Golf club head with improved striking face

Information

  • Patent Grant
  • 9700766
  • Patent Number
    9,700,766
  • Date Filed
    Thursday, July 30, 2015
    9 years ago
  • Date Issued
    Tuesday, July 11, 2017
    7 years ago
Abstract
A golf club head with an improved striking face is disclosed herein. More specifically, the present invention utilizes an innovative die quenching method that can alter the Young's modulus of the material of the striking face. The striking face portion of the present invention generally created from an α+β titanium alloy such as SP 700 that contains a β rich alloy composition to create more phase change in the alloying elements. In a preferred embodiment, the die quenching process could create a localized change in the material's Young's modulus throughout different regions of the striking face, resulting in a change in the Young's modulus of the material within the same striking face.
Description
FIELD OF THE INVENTION

The present invention relates generally to a golf club head with an improved striking face. More specifically, the present invention relates to a striking face of a golf club head manufactured utilizing an innovative quenching method that alters the Young's modulus of the material. The striking face portion in accordance with the present invention is generally created from an beta rich, near beta α+β titanium alloy such as SP 700 that will yield a reduced Young's modulus of the material to improve the performance of the striking face. The present invention could even create a change in the Young's modulus of the striking face while maintain the same alloy to further improve the performance of the striking face.


BACKGROUND OF THE INVENTION

In order to improve the performance of a golf club, club designers are constantly struggling to achieve a golf club with higher performance. One of the recent trends in improving golf club performance has been focused on improving the striking face of a metalwood golf club head.


The striking face of a metalwood golf club head is one of the most important component of a golf club head, as it is the only part that comes in contact with the golf ball. In order to maximize the performance of a golf club head, golf club designers have experimented with variables such as improving the coefficient of restitution (COR) as well as increasing the size of the “sweet zone”. The “sweet zone”, as generally known in the golf industry, relates to the zone of substantially uniform high initial velocity or a high COR. These concepts of “sweet zone” and COR have already been discussed by U.S. Pat. No. 6,605,007 to Bissonnette et al., and the disclosure of which is hereby incorporated by reference in its entirety.


One of the ways to create a larger “sweet zone” is illustrated in U.S. Pat. No. 8,318,300 to Schmitt et al., wherein a frontal wall of the striking face has a variable thickness. More specifically, U.S. Pat. No. 8,318,300 discussed how a golf club having a variable thickness will resist cracking bucking, and to efficiently transmit impact forces to the head top wall.


U.S. Pat. No. 7,682,262 to Soracco et al. expands upon the above basic concept of a variable face thickness by going on to establish the concept of “flexural stiffness”, wherein different flexural stiffness in the striking face can be achieved by different materials, different thicknesses, or a combination of both different material and different thicknesses.


Despite all of the advances in attempting to improve the performance of the striking face of the golf club head, none of the references are capable of adjusting the performance of the striking face without varying the material or thickness, both of which have some minor drawbacks. Varying the material of the striking face would require a bonding process to occur at the striking face portion, which could potentially crack when subjected to the high impact forced with a golf ball. Varying the thickness of the striking face, although eliminates the problem with cracking, would require additional mass at the striking face portion by thickening up certain parts of the striking face.


More importantly, none of the prior art recognize the ability to alter the Young's modulus of the same material used for the striking face portion to improve upon the performance of the golf club head.


Hence, based on the above it can be seen, there exists a need for an ability to alter the performance of a striking face of a golf club head that takes advantage of the inherent material property of the material by altering its Young's modulus. More specifically, there is a need in the field for a striking face of a golf club head wherein the Young's modulus of the striking face could be changed independent or in combination with the adjustment in altering the thickness.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the present invention is a golf club head comprising of a striking face portion and an aft portion attached to the rear of the striking face portion. The striking face portion is made out of an α−β titanium having a Molybdenum Equivalency between 4.0 and 9.75 and wherein at least a portion of the striking face portion has a Young's modulus of less than about 90 GPa.


In another aspect of the present invention is a method of manufacturing a golf club head comprising the step of heating a striking face portion that is made of an α−β titanium alloy to a temperature that is 25-100° C. below a β-transus temperature of a material used to make said striking face portion and subsequently quenching the striking face portion using a die via conduction by maintaining the die in direct contact with the striking face portion for greater than about 15 seconds. The resulting face insert portion will comprise of at least one phase that is a body centered cubic β structure and where at least a portion of the striking face portion has a Young's modulus of less than about 90 GPa.


These and other features, aspects and advantages of the present invention will become better understood with references to the following drawings, description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the invention will be apparent from the following description of the invention as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.



FIG. 1 shows a perspective view of a golf club head in accordance with the present invention;



FIG. 2 shows a frontal view of a golf club head in accordance with the present invention, allowing cross-sectional line A-A′ to be shown;



FIG. 3a shows a perspective view of prior art face insert;



FIG. 3b shows a cross-sectional view of the prior art face insert shown in FIG. 3a;



FIG. 3c shows the Young's modulus profile of the prior art face insert across the cross-sectional area shown in FIG. 3b;



FIG. 3c shows the Flexural Stiffness profile of the prior art face insert across cross-sectional area shown in FIG. 3b;



FIG. 3d shows the Flexural Stiffness profile of the prior art face insert across cross-sectional area shown in FIG. 3b;



FIG. 4a shows a perspective view of a different prior art face insert;



FIG. 4b shows a cross-sectional view of the prior art face insert shown in FIG. 4a;



FIG. 4c shows the Young's modulus profile of the prior art face insert across the cross-sectional area shown in FIG. 4;



