a golf club head including a body, a striking plate and a thin layer. The body has a crown, a sole, a heel end, a toe end and a hollow interior. The striking plate is attached to the body. The striking plate has an interior surface facing toward the hollow interior and a smooth exterior surface opposite the interior surface. The striking plate has a thickness range of 0.010 inch to 0.200 inch. The thin layer is disposed on the exterior surface of the striking plate. The thin layer has a thickness of 0.005 inch to 0.100 inch, and can have a plurality of scorelines.




Another aspect of the present invention is a golf club head including a body, a striking plate and a thin layer. The body has a crown, a sole, a heel end, a toe end and a hollow interior. The striking plate is attached to the body and has a non-uniform or contour interior surface. The striking plate has an interior surface toward the hollow interior and a smooth exterior surface opposite the interior surface. The striking plate also has a central region, a transition region, a first peripheral region and a second peripheral region. The central region has a first thickness ranging from 0.125 inch to 0.145 inch and occupying 5% to 15% of the exterior surface of a core face area. The transition region encompasses the central region and occupies 35% to 50% of the exterior surface of a core face area. The first peripheral region encompasses the transition region and occupies 40% to 55% of the exterior surface of the core face. The first peripheral region has a second thickness less than the first thickness and ranges from 0.075 inch to 0.110 inch. The transition region has a thickness that transitions from the first thickness to the second thickness. The second peripheral region encompasses the first peripheral region and has a third thickness that ranges from 0.045 inch to 0.080 inch. The thin layer is disposed on the exterior surface of the striking plate. The thin layer has a thickness of 0.005 inch to 0.100 inch, and has a plurality of scorelines.




Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS





FIG. 1

is a front plan view of a golf club head with the striking plate of the present invention.





FIG. 2

is a front plan view of the striking plate of

FIG. 1

showing the variable face thickness.





FIG. 2A

is a front plan view of the golf club head of

FIG. 1

with the variable face thickness pattern superimposed thereon.





FIG. 3

is a toe side view of the golf club head of FIG.


1


.





FIG. 3A

is a toe side exploded view of the golf club head of the present invention.





FIG. 3B

is a toe side exploded view of an alternative embodiment of the golf club head of the present invention.





FIG. 4

is a bottom plan view of the golf club head of FIG.


1


.





FIG. 5

is a top plan view of the golf club head of FIG.


1


.





FIG. 6

is a heel side view of the golf club head of FIG.


1


.





FIG. 7

is a front plan view of a fairway wood golf club head of the present invention with the variable thickness superimposed thereon.





FIG. 8

is a cross-sectional view along lines


8





8


of FIG.


5


.





FIG. 9

is a cross-sectional view along lines


9





9


of FIG.


2


A.





FIG. 10

is a cross-sectional view along lines


10





10


of FIG.


2


A.





FIG. 11

is a cross-sectional view along lines


11





11


of FIG.


2


A.





FIG. 12

is a cross-sectional view along lines


12





12


of FIG.


2


A.





FIG. 13

is a cross-sectional view along lines


13





13


of FIG.


2


A.





FIG. 14

is a cross-sectional view along lines


14





14


of FIG.


2


A.





FIG. 15

is a cross-sectional view along lines


15





15


of FIG.


2


A.





FIG. 16

is a cross-sectional view along lines


16





16


of FIG.


2


A.





FIG. 17

is an illustration of impact probabilities for high handicap golfers.





FIG. 18

is an illustration of impact probabilities for low handicap golfers.





FIG. 19

is a side view of a golf ball impacting the golf club-head of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




As shown in

FIGS. 1-8

, a golf club head is generally designated


20


. The golf club head


20


has a body


22


with a crown


24


, a sole


26


, a ribbon


28


, a striking plate


30


, and a thin layer


35


disposed on the striking plate


30


. The striking plate


30


generally extends from a heel end


32


to a toe end


34


of the front of the golf club head


20


. The body


22


preferably has an internal hosel


36


for receiving the tip end of a shaft, not shown, through an aperture


38


. The golf club head has a body


22


that is preferably composed of a metal material such as titanium, titanium alloy, stainless steel, or the like, and is most preferably composed of a forged titanium material. The body


22


preferably has a large volume, ranging from 250 cubic centimeters to 400 cubic centimeters, most preferably 290 cubic centimeters to 350 cubic centimeters. The body


22


preferably weighs no more than 215 grams, and most preferably weighs between 180 and 205 grams. The body


22


has a hollow interior


23


.




