1. Field of the Invention
The present invention relates to a golf club, and, more particularly, the present invention relates to a large wood-type golf club head with a concave insert.
2. Description of the Related Art
Golf club heads come in many different forms and makes, such as wood- or metal-type (including drivers and fairway woods), iron-type (including wedge-type club heads), utility- or specialty-type, and putter-type. Each of these styles has a prescribed function and make-up. The present invention primarily relates to hollow golf club heads, such as wood-type and utility-type (generally referred to herein as wood-type golf clubs).
Wood-type type golf club heads generally include a front or striking face, a crown, a sole, and an arcuate skirt including a heel, a toe, and a back. The crown and skirt are sometimes referred to as a “shell.” The front face interfaces with and strikes the golf ball. A plurality of grooves, sometimes referred to as “score lines,” may be provided on the face to assist in imparting spin to the ball and for decorative purposes. The crown is generally configured to have a particular look to the golfer and to provide structural rigidity for the striking face. The sole of the golf club contacts and interacts with the ground during the swing.
The design and manufacture of wood-type golf clubs requires careful attention to club head construction. Among the many factors that must be considered are material selection, material treatment, structural integrity, and overall geometrical design. Exemplary geometrical design considerations include loft, lie, face angle, horizontal face bulge, vertical face roll, face size, sole curvature, center of gravity, and overall head weight. The interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads. Club heads typically are formed from stainless steel, aluminum, or titanium, and are cast, stamped as by forming sheet metal with pressure, forged, or formed by a combination of any two or more of these processes. The club heads may be formed from multiple pieces that are welded or otherwise joined together to form a hollow head, as is often the case of club heads designed with inserts, such as sole plates or crown plates. The multi-piece constructions facilitate access to the cavity formed within the club head, thereby permitting the attachment of various other components to the head such as internal weights and the club shaft. The cavity may remain empty, or may be partially or completely filled, such as with foam. An adhesive may be injected into the club head to provide the correct swing weight and to collect and retain any debris that may be in the club head. In addition, due to difficulties in manufacturing one-piece club heads to high dimensional tolerances, the use of multi-piece constructions allows the manufacture of a club head to a tight set of standards.
It is known to make wood-type golf clubs out of metallic materials. These clubs were originally manufactured primarily by casting durable metals such as stainless steel, aluminum, beryllium copper, etc. into a unitary structure comprising a metal body, face, and hosel. As technology progressed, it became more desirable to increase the performance of the face of the club, usually by using a titanium material.
With a high percentage of amateur golfers constantly searching for more distance on their shots, particularly their drives, the golf industry has responded by providing golf clubs specifically designed with distance in mind. The head sizes of wood-type golf clubs have increased, allowing the club to possess a higher moment of inertia, which translates to a greater ability to resist twisting on off-center hits. As a wood-type club head becomes larger, its center of gravity will be moved back away from the face and further toward the toe, resulting in hits flying higher and further to the right than expected (for right-handed golfers). Reducing the lofts of the larger head clubs can compensate for this. Because the center of gravity is moved further away from hosel axis, the larger heads can also cause these clubs to remain open on contact, thereby inducing a “slice” effect (in the case of a right-handed golfer the ball deviates to the right). Offsetting the head and/or incorporating a hook face angle can help compensate for this by “squaring” the face at impact, but often more is required to eliminate the “slice” tendency.
Another technological breakthrough in recent years to provide the average golfer with more distance is to make larger head clubs while keeping the weight constant or even lighter by casting consistently thinner shell thicknesses and using lighter materials such as titanium, magnesium, and composites. Also, the faces of the clubs have been steadily becoming extremely thin, because a thinner face will maximize what is known as the Coefficient of Restitution (COR). The more a face rebounds upon impact, the more energy is imparted to the ball, thereby increasing the resulting shot distance.
Known methods to enhance the weight distribution of wood-type club heads to help reduce the club from being open upon contact with the ball usually include the addition of weights to the body casting itself or strategically adding a weight element at some point in the club. Many efforts have been made to incorporate weight elements into the wood-type club head. These weight elements are usually placed at specific locations, which will have a positive influence on the flight of the ball or to overcome a particular golfer's shortcomings. As previously stated, a major problem area of the higher handicap golfer is the tendency to “slice,” which in addition to deviating the ball to the right also imparts a greater spin to the ball, further reducing the overall shot distance. To reduce this tendency, the present patent teaches the placement of weight elements directly into the club head. The placement of weight elements is designed so that the spin of the ball will be reduced, and also a “draw” (a right-to-left ball flight for a right-handed golfer) will be imparted to the ball flight. This ball flight pattern is also designed to help the distance-challenged golfer because a ball with a lower spin rate will generally roll a greater distance after initially contacting the ground than would a ball with a greater spin rate.