FIG. 4d shows the Flexural Stiffness profile of the prior art face insert across cross-sectional area shown in FIG. 4b;



FIG. 5a shows a perspective view of a face insert with a die in accordance with an exemplary embodiment of the present invention;



FIG. 5b shows a cross-sectional view of the face insert shown in FIG. 5a;



FIG. 5c shows the Young's modulus profile of the face insert across the cross-sectional area shown in FIG. 5b;



FIG. 5d shows the Flexural Stiffness profile of the face insert across cross-sectional area shown in FIG. 5b;



FIG. 6a shows a phase diagram of a titanium alloy used for the face insert in accordance with an exemplary embodiment of the present invention;



FIG. 6b shows the crystalline structure of the titanium alloy used for the face insert in accordance with an exemplary embodiment of the present invention;



FIG. 7a shows a perspective view of a face cup with a die in accordance with an exemplary embodiment of the present invention;



FIG. 7b shows a cross-sectional view of the face cup shown in FIG. 7a;



FIG. 7c shows the Young's modulus profile of the face cup across the cross-sectional area shown in FIG. 7b;



FIG. 7d shows the Flexural Stiffness profile of the face cup across cross-sectional area shown in FIG. 7b;



FIG. 8a shows a perspective view of a face insert with a die in accordance with an exemplary embodiment of the present invention;



FIG. 8b shows a cross-sectional view of the face insert shown in FIG. 8a;



FIG. 8c shows the Young's modulus profile of the face insert across the cross-sectional area shown in FIG. 8b;



FIG. 8D shows the Flexural Stiffness profile of the face insert across cross-sectional area shown in FIG. 8b;



FIG. 9a shows a perspective view of a face insert with a die in accordance with an exemplary embodiment of the present invention;



FIG. 9b shows a cross-sectional view of the face insert shown in FIG. 9a;



FIG. 9c shows the Young's modulus profile of the face insert across the cross-sectional area shown in FIG. 9b;



FIG. 9d shows the Flexural Stiffness profile of the face insert across cross-sectional area shown in FIG. 9b;



FIG. 10a shows a perspective view of a face insert with a die in accordance with an exemplary embodiment of the present invention;



FIG. 10b shows a cross-sectional view of the face insert shown in FIG. 10a;



FIG. 10c shows the Young's modulus profile of the face insert across the cross-sectional area shown in FIG. 10b;



FIG. 10d shows the Flexural Stiffness profile of the face insert across cross-sectional area shown in FIG. 10b;



FIG. 11a shows a perspective view of a face cup with a die in accordance with an alternative embodiment of the present invention;



FIG. 11b shows a cross-sectional view of the face cup shown in FIG. 11a;



FIG. 11c shows the Young's modulus profile of the face cup across the cross-sectional area shown in FIG. 11b; and



FIG. 11d shows the Flexural Stiffness profile of the face cup across cross-sectional area shown in FIG. 11b.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.


Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any or all of the problems discussed above or may only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.



FIG. 1 of the accompanying drawings shows a perspective view of a golf club head 100 in accordance with the present invention. The golf club head 100 may generally have a body 102 portion and a striking face 104 portion, wherein the striking face 104 may further comprise of a face insert 106. The face insert 106 of the golf club head 100 may generally have a variable Young's modulus changing radially from the center 108 of the striking face 104. In an alternative embodiment of the present invention, the striking face 104 may utilize a face cup construction instead of a face insert 106 while still maintaining a variable Young's modulus that changes radially from the center 108 of the striking face.


The face insert 106 of the striking face 104, as discussed in this exemplary embodiment, may generally be comprised of a β rich α+β titanium material such as SP-700. A β rich titanium material is preferred because the change in Young's modulus of the face insert 106 contemplated by the present invention is achieved through the phase changes of the titanium between α and β phases via a heat treatment and quenching process. More information regarding the preferred material of SP-700 can be found in JFE's technical report titled Advantages of High Formability SP 700 Titanium Alloy and Its Applications (March 2005), the disclosure of which is incorporated by reference in its entirety. However, there are numerous other alloys that could potentially exhibit such a behavior which can generally be described as being near β titanium alloys. The nomenclature of titanium alloys as α or β is based on which phase is predominantly present in the alloy at room temperature. As can be expected an a titanium alloy has predominantly α phase present at room temperature. Conversely, a β alloy has predominantly β phase present at room temperature. And a α−β alloy has both phases present in significant quantities. It should be pointed out that for most titanium alloys of importance, β phase is not the equilibrium phase at room temperature as per the thermodynamic principles; it is infact α phase. The reason β phase remains at room temperature is because the transformation of β to α is suppressed due to rapid cooling or quenching. Certain elements such as Mo, V, Cr, Fe, Ni, Co, Mn, Nb, Ta and W tend to stabilize the β phase and therefore alloying of titanium with such elements allows the alloy to be cooled slowly while still retaining β phase. When a titanium alloy containing significant amount of β phase is heated to elevated temperature, the β phase transforms into the equilibrium α phase. Thus the β phase in most titanium alloys is considered as metastable. It is possible to alloy the titanium to such an extent, that the β phase becomes the equilibrium phase and such an alloy cannot be heated to elevated temperature to transform into α. Alloys belonging to this category are not part of this invention. The discussion above relating to the transformation and stability of β phase can be described by a parameter called “Molybdenum Equivalency” summarized by Eq. (1) below

Mo-Eq=% Mo+0.2% Ta+0.28% Nb+0.4% W+0.67% V+1.25% Cr+1.25% Ni+1.7% Mn+1.7% Co+2.5% Fe   Eq. (1)

where % indicates the weight percent of that element in the alloy.