The striking plate


30


may have a uniform thickness or a variable thickness. The exterior surface


53


of the striking plate is smooth while the interior surface


55


of the striking plate may be uniform or vary in thickness. The exterior surface also has an absence of scorelines since scorelines are stress concentrators during impact with a golf ball. Due to the extremely thin striking plate


30


, scorelines would lead to failure of the striking plate


30


. The thickness of the striking plate


30


ranges from 0.010 inch to 0.300, preferably from the 0.040 inch to 0.250, and most preferably from 0.060 inch to 0.150 inch. The thickness of the striking plate


30


is greatly determined by the size of the golf club head


20


, and the material composition of the striking plate


30


. Titanium alloys have a lower density than stainless steel, and thus a titanium alloy striking plate


30


allows for the weight to be distributed elsewhere in the body


22


.




The thin layer


35


is attached to the exterior surface


53


of the striking plate


30


. The thin layer


35


has a plurality of scorelines


75


thereon. The thin layer


35


absorbs the initial shock load, distributes the stress loads throughout the entire golf club head


20


, and reduces the stress load throughout the entire golf club head


20


. The thin layer


35


may cover the entire exterior surface


53


, or only a portion of the exterior surface


53


. The thin layer


35


has a thickness that ranges from 0.003 inch to 0.050 inch, more preferably from 0.005 inch to 0.025 inch, and most preferably 0.010 inch. The overall thickness of the striking plate


30


and the thin layer


35


preferably ranges from 0.020 inch to 0.250 inch, more preferably from 0.050 inch to 0.150 inch, and most preferably is 0.100 inch.




The thin layer


35


is preferably composed of a material that has a lower density than the material of the striking plate


30


. The thin layer


35


is preferably composed of a polymer material, a composite material, a lightweight metal material, or the like. Polymer materials that are used for the thin layer


35


include polyurethanes, polyamides, polyimides, polycarbonates, and the like. Lightweight metal that are used for the thin layer


35


materials include titanium, aluminum, beryllium, magnesium, zirconium alloys, and the like.




Preferably, the striking plate


30


is partitioned into a plurality of regions


40


,


42


,


44


and


46


, defmed by lines


41


,


43


,


45


and


47


, each having a different thickness or different thickness range. The striking plate


30


is unitary in construction, and may or may not be composed of the same material of the body


22


. The term unitary when used in conjunction with the striking plate


30


means that the striking plate


30


is a single piece and does not have additions to the interior surface


55


such as ribs or weighting members. The thin layer


35


is a separate component from the striking plate


30


. A central region


40


, defined by dashed line


41


, has a base thickness that is preferably the greatest thickness of the regions


40


,


42


,


44


and


46


. The base thickness ranges from 0.200 inch to 0.060 inch, preferably from 0.150 inch to 0.075 inch, and is most preferably within the range of 0.145 inch to 0.090 inch. A transition region


42


has a thickness that ranges between the thickness of the central region


40


and a first peripheral region


44


, preferably ranges from 0.150 inch to 0.090 inch, and most preferably ranges from 0.140 inch to 0.080 inch. The first peripheral region


44


has a thickness that ranges from 0.110 inch to 0.040 inch, preferably ranges from 0.105 inch to 0.050 inch, and most preferably ranges from 0.100 inch to 0.075 inch. A second peripheral region


46


preferably is the thinnest region of the striking plate regions


40


,


42


,


44


and


46


. The second peripheral region


46


has a thickness that ranges from 0.085 inch to 0.010 inch, preferably ranges from 0.080 inch to 0.045 inch, and most preferably ranges from 0.075 inch to 0.050 inch.