The present invention relates to a large wood-type golf club head with a concave insert. The club head is formed of a plurality of body members that define an interior volume. A first body member is made-of a metallic material and includes a sole portion and a face portion. A second body portion is made of a light-weight material, such as plastic, composite, or a very thin sheet of low density metallic material. The second body portion makes up at least a portion of the club head skirt, and includes one or more concave indentations that extends into the interior volume of the club head. These indentations provide structural integrity to the second body portions, which may be very thin panels.
The second body member optionally may also include one or more convex bulges that generally extend away from the interior volume. Inserts, such as weight inserts, may be positioned within the convex bulges. Careful positioning of the weight inserts allows the designer to enhance the playing characteristics of the golf club and tailor the club for a specific swing type. The first body member may form a large portion of the club head sole, and the second body member may form a large portion of the club head crown. This weight positioning further enhances the playing characteristics of the golf club.
The club head may include secondary weights positioned extremely low and back from the striking face. A center point on the sole plate defines the lowest point on the club head, and in one embodiment the center point is located directly below the club head center of gravity when the club head is at a 59° lie angle. The center of gravity of the secondary weights are positioned a predetermined distance from the center point. Preferably, each secondary weight center of gravity is at least 0.5 inch rearward of the center point, at least 0.75 inch from the center point toward the heel for the heel weight or at least 0.75 inch from the center point toward the toe for the toe weight, and a maximum 0.25 inch above the center point, whereby the positions of the secondary weights alter the traditional look of the golf club head by bulging outward of the natural contour of the club head.
The secondary weights may be located by reference to a point at which the hosel centerline intersects the sole plate. This distance is then measured from the back surface of the striking face at the midpoint thereof to determine an intersection point. Preferably, the secondary weights are each at least 1.50 inches rearward of the intersection point, at least 0.75 inch toward either the heel or the toe, and a maximum of 0.25 inch above the center point with the club head at a 59° lie angle.
The present invention is described with reference to the accompanying drawings, in which like reference characters reference like elements, and wherein:
Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moments of inertias, center of gravity locations, loft and draft angles, and others in the following portion of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
The club head 1 is comprised of a plurality of body members that cooperatively define the interior volume 16. A first body member 101 includes a sole portion and a face portion. The first body member 101 may include a complete face 11 and sole 12. Alternatively, either or both the face 11 and the sole 12 can be inserts coupled to the first body member 101. The club head 1 also includes at least one second body member 102 coupled to the first body member 101 along the skirt 14 in known fashion. The crown 13 can be unitarily a portion of either body member 101, 102 or it may be an insert coupled to either of the body members 101, 102. The second body member 102 includes a concave portion 20 that, when the body members 101, 102 are coupled together, extends inward into the interior volume 16.
The first body member 101 preferably is formed of a metallic material such as stainless steel, aluminum, or titanium. The material of the first body member 101 is chosen such that it can withstand the stresses and strains incurred during a golf swing, including those generated through striking a golf ball or the ground. The club head 1 can be engineered to create a primary load bearing structure that can repeatedly withstand such forces. Other portions of the club head 1, such as the skirt 14, experience a reduced level of stress and strain and advantageously can be replaced with a lighter, weight-efficient secondary material. Lighter weight materials, such as low density metal alloys, plastic, composite, and the like, which have a lower density or equivalent density than the previously mentioned metallic materials, can be used in these areas, beneficially allowing the club head designer to redistribute the “saved” weight or mass to other, more beneficial locations of the club head 1. These portions of the club head 1 can also be made thinner, enhancing the weight savings. Exemplary uses for this redistributed weight include increasing the overall size of the club head 1, expanding the size of the club head “sweet spot,” which is a term that refers to the area of the face 11 that results in a desirable golf shot upon striking a golf ball, repositioning the club head 1 center of gravity, and/or producing a greater moment of inertia (MOI). Inertia is a property of matter by which a body remains at rest or in uniform motion unless acted upon by some external force. MOI is a measure of the resistance of a body to angular acceleration about a given axis, and is equal to the sum of the products of each element of mass in the body and the square of the element's distance from the axis. Thus, as the distance from the axis increases, the MOI increases, making the club more forgiving for off-center hits since less energy is lost during impact from club head twisting. Moving or rearranging mass to the club head perimeter enlarges the sweet spot and produces a more forgiving club. Increasing the club head size and moving as much mass as possible to the extreme outermost areas of the club head 1, such as the heel H, the toe T, or the sole 12, maximizes the opportunity to enlarge the sweet spot or produce a greater MOI, making the golf club hotter and more forgiving.