A Mo-Eq greater than about 10 is considered necessary for retaining all the β phase at room temperature. A titanium alloy is considered near β alloy when the Mo-Eq. is close to 10 but not more than 10, although a clear definition of near β titanium alloy is not available, for the purpose of this discussion, a Mo-Eq of greater than about 10 can be considered a β rich alloy. For this invention it is speculated that alloys having Mo-Eq in the range 4-9.5 are suitable for die quenching to obtain the low Young's modulus discussed above. It should be pointed out that Young's modulus will depend on the alloying element and not strictly on the Mo-Eq. For example, it is possible to achieve a Mo-Eq. of 9 by alloying titanium with 9 wt % of Mo or 3.6 wt % of Fe. The resulting Young's modulus however is not the same for both alloys.


The Young's modulus of the face insert 106 that changes radially from the center may not does not require the Young's modulus of the face insert 106 to be different at each and every section that shifts away from the center 108 of the striking face 104. Rather, the radial change in Young's modulus, as referred to by the present invention, could alternatively be described as a mere change of the Young's modulus of the face insert 106 at different locations. The face insert 106, as described in the present embodiment, may generally be comprised of a single alloy such as SP-700 Titanium as described above, however, other alloys capable of α and β phase transformation may also be used without departing from the scope and content of the present invention.



FIG. 2 of the accompanying drawings shows a frontal view of a golf club head 200 in accordance with the present invention, allowing cross-sectional line A-A′ to be shown. FIG. 2, in addition to showing the striking face 204 with a face insert 206, also show a central zone 201, an intermediate zone 203, and an outer zone 205. The location and size of the central zone 201, the intermediate zone 203, and outer zone 205 shown here in FIG. 2 are not critical and are not drawn to scale. The illustration here serves the purpose of illustrating the relationship of the zones relative to one another, as the zones will be referred to later with respect to the varying Young's modulus of the striking face 204.


In order to understand the need for a striking face 204 of a golf club head to have a varying Young's modulus that changes radially from the central zone 201, the intermediate zone 203, and the outer zone 205, a brief background discussion regarding the development of prior art striking face of a golf club may be beneficial. FIGS. 3a, 3b, 3c, and 3d of the accompanying drawings does that by showing a prior art face insert 306 together with its Young's modulus and Flexural Stiffness (FS) profiles across a horizontal cross-section. FIG. 3a of the accompanying drawings shows a perspective view of a face insert 306 in accordance with a prior art golf club head with a constant thickness across the entire face insert 306. FIG. 3b shows a cross-sectional view of a face insert 306 taken horizontally from a heel to toe direction of the striking face 204 passing through the face center 208 as illustrated by cross-sectional line A-A′ shown in FIG. 2. As previously mentioned, the thickness of the face insert 306 in this prior art embodiment may generally have a constant thickness d1 of about 2.5 mm. Because it is desirable for the face insert 306 of a striking face to be flexible to increase the coefficient of restitution upon impact with a golf ball, it is generally desirable to have a face with a low Young's modulus with a high tensile strength paired with a low yield strength. FIG. 3c shows the Young's modulus of this prior art face insert 306 being constant at approximately 110 GPa across the entire width of the face insert 306. Finally, FIG. 3d of the accompanying drawing shows a graph of the Flexural Stiffness of the face insert 306 across the cross-section shown in FIG. 3b. The concept of flexural stiffness is defined by the following formula as shown by Eq. (2):

FS=E*t3   Eq. (2)

where,


E=Young's modulus of material, and


t=thickness of the material.


The concept of determining the Flexural Stiffness of a striking face of a golf club has been discussed in commonly owned U.S. Pat. No. 6,605,007 to Bissonnette et al., the disclosure of which is incorporated by reference in its entirety.


Before the discussion moves away from the Young's modulus of a material, it is worthwhile to note here that the Young's modulus of a material such as a striking face of a golf club head may generally be measured using a non-destructive ultrasonic test equipment, as the Young's modulus of a material is related to its Poisson's Ratio, which is a function of the longitudinal and shear wave sound velocity. Numerous devices such as the Olympus Thickness Gauges 38DL Plus, 45MG with Single Element Software, or Model 35 DL can all be used. Alternatively, Olympus Flaw Detectors with velocity measurement capabilities such as the EPOCH series instruments or even Olympus Pulse/Receivers such as Model 5072PR or 5077PR can all be used without departing from the scope and content of the present invention.


Here, given that the Young's modulus of the face insert 306 is approximately 110 GPa and the thickness d1 of the face insert is about 2.5 mm, the Flexural Stiffness of this prior art face insert stay constant at approximately 1,700 kN-mm.


One factor useful to determine the ability of the face insert 306 to improve the coefficient of restitution over a greater area is to calculate the Flexural Stiffness Ratio of a the face insert 306, wherein the Flexural Stiffness Ratio is defined as follows by Eq. (3):










Flexural





Stiffness





Ratio

=


Peak





Flexural





Stiffness


Trough





Flexural





Stiffness






(

Eq
.




3

)








Here, in this prior art embodiment, the Flexural Stiffness Ratio is 1, as the Flexural Stiffness of the entire prior art face insert 306 stays constant across the entire cross-section.