In a preferred embodiment, as shown in

FIG. 2

, the central region has a thickness range of 0.145 inch to 0.090 inch, the transition region


42


has a thickness range of 0.140 inch to 0.080: inch, the first peripheral region


44


has a thickness range of 0.105 inch to 0.090 inch, and the second peripheral region


46


has a thickness range of 0.075 inch to 0.050 inch.




Preferably, as shown in

FIG. 2

, the central region


40


is 5% to 15% of the surface area of the core face


49


of the striking plate


30


. The core face


49


is defined as the central region


40


, the region


42


and the first peripheral region


44


. The core face area of the striking plate


30


has an area between 4.80 square inches and 5.50 square inches, preferably between 5.10 square inches and 5.40 square inches, and most preferably 5.38 square inches. The transition region


42


is preferably 35% to 50% of the surface area of the core face


49


, and the first peripheral region


44


is preferably 40% to 55% of the surface area of the core face


49


. In a preferred embodiment, the central region is 8.8% of the surface area of the core face


49


, the transition region is 42.2% of the surface area of the core face


49


, and the first peripheral region


44


is 50% of the surface area of the core face


49


.





FIG. 7

illustrates an alternative embodiment of the present invention for a fairway wood golf club head


20


. In this embodiment, the central region has a thickness range of 0.135 inch to 0.125 inch, the transition region


42


has a thickness range of 0.130 inch to 0.090 inch, the first peripheral region


44


has a thickness range of 0.095 inch to 0.085 inch, and the second peripheral region


46


has a thickness range of 0.075 inch to 0.045 inch.




Table One sets forth the thickness ranges of the central region


40


, the first peripheral region


44


and the second peripheral region


46


for preferred embodiments for drivers (lofts 7 degrees through 12 degrees) and fairway woods (2 wood through 9 wood).












TABLE One











Striking Plate Thickness















Second Peripheral




First Peripheral







Club




Region




Region




Center Region









07° Driver




.050 ± .005




.100 ± .005




.140 ± .005






08° Driver




.050 ± .005




.100 ± .005




.140 ± .005






09° Driver




.050 ± .005




.100 ± .005




.140 ± .005






10° Driver




.050 ± .005




.100 ± .005




.140 ± .005






11° Driver




.050 ± .005




.100 ± .005




.140 ± .005






12° Driver




.050 ± .005




.100 ± .005




.140 ± .005






2 Wood




.050 ± .005




.090 ± .005




.130 ± .005






3 Wood




.055 ± .005




.090 ± .005




.130 ± .005






Strong 3




.060 ± .005




.090 ± .005




.130 ± .005






4 Wood




.060 ± .005




.085 ± .005




.125 ± .005






Strong 4




.065 ± .005




.090 ± .005




.130 ± .005






5 Wood




.065 ± .005




.085 ± .005




.125 ± .005






7 Wood




.070 ± .005




.085 ± .005




.125 ± .005






9 Wood




.075 ± .005




.085 ± .005




.125 ± .005














Cross-sections of the striking plate


30


, taken from

FIG. 2A

, are illustrated in

FIGS. 9-16

. The striking plate


30


has variable thickness, with the thickest portion in the center. The thin layer


35


has a uniform overall thickness.





FIG. 9

illustrates a vertical cross-section of the mid-section of the striking plate


30


with the central region


40


, the transition region


42


, the first peripheral region


44


and the second peripheral region


46


on the contoured interior surface


55


.

FIGS. 10 and 11

illustrate vertical cross-sections that are adjacent both sides of the mid-section, and which only includes the transition region


42


, the first peripheral region


44


and the second peripheral region


46


.

FIG. 12

illustrates a vertical cross-section on the heel end


32


of the striking plate


30


that has a wall of the internal hosel


36


integrated therewith in a preferred embodiment.

FIG. 12

otherwise shows the first peripheral region


44


and the second peripheral region


46


. Although the wall of the internal hosel


36


is shown as integrated with the striking plate


30


, alternative embodiments have the internal hosel off-set from the interior surface


55


of the striking plate


30


.