The second body member 102 is light-weight, which gives the opportunity to displace the club head center of gravity downward and to free weight for more beneficial placement elsewhere without increasing the overall weight of the club head 1. When the wall thickness of the second body member 102 is at the minimum range of the preferred thickness, a reinforcing body layer can be added in the critical areas in case the member shows deformations. These benefits can be further enhanced by making the second body member 102 thin. To ensure that the structural integrity of the club head 1 is maintained, these thin panels may preferably include a concave portion 20. Inclusion of these concave portions 20 allow the second body member 102 to withstand greater stress—both longitudinally and transversely—without sustaining permanent deformation or affecting the original cosmetic condition, ensuring the structural integrity of the club head 1 is maintained. Preferred thicknesses for the first body member 101 include from 0.03 inch to 0.05 inch, while preferred thicknesses for the second body member 102 include from 0.015 inch to 0.025 inch. Preferably, the concave portion 20 displaces at least 10 cubic centimeters. More preferably, the concave portion 20 displaces at least 25 cubic centimeters. While the club head 1 can be virtually any size, preferably it is a legal club head. A plurality of concave portions 20 may be used with the club head 1. For example, concave portions 20 of uniform or varying size may be positioned in the toe, heel, back, etc.
As shown in
While the body members 101, 102 may be formed in a variety of manners, a preferred manner includes forming a complete club head shell (first body member 101) in known manner and removing material to create openings to which the second body member 102 can be coupled. The opening may be created in any desired manner, such as with a laser. The second body member 102 may be joined to the first body member 101 in a variety of manners, such as through bonding or through a snap-fit in conjunction with bonding. If a composite material is used for the concave inserts, molding six plies of 0/90/45/-45/90/0 is preferred.
As best depicted in
One method of establishing the locations of the secondary weights 26, 28 is discussed herein. As shown in
The locations of the secondary weights 26, 28 may also be determined for the present invention by measuring from the center point C. From center point C, the center of gravity of each secondary weight 26, 28 is a distance X of at least 0.50 inch rearward along line A-A, the distance Z that is a maximum of 0.25 inch above the center point C, and a minimum of 0.75 inch away from line A-A in opposing directions, towards the toe T for the toe secondary weight 26 and towards the heel H for the heel secondary weight 28. Thus, each secondary weight 26, 28 is a minimum of 0.90 inch from the center point C.
The secondary weights 26, 28 can be selected from a plurality of weights designed to make specific adjustments to the club head weight. The secondary weights 26, 28 can be welded into place or attached by a bonding agent. The weights 26, 28 can be formed from typically heavy weight inserts such as steel, nickel, or tungsten. Preferably, the body of the club head 1 is formed from titanium, and the crown portion 13 from a light-weight material such as carbon fiber composite, polypropylene, Kevlar, thermoplastic, magnesium, or some other suitable light-weight material. Preferred volumes of the club head 1 include from 350 cc to 460 cc. The secondary weights 26, 28 preferably range in mass from 2 to 35 grams, with 10 grams to 35 grams being more preferred. It is well known that by varying parameters such as shaft flex points, weights and stiffness, face angles, and club lofts, it is possible to accommodate a wide spectrum of golfers. But the present invention addresses the most important launch consideration, which is to optimize the club head mass properties (center of gravity and moment of inertia) by creating a center of gravity that is low, rearward, and wide of center. The club head 1 of the present invention encompasses areas of the club head that are not typically utilized for weighting because they adversely alter the traditional look of a club head. The design of this club head 1 allows for a portion of the secondary weights 26, 28 to bulge outside the normal contour of the club head.