FIG. 4a through 4d of the accompanying drawings shows a different prior art face insert 406 intended to improve upon the prior art face insert 306 shown in FIG. 3, by creating a face insert 406 with a variable Flexural Stiffness. This prior art face insert 406 achieves this change in Flexural Stiffness by utilizing the commonly known technique of varying the thickness of the face insert 406. In FIG. 4b, the cross-sectional view of the face insert 406 is taken horizontally across the striking face, as indicated by cross-sectional line A-A′ shown in FIG. 2 is shown to more fully illustrate the change in thickness of the face insert 406. Here, the face insert 406 is thicker at the central zone and thinner around the intermediate and outer zones. More specifically, the outer zone may have a first thickness d1 of approximately 2.5 mm, while the central zone may have a second thickness d2 of approximately 3.5 mm. FIG. 4c shows that this prior art face insert 406 has a constant Young's modulus of approximately 110 GPa across the entire cross-section, yielding a Flexural Stiffness profile shown in FIG. 4d. The Flexural Stiffness profile of the variable thickness face insert 406 shown in FIG. 4d may have a Flexural Stiffness of approximately 1,700 kN-mm at the outer zones and gradually increasing to a Flexural Stiffness of about 4,700 kN-mm at the central zone, before tapering back to a Flexural Stiffness of approximately 1,700 kN-mm at the other outer zone. It is worth noting that in this exemplary embodiment, the change in the Flexural Stiffness of the prior art face insert 406 is achieved by changing the thickness “t” while keeping the Young's modulus of the material constant.


This prior art face insert 406, by incorporating a variable face thickness, has a Flexural Stiffness Ratio of 2.75, indicative of the fact that the central zone 401 is approximately 2.75 more compliant than the outer zone 405, as the peak Flexural Stiffness and the trough Flexural Stiffness occur at the central zone 401 and outer zone 405 respectively.



FIG. 5a through 5d shows a face insert 506 in accordance with an exemplary embodiment of the present invention with a die 510 used to help rapidly quench and cool the face insert 506 to promote the phase transformation of the face insert 506 discussed above. Although the conventional quenching process of a face insert 506 may generally be convection cooling with air, the current embodiment utilizes conduction cooling by placing the die 510 in direct contact with the face insert 506 to achieve the rapid quenching required. The phase transformation of this particular titanium material serves to retain the β phase titanium post heat treatment, which alter the Young's modulus of the material. In the exemplary embodiment, a face insert 506 of a golf club head's striking face is generally heat treated by first bring the temperature of the face insert above a β transus temperature and selectively quenching all or just a portion of the face insert 506 to preserve the β titanium body-centered cubic crystalline structure. The result of the present inventive methodology allows a phase change in the titanium material, thus lowering the Young's modulus of the material.


In one preferred embodiment, the SP-700 titanium face insert 506 may generally be heated 50 C. below the β transus temperature to about 845° C. for a time period of 6 minutes. Subsequent to the heating phase, the die 510 is introduced to the face insert 506 for a duration of greater than approximately 5 seconds, more preferably greater than about 10 seconds, most preferably greater than about 15 seconds. This die 510 may generally have an internal geometry the mirrors the ultimate geometry of the face insert 506, as the die 510 can also help form the geometry of the face insert 506 by applying pressure to the face insert 506 similar to that of a forging process. In this exemplary embodiment of the present invention, the temperature of the die 510 is not controlled, however, in a more precise embodiment, the temperature of the die 510 could be maintained at a desired temperature without departing from the scope and content of the present invention. For example, in an alternative embodiment of the present invention, the face insert 506 could be heated up to the previously discussed temperature of about 845° C., then quenched by a die 510 that is maintained at a temperature of less than about 250° C., more preferably less than about 200° C., and most preferably less than about 150° C. without departing from the scope and content of the present invention.


The die 510 shown in this exemplary embodiment of the present invention may generally be created from a carbon steel type material with a bulk conductivity of approximately 16 W/mK to allow heat of the face insert 506 to be conducted away to the die 510. However, numerous other materials such as iron with a bulk conductivity of approximately 55 W/mK, Zinc with a bulk conductivity of approximately 112 W/mK, aluminum with a bulk conductivity of approximately 167 W/mK, copper with a bulk conductivity of approximately 388 W/mK, or even silver with a bulk conductivity of approximately 418 W/mK all without departing from the scope and content of the present invention. In fact. The material of the die 510 may generally have a bulk conductivity of greater than about 10 W/mK, more preferably greater than about 15 W/mK, and most preferably greater than about 20 w/mK.



FIG. 5b shows a cross-sectional view of the current inventive face insert 506. As it can be seen, the cross-sectional view of the face insert 506 does not differ very much from the prior art face insert 406 shown in FIG. 5b, as the thickness' are very similar with d1 being approximately 2.5 mm and d2 being approximately 3.5 mm. However, a closer examination of the Young's modulus of the face insert 506 shown in FIG. 5c and the Flexural Stiffness shown in FIG. 5d clearly shows that the present invention differs from the prior art. More specifically, FIG. 5c shows that due to the heat treatment discussed above, the Young's modulus of the face insert 506 has decreased significantly from about 110 GPa to less than about 90 GPa, more preferably less than about 85 GPa, and most preferably less than about 80 GPa. The effect of this reduced Young's modulus creates a Flexural Modulus that is less than about 3,900 kN-mm at the central zone and less than about 1,500 kN-mm at the outer zone, more preferably less than about 3,650 kN-mm at the central zone and less than about 1350 kN-mm at the outer zone, and most preferably less than 3,450 kN-mm at the central zone and less than about 1250 kN-mm at the outer zone as shown in FIG. 5d.


Here, in this current exemplary embodiment of the present invention, the face insert 506 may generally have a Flexural Stiffness Ratio of greater than about 2.60, more preferably greater than about 2.65, and most preferably greater than about 2.70, all without departing from the scope and content of the present invention. Notice here that the peak Flexural Stiffness occurs at the central zone 501 and the trough Flexural Stiffness occurs at the outer zone 505.