FIG. 13

illustrates a vertical cross-section of the toe end


34


of the striking plate


30


, which only includes the first peripheral region


44


and the second peripheral region


46


.





FIG. 14

illustrates a horizontal cross-section of the horizontal mid-section of the striking plate


30


, which shows the central region


40


, the transition region


42


, the first peripheral region


44


, the second peripheral region


46


, and the wall of the internal hosel


36


.





FIG. 15

illustrates a horizontal cross-section below the horizontal mid-section of the string plate


30


, which only includes the transition region


42


, the first peripheral region


44


, the second peripheral region


46


, and the wall of the internal hosel


36


.

FIG. 16

illustrates a horizontal cross-section further below the horizontal mid-section of the striking plate


30


, which only includes the first peripheral region


44


, the second peripheral region


46


, and the wall of the internal hosel


36


.




The striking plate


30


does not have scorelines. The plurality of scorelines


75


are disposed on the thin layer


35


. The scorelines


75


may be traditional indentations having a depth of from 0.001 inch to 0.025 inch, more preferably from 0.003 inch to 0.010 inch, and most preferably 0.005 inch. The contour of each of the scorelines


75


may be as described in co-pending U.S. patent application No. 09/431,518, filed on Nov. 1, 1999, entitled Contoured Scorelines For The Face Of A Golf Club, and incorporated by reference in its entirety. Alternatively, the scorelines may be projections


75




a


such as illustrated in FIG.


3


B. Such scoreline projections


75




a


preferably extend 0.003 inch to 0.010 inch from the surface


39


of the thin layer


35


.




As mentioned previously, the thickness of the regions


40


,


42


,


44


and


46


, and for the most part, the thickness of the striking plate


30


, corresponds to impact probability.

FIGS. 17 and 18

illustrate the impact points during a golf swing for high handicap players and low handicap players, respectively. As shown in

FIG. 17

, the high handicap players had impacts


90


within an elliptical area


100


that extended through the center of the striking plate


30


. In comparison, low handicap players had impacts


90


that were more concentrated and within a circular area


102


of the striking plate


30


. These impacts


90


illustrate the points on a striking plate


30


that have the highest probability of undergoing the greatest stress during impact with a golf ball. Therefore, these points require greater thickness than other areas of the string plate


30


. Thus, the regions


40


,


42


,


44


and


46


correlate to this impact probability in order to design a striking plate with greater thickness where it is needed instead of in areas low impact probability. The present invention may be described as being thinner at the heel and toe ends


32


and


34


than the central region


40


.




The variation in the thickness of the striking plate


30


also allows for the greatest thickness of regions


40


,


42


,


44


and


46


to be distributed in the center region


40


of the striking plate


30


thereby enhancing the flexibility of the striking plate


30


which corresponds to greater compliance of the striking plate


30


during impact with a golf ball thereby providing for reduced energy loss with allows for greater distance.




The striking plate


30


is preferably composed of a stainless steel. Alternatively, the striking plate


30


is composed of a titanium or titanium-alloy material. In yet an alternative embodiment, the striking plate


30


is composed of a vitreous metal such as iron-boron, nickel-copper, nickel-zirconium, nickel-phosphorous, and the like. Yet in further alternative embodiments, the striking plate


30


is composed of ceramics, composites or other metals.




The thin layer


35


is preferably attached to the exterior surface


55


of the striking plate


30


by an adhesive


37


, such as illustrated in FIG.


3


A. Other means of attachment include vapor deposition, pressure locking, attachment by screws, and the like.




From the foregoing it is believed that those skilled in the pertinent art will recognize the meritorious advancement of this invention and will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention which is intended to be unlimited by the foregoing except as may appear in the following appended claims. Therefore, the embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following appended claims.