The first body member 101 preferably includes an attachment perimeter 18 for each insert (including the crown 13). These attachment perimeters 18 extend around the edge of the respective openings. Preferably, each attachment perimeter 18 includes a step defining two attachment surfaces 18a, 18b, which provide additional assurance of a strong bond between the respective club head components. (While each attachment perimeter 18 of
The openings in the club head 1 into which the inserts 13, 35, 102, 105 are positioned preferably may be created by forming a complete club head shell in known fashion, and then creating the openings therein. One preferred method of creating the openings is by using a laser to remove portions of the metallic material of the first body member 101. This method provides for tight tolerances. The attachment perimeter 18, including attachment surfaces 18a, 18b, may be formed in a variety of manners, such as machining the first body member 101 after laser cutting the opening in the club head 1.
Each sole insert 105 preferably has a mass of 0.5 gram to 10 grams, and more preferably from 1 gram to 5 grams. The sole inserts 305, as well as the other inserts, may be beveled or stepped slightly to provide a location for any excess adhesive. In one embodiment, the toe and heel sole inserts 26, 28 each have a preferred mass range of 4 grams to 7 grams, while the intermediate insert sole 27 has a preferred mass range of 2 grams to 3 grams. In one embodiment, the thickness of the club head components is tapered such that the walls are thicker towards the face 11 and thinner towards the rear of the club head 1. Such wall thickness tapering frees more mass for more beneficial placement in the club head 1.
While the preferred embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. For example, while two body members have been described above, the present invention may be embodied in a club head having more than two body members. Additionally, the present invention may be embodied in any type of club in addition to the wood-type clubs shown in the illustrated embodiments. Thus the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Furthermore, while certain advantages of the invention have been described herein, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
This is a continuation-in-part of U.S. patent application Ser. No. 11/110,733 filed on Apr. 21, 2005, which is incorporated herein by reference in its entirety. This is also a continuation-in-part of U.S. patent application Ser. No. 11/180,406 filed on Jul. 13, 2005, now U.S. Pat. No. 7,377,860, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3941390 | Hussey | Mar 1976 | A |
4021047 | Mader | May 1977 | A |
4653756 | Sato | Mar 1987 | A |
5186465 | Chorne | Feb 1993 | A |
5213328 | Long et al. | May 1993 | A |
5272802 | Stites, III | Dec 1993 | A |
5310186 | Karsten | May 1994 | A |
5435558 | Iriarte | Jul 1995 | A |
5785609 | Sheets et al. | Jul 1998 | A |
5997415 | Wood | Dec 1999 | A |
D418885 | Wanchena | Jan 2000 | S |
6123627 | Antonious | Sep 2000 | A |
6139446 | Wanchena | Oct 2000 | A |
6162133 | Peterson | Dec 2000 | A |
6248025 | Murphy et al. | Jun 2001 | B1 |
6248026 | Wanchena | Jun 2001 | B1 |
6332848 | Long et al. | Dec 2001 | B1 |
6422951 | Burrows | Jul 2002 | B1 |
6482106 | Saso | Nov 2002 | B2 |
6565452 | Helmstetter et al. | May 2003 | B2 |
6575845 | Galloway et al. | Jun 2003 | B2 |
6645086 | Chen | Nov 2003 | B1 |
6739984 | Ciasullo | May 2004 | B1 |
6860818 | Mahaffey et al. | Mar 2005 | B2 |
6872152 | Beach et al. | Mar 2005 | B2 |
6929565 | Nakahara et al. | Aug 2005 | B2 |
7070517 | Cackett et al. | Jul 2006 | B2 |
7140974 | Chao et al. | Nov 2006 | B2 |
7303487 | Kumamoto | Dec 2007 | B2 |
7371191 | Sugimoto | May 2008 | B2 |
20010049310 | Cheng et al. | Dec 2001 | A1 |
20020045490 | Ezawa et al. | Apr 2002 | A1 |
20030045371 | Wood et al. | Mar 2003 | A1 |
20030144078 | Setokawa et al. | Jul 2003 | A1 |
20040138002 | Murray | Jul 2004 | A1 |
20040192468 | Onoda et al. | Sep 2004 | A1 |
20050119070 | Kumamoto | Jun 2005 | A1 |
20050159243 | Chuang | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
2003-093554 | Apr 2003 | JP |
2004-121744 | Apr 2004 | JP |
2004-159680 | Jun 2004 | JP |
2004-337327 | Dec 2004 | JP |
WO2004052472 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060240909 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11180406 | Jul 2005 | US |
Child | 11363098 | US | |
Parent | 11110733 | Apr 2005 | US |
Child | 11180406 | US |