In order to provide a clearer explanation of the interaction between α and β phases within a Titanium alloy , FIGS. 6a and 6b are provided. FIG. 6a is an equilibrium phase diagram of the current titanium alloy illustrating relationship of the α and β phases as a function of temperature and composition. As it can be seen in FIG. 6a, an α−β titanium alloy may generally have more Hexagonal Close Packed (HCP) α phase at a lower temperature. As the alloy is heated, upon reaching the α-solvus temperature, the α phase starts to transform to β phase. At the β-transus temperature all the α phase has been transformed to β. FIG. 6b provides a closer graphical representation of the difference between a β phase BCC structure and an α phase HCP structure, giving a visual representation of the crystalline structure. As can be seen from FIG. 6a, that at any temperature between α-solvus and β-transus, the alloy will be a mixture of α and β phases. The relative amounts of the phases is determined by the composition and temperature of the alloy; higher the temperature more the amount of β. Experimentally it has been found that quenching from α+β phase field is better than quenching from above the β-transus. The Young's modulus in both the cases is very similar. Thus there is no advantage to quenching from above the β-transus temperature.



FIGS. 7a through 7d shows an alternative embodiment of the present invention wherein a face cup 706 is shown instead of a face insert 506 (shown in FIG. 5a). In this embodiment, the die 710 is used in the same way as previously discussed to cool the face cup 706 to create the change in Young's modulus that was previously discussed. Using the same method described above, the face cup 706 may achieve the same Young's modulus and Flexural Stiffness as a previously discussed. More specifically, FIG. 7b shows a cross-sectional view of the face cup 706 having a similar thickness at the ball striking region with d1 being approximately 2.5 mm and d2 being approximately 3.5 mm. Notice here in FIG. 7c, the Young's modulus of the face cup 706 has decreased dramatically to approximately less than about 90 GPa, more preferably less than about 85 GPa, and most preferably less than about 80 GPa. The effect of this reduced Young's modulus creates a Flexural Stiffness that is less than about 3,900 kN-mm at the central zone and less than about 1,500 kN-mm at the outer zone, more preferably less than about 3,650 kN-mm at the central zone and less than about 1350 kN-mm at the outer zone, and most preferably less than 3,450 kN-mm at the central zone and less than about 1250 kN-mm at the outer zone as shown in FIG. 7d.


Similar to the face insert 506 shown in FIG. 5, the face cup 706 may generally have a Flexural Stiffness Ratio of greater than about 2.60, more preferably greater than about 2.65, and most preferably greater than about 2.70, all without departing from the scope and content of the present invention.



FIG. 8a through 8d shows an alternative embodiment of the present invention wherein the die 810 may have an opening 812 to further manipulate the desired Flexural Stiffness of a face insert 806. Here, the opening 812 will allow the central portion 801 to maintain a high Flexural Stiffness while the intermediate zone 803 and the outer zone 805 may have a lower Flexural Stiffness due to the reduction in Young's modulus from the die quenching process. In order to illustrate this effect, FIGS. 8b through 8d are provided below. FIG. 8b, illustrates that the face insert 806 maintains a very similar geometry than all of the previous embodiments, however, a closer examination of the Young's modulus profile of the face insert 806 shows a dramatically different story, with a variable Young's modulus across the cross-section. More specifically, the central portion 801 may generally have a Young's modulus of greater than about 110 GPa, while the intermediate and outer zones 803 and 805 may generally have a lower Young's modulus of less than about 90 GPa, more preferably less than about 85 GPa, and most preferably less than about 80 GPa. The effect of this Young's modulus profile will yield a Flexural Stiffness of greater than about 4700 kN-mm at the central zone, and a Flexural Stiffness of less than about 1400 kN-mm, more preferably less than about 1350 kN-mm, and most preferably less than about 1250 kN-mm.


In this current exemplary embodiment, the maximum change in Young's modulus is greater than about 20 GPa, more preferably greater than about 25 GPa, and most preferably greater than about 30 GPa. Additionally, in this current embodiment, the Flexural Stiffness takes advantage of both the change in Young's modulus of the face insert 806 as well as the change in thickness, to create a Flexural Stiffness Ratio of greater than about 3.30, more preferably greater than about 3.50, most preferably greater than about 4.0.



FIG. 9a through 9d show a further alternative embodiment of the present invention, wherein a die 910 may have an opening 912 similar to the prior embodiment, but the boundaries of the die 910 do not extend to the boarders of the face insert 906, forming a circular doughnut shape. This particular doughnut shaped die can be used on a face insert 906 without a variable thickness to simulate the effect that increases ball speed across a greater portion of the face. In order to understand this embodiment, FIG. 9b show a cross-sectional view of the face insert 906 having a constant thickness d1 throughout. In one embodiment, the thickness d1 may generally be about 2.5 mm. FIG. 9c shows the effect of this alternative die 910 on the Young's modulus of the face insert 906, which yields a lower Young's modulus of about 70 GPa at portions wherein the die 910 comes into contact with the face insert 906 while maintaining a Young's modulus of about 110 GPa at portions wherein the conductive heat transfer did not take place. Finally, as shown in FIG. 9d, the Flexural Stiffness of this alternative embodiment at its peak near the central zone and the outer zone at approximately 1700 kN-mm while the intermediate zone has a Flexural Stiffness of less than about 1250 kN-mm.