Claims
  • 1. A wood-type golf club head comprising:a body composed of a metal material, the body having a crown, a sole, a heel end, a toe end and a hollow interior; a striking plate composed of a metal material attached to the body, the striking plate having an interior surface toward the hollow interior and a smooth exterior surface opposite the interior surface, the striking plate also having a central region, a transition region, a first peripheral region and a second peripheral region, the central region having a first thickness ranging from 0.125 inch to 0.145 inch and occupying 5% to 15% of the exterior surface of a core face area, the transition region encompassing the central region and occupying 35% to 50% of the exterior surface of a core face area, the first peripheral region encompassing the transition region and occupying 40% to 55% of the exterior surface of the core face, the first peripheral region having a second thickness less than the first thickness and ranging from 0.075 inch to 0.110 inch, the transition region having a thickness that transitions from the first thickness to the second thickness, the second peripheral region encompassing the first peripheral region and having a third thickness that ranges from 0.045 inch to 0.080 inch; and a polymer layer disposed on the exterior surface of the striking plate, the polymer layer having a thickness of 0.005 inch to 0.100 inch, the thin layer having a plurality of scorelines thereon.
  • 2. A wood-type golf club head comprising:a body having a crown, a sole, a heel end, a toe end and a hollow interior, the body composed of a titanium material and having a volume in excess of 280 cubic centimeters and weighing less than 215 grams; a striking plate attached to the body, the striking plate having an interior surface toward the hollow interior and a smooth exterior surface opposite the interior she, the striking plate having a thickness range of 0.060 inch to 0.150 inch, the string plate composed of a titanium material and having an area greater 4.80 square inches; and a polymer layer disposed on the exterior surface of the sing plate, the polymer layer having a thickness of 0.005 inch to 0.050 inch, the thin layer having a plurality of scorelines thereon, each of the plurality of scorelines having a depth in the range of 0.003 inch to 0.025 inch, the polymer layer attached to the exterior surface by an adhesive.
  • 3. The golf club head according to claim 2 wherein the golf club head has a COR of at least 0.83 under USGA test conditions.
  • 4. The golf club head according to claim 2 wherein the plurality of scorelines is comprised of 13 horizontal scorelines.
  • 5. The golf club head according to claim 2 wherein the thin layer has a central impact region that has a low friction and low energy loss, and a peripheral impact region that has a high friction coefficient and a high energy loss.
  • 6. The golf club head according to claim 5 wherein the central impact region of the thin layer is composed of a first polymer material and the peripheral impact region of the thin layer is composed of a second polymer material.
  • 7. The golf club head according to claim 6 wherein the first polymer material is a polyurethane material having a Shore D hardness greater than 50 and the second polymer material is a polyurethane material having a Shore D hardness lower than 40.
  • 8. A wood-type golf club head comprising:a body composed of a titanium alloy material, the body having a crown, a sole and a striking plate which define a hollow interior, the sting plate having an interior surface toward the hollow interior and a smooth exterior surface opposite the interior surface, the sing plate hang a thickness range of 0.060 inch to 0.150 inch and an area greater than 4.80 square inches, wherein the body has a volume in excess of 280 cubic centimeters and a mass less than 215 grams; a single layer composed of a thermoset polyurethane adhesively attached to the smooth exterior surface of the striking plate, the single layer having a thickness ranging from 0.005 inch to 0.025 inch, the single layer having a plurality of scorelines, having a depth of 0.005 inch to 0.010 inch.
US Referenced Citations (16)
Number Name Date Kind
4529203 Ribaudo Jul 1985 A
5100144 Okumoto et al. Mar 1992 A
5158289 Okumoto et al. Oct 1992 A
5310185 Viollaz et al. May 1994 A
5377986 Viollaz et al. Jan 1995 A
5405137 Vincent et al. Apr 1995 A
5425538 Vincent et al. Jun 1995 A
5447311 Viollaz et al. Sep 1995 A
5465968 Aizawa et al. Nov 1995 A
5676605 Kobayashi Oct 1997 A
5830084 Kosmatka Nov 1998 A
6129953 Mertens Oct 2000 A
6152833 Werner et al. Nov 2000 A
6238302 Helmstetter et al. May 2001 B1
6248025 Murphy et al. Jun 2001 B1
6319150 Werner et al. Nov 2001 B1