Ultimately, the face insert 906 in accordance with this embodiment of the present invention may generally have a Flexural Stiffness Ratio of about 1.36. Notice in this embodiment, the peak Flexural Stiffness occurs at the center of the golf club, while the trough Flexural Stiffness occurs near an intermediate zone.



FIG. 10a through 10d of the accompanying drawings show an even further alternative embodiment of the present invention wherein a doughnut shaped die 1010 having an opening 1012 can be used in combination with a face insert 1006 that has a variable thickness. Having seen the cross-section of the face insert 1006 shown in FIG. 10b, the Young's modulus of a this face insert 1006 may generally change from about 70 GPa at portions where the die 1010 comes in contact with the face insert 1006 and about 110 GPa at portions wherein the conductive heat transfer did not take place as shown in FIG. 10c. Similarly, FIG. 10d shows the Flexural Stiffness of the face insert 1006 across the cross-section, having a peak Flexural Stiffness of about 4700 kN-mm and a trough Flexural Stiffness of about 1200 kN-mm, yielding a Flexural Stiffness Ratio of about 4.0.



FIGS. 11a through 11d of the accompanying drawings show an alternative embodiment of the present invention, wherein a face cup 1106 utilizes a top die 1110 and a bottom die 1120 to create an alternative Young's modulus profile. The top die 1110, as shown in the embodiment, may generally be ring shaped, allowing the Young's modulus of the perimeter of the face cup 1106 to be adjusted. Additionally, the bottom die 1120 utilizes a cup type geometry with an opening in the center to concentrate the quenching process near the perimeter of the face cup 1106. The resultant face cup, as it can be seen by the cross-sectional diagram in FIG. 11b, may look similar to previous face cup designs in terms of thickness, but will have a dramatically different Young's modulus profile as observed in FIG. 11c. More specifically, the perimeter of the face cup 1106 may have a Young's modulus of less than about 70 GPa, while the center of the face cup will maintain a Young's modulus of greater than about 110 GPa. Finally, FIG. 11d shows the Flexural Stiffness of the face cup 1106, indicates that the extreme perimeter of the face cup 1106 will generally have a Flexural Stiffness of less than about 1200 kN-mm, while the intermediate portion will generally have a Flexurall Stiffness of less than about 1800 kN-mm, and the central portion having a Flexural Stiffness of greater than about 4700 kN-mm, yielding a Flexural Stiffness Ratio of about 4.0.


Although all of the proceeding discussion relates to the incorporation of the die quenching process on the striking face of a golf ball, the same process could be applied to different portions of the golf club head such as the crown, the sole, the hosel, or even the skirt all without departing from the scope and content of the present invention. Additionally, the same die quenching process discussed above is not limited to a metalwood type golf club, but could extend to cover iron type golf clubs as well without departing from the scope and content of the present invention.


Other than in the operating example, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moment of inertias, center of gravity locations, loft, draft angles, various performance ratios, and others in the aforementioned portions of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear in the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the aforementioned specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.


It should be understood, of course, that the foregoing relates to exemplary embodiments of the present invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

Claims
  • 1. A golf club head comprising: a striking face portion; andan aft portion, attached to a rear of said striking face portion;wherein said striking face portion is made out of an α-β titanium alloy comprising at least one of a body centered cubic β titanium alloy;wherein at least a portion of said striking face portion has a Young's modulus of less than about 80 GPa, andwherein said striking face portion has a variable Young's modulus across at least one cross-sectional area.
  • 2. The golf club head of claim 1, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 20 GPa.
  • 3. The golf club head of claim 2, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 25 GPa.
  • 4. The golf club head of claim 3, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 30 GPa.
  • 5. The golf club head of claim 1, wherein said striking face portion has a Flexural Stiffness Ratio of greater than about 2.6, said Flexural Stiffness Ratio defined as a peak Flexural Stiffness of said striking face portion divided by a trough Flexural Stiffness of said striking face.
  • 6. The golf club head of claim 5, wherein said striking face portion has a Flexural Stiffness Ratio of greater than about 2.65.
  • 7. The golf club head of claim 6, wherein said striking face portion has a Flexural Stiffness Ratio of greater than about 4.0.
  • 8. The golf club head of claim 1, wherein said α-β titanium alloy has Molybdenum Equivalency of between 4.0 and 9.75.
  • 9. A golf club head comprising: a striking face portion; andan aft portion, attached to a rear of said striking face portion;wherein said striking face portion is made out of a titanium alloy SP-700 material,wherein at least a portion of said striking face portion has a Young's modulus of less than about 90 GPa, andwherein said striking face portion has a variable Young's modulus across at least one cross-sectional area.
  • 10. The golf club head of claim 9, wherein said α- β titanium alloy has Molybdenum Equivalency of less than about 9.5.
  • 11. The golf club head of claim 9, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 20 GPa.
  • 12. The golf club head of claim 11, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 25 GPa.
  • 13. The golf club head of claim 12, wherein said striking face portion has a striking face with a maximum change in Young's modulus of greater than about 30 GPa.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 13/854,817, filed Apr. 1, 2013, the disclosure of which is incorporated by reference in its entirety.

US Referenced Citations (231)
Number Name Date Kind
1318325 Klin Oct 1919 A
1319233 Mattern Oct 1919 A
1467435 Kinneak Sep 1923 A
1525352 Aitken Feb 1925 A
1543691 Beat Jun 1925 A
1582836 Link Apr 1926 A
1589363 Butchart Jun 1926 A
1595589 Tyler Aug 1926 A
1605551 Mattern Nov 1926 A
1699874 Buhrke Jan 1929 A
1704119 Buhrke Mar 1929 A
1704165 Buhrke Mar 1929 A
1720867 Webster Jul 1929 A
2034936 Barnhart Mar 1936 A
2087685 Hackney Jul 1937 A
2176845 Temple Oct 1939 A
2662537 Doyle Dec 1953 A
3334882 Rossbach Aug 1967 A
3567228 Lynn Mar 1971 A
3571900 Hardesty Mar 1971 A
3619184 Bomberger, Jr. Nov 1971 A
3625518 Solheim Dec 1971 A
3659855 Hardesty May 1972 A
3863932 Lezatte Feb 1975 A
3985363 Jepson et al. Oct 1976 A
4023802 Jepson et al. May 1977 A
4193601 Reid, Jr. et al. Mar 1980 A
4213613 Nygren Jul 1980 A
4214754 Zebelean Jul 1980 A
D267965 Kobayashi Feb 1983 S
4429879 Schmidt Feb 1984 A
4432549 Zebelean Feb 1984 A
4449707 Hayashi et al. May 1984 A
4451041 Hayashi et al. May 1984 A
4451042 Hayashi et al. May 1984 A
4465221 Schmidt Aug 1984 A
4471961 Masghati et al. Sep 1984 A
4489945 Kobayashi Dec 1984 A
4511145 Schmidt Apr 1985 A
4762324 Anderson Aug 1988 A
4792140 Yamaguchi et al. Dec 1988 A
4826172 Antonious May 1989 A
4842243 Butler Jun 1989 A
4913438 Anderson Apr 1990 A
4915385 Anderson Apr 1990 A
4915386 Antonious Apr 1990 A
4919430 Antonious Apr 1990 A
4919431 Antonious Apr 1990 A
4921252 Antonious May 1990 A
4928965 Yamaguchi et al. May 1990 A
4930781 Allen Jun 1990 A
4932658 Antonious Jun 1990 A
4955610 Creighton et al. Sep 1990 A
D312858 Anderson et al. Dec 1990 S
5000454 Soda Mar 1991 A
5024437 Anderson Jun 1991 A
5028049 McKeighen Jul 1991 A
5046733 Antonious Sep 1991 A
5056705 Wakita et al. Oct 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5090702 Viste Feb 1992 A
5094383 Anderson Mar 1992 A
5106094 Desbiolles et al. Apr 1992 A
5141230 Antonious Aug 1992 A
5163682 Schmidt et al. Nov 1992 A
5180166 Schmidt et al. Jan 1993 A
5183255 Antonious Feb 1993 A
5213328 Long et al. May 1993 A
5221087 Fenton et al. Jun 1993 A
5240252 Schmidt et al. Aug 1993 A
5242167 Antonious Sep 1993 A
5255918 Anderson et al. Oct 1993 A
5261663 Anderson Nov 1993 A
5261664 Anderson Nov 1993 A
5271621 Lo Dec 1993 A
5292129 Long et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301945 Schmidt et al. Apr 1994 A
5318300 Schmidt et al. Jun 1994 A
5328184 Antonious Jul 1994 A
5344140 Anderson Sep 1994 A
5346218 Wyte Sep 1994 A
5351958 Helmstetter Oct 1994 A
5358249 Mendralla Oct 1994 A
5362047 Shaw et al. Nov 1994 A
5362055 Rennie Nov 1994 A
5366223 Werner et al. Nov 1994 A
5380010 Werner et al. Jan 1995 A
5390924 Antonious Feb 1995 A
5395113 Antonious Mar 1995 A
5397126 Allen Mar 1995 A
5401021 Allen Mar 1995 A
5405136 Hardman Apr 1995 A
5405137 Vincent et al. Apr 1995 A
5407202 Igarashi Apr 1995 A
RE34925 McKeighen May 1995 E
5417419 Anderson et al. May 1995 A
5417559 Schmidt May 1995 A
5423535 Shaw et al. Jun 1995 A
5429357 Kobayashi Jul 1995 A
5431396 Shieh Jul 1995 A
5433440 Lin Jul 1995 A
5447307 Antonious Sep 1995 A
5447309 Vincent Sep 1995 A
5451056 Manning Sep 1995 A
5460376 Schmidt et al. Oct 1995 A
5467983 Chen Nov 1995 A
5470069 Schmidt et al. Nov 1995 A
5474296 Schmidt et al. Dec 1995 A
5482279 Antonious Jan 1996 A
5497993 Shan Mar 1996 A
5505453 Mack Apr 1996 A
5522593 Kobayashi et al. Jun 1996 A
5524331 Pond Jun 1996 A
5533729 Leu Jul 1996 A
5536006 Shieh Jul 1996 A
5547630 Schmidt Aug 1996 A
5549297 Mahaffey Aug 1996 A
5564994 Chang Oct 1996 A
5584770 Jensen Dec 1996 A
5595552 Wright et al. Jan 1997 A
5611741 Schmidt et al. Mar 1997 A
5611742 Kobayashi Mar 1997 A
D379393 Kubica May 1997 S
5626530 Schmidt et al. May 1997 A
5643104 Antonious Jul 1997 A
5643108 Cheng Jul 1997 A
5643110 Igarashi Jul 1997 A
5649872 Antonious Jul 1997 A
5651409 Sheehan Jul 1997 A
5655976 Rife Aug 1997 A
5669827 Nagamoto Sep 1997 A
5669829 Lin Sep 1997 A
5674132 Fisher Oct 1997 A
D387113 Burrows Dec 1997 S
5695411 Wright et al. Dec 1997 A
5709614 Horiba Jan 1998 A
5709615 Liang Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5716292 Huang Feb 1998 A
5718641 Lin Feb 1998 A
5720673 Anderson Feb 1998 A
5743813 Chen et al. Apr 1998 A
5753170 Muang May 1998 A
5755624 Helmstetter May 1998 A
5762567 Antonious Jun 1998 A
5766092 Mimeur et al. Jun 1998 A
5766094 Mahaffey et al. Jun 1998 A
5766095 Antonious Jun 1998 A
5776011 Su et al. Jul 1998 A
5807190 Krumme et al. Sep 1998 A
5827132 Bamber Oct 1998 A
RE35955 Lu Nov 1998 E
D401652 Burrows Nov 1998 S
5830084 Kosmatka Nov 1998 A
5839975 Lundberg Nov 1998 A
5842934 Ezaki et al. Dec 1998 A
5851159 Burrows Dec 1998 A
5863261 Eggiman Jan 1999 A
5873791 Allen Feb 1999 A
5873795 Wozny et al. Feb 1999 A
D406294 Burrows Mar 1999 S
5888148 Allen Mar 1999 A
5890973 Gamble Apr 1999 A
5896642 Peker et al. Apr 1999 A
D411272 Burrows Jun 1999 S
5908357 Hsieh Jun 1999 A
5921872 Kobayashi Jul 1999 A
5931746 Soong Aug 1999 A
5935019 Yamamoto Aug 1999 A
5938541 Allen et al. Aug 1999 A
5941782 Cook Aug 1999 A
5944619 Cameron Aug 1999 A
5954596 Noble et al. Sep 1999 A
D415807 Werner et al. Oct 1999 S
5961394 Minabe Oct 1999 A
5967905 Nakahara et al. Oct 1999 A
5971868 Kosmatka Oct 1999 A
5993329 Shieh Nov 1999 A
6001495 Bristow Dec 1999 A
6007432 Kosmatka Dec 1999 A
6017280 Hubert Jan 2000 A
6027416 Schmidt et al. Feb 2000 A
6139445 Werner et al. Oct 2000 A
6152833 Werner et al. Nov 2000 A
6200685 Davidson Mar 2001 B1
6248025 Murphy et al. Jun 2001 B1
6319150 Werner et al. Nov 2001 B1
6338683 Kosmatka Jan 2002 B1
6354962 Galloway Mar 2002 B1
6381828 Boyce et al. May 2002 B1
6390933 Galloway et al. May 2002 B1
6398666 Evans et al. Jun 2002 B1
6413169 Kosmatka Jul 2002 B1
6435982 Galloway et al. Aug 2002 B1
6565452 Helmstetter et al. May 2003 B2
6605007 Bissonnette et al. Aug 2003 B1
6607693 Saito Aug 2003 B1
6623376 Poynor Sep 2003 B2
6663501 Chen Dec 2003 B2
6755627 Chang Jun 2004 B2
6800243 Tetyukhin Oct 2004 B2
6913546 Kakiuchi Jul 2005 B2
6932716 Ehlers Aug 2005 B2
6994635 Poynor Feb 2006 B2
7029403 Rice et al. Apr 2006 B2
7066832 Willett et al. Jun 2006 B2
7096558 Sano Aug 2006 B2
7207898 Rice et al. Apr 2007 B2
7261643 Rice et al. Aug 2007 B2
7281985 Galloway Oct 2007 B2
7361099 Rice et al. Apr 2008 B2
7621824 Sano Nov 2009 B2
7878925 Ogawa Feb 2011 B2
8047931 Yokota Nov 2011 B2
8409032 Myrhum Apr 2013 B2
9433835 Sugimae Sep 2016 B2
20010000337 Naruo Apr 2001 A1
20010001773 Naruo May 2001 A1
20050020379 Kumamoto Jan 2005 A1
20050026723 Kumamoto Feb 2005 A1
20050072496 Hwang Apr 2005 A1
20050192117 Knuth Sep 2005 A1
20050221913 Kusumoto Oct 2005 A1
20060189410 Soracco Aug 2006 A1
20080090676 Matsunaga Apr 2008 A1
20130310192 Wahl Nov 2013 A1
20130324301 Boyd Dec 2013 A1
20140080633 Bezilla Mar 2014 A1
20140295988 Sugimae et al. Oct 2014 A1
Foreign Referenced Citations (52)
Number Date Country
1114911 Jan 1996 CN
2268693 Jan 1994 GB
2331938 Jun 1999 GB
59207169 Nov 1984 JP
61033682 Feb 1986 JP
61162967 Jul 1986 JP
61181477 Aug 1986 JP
61185281 Aug 1986 JP
61240977 Oct 1986 JP
1244770 Sep 1989 JP
02130519 May 1990 JP
4020357 Jan 1992 JP
4327864 Nov 1992 JP
5212526 Aug 1993 JP
05237207 Sep 1993 JP
6007487 Jan 1994 JP
06031016 Feb 1994 JP
6114126 Apr 1994 JP
6126002 May 1994 JP
6154367 Jun 1994 JP
6182005 Jul 1994 JP
6269518 Sep 1994 JP
8168541 Jul 1996 JP
08224327 Sep 1996 JP
08224327 Sep 1996 JP
8243194 Sep 1996 JP
8280853 Oct 1996 JP
8280854 Oct 1996 JP
8294550 Nov 1996 JP
9028842 Feb 1997 JP
9047531 Feb 1997 JP
9154985 Jun 1997 JP
9168613 Jun 1997 JP
9192270 Jul 1997 JP
9192273 Jul 1997 JP
9239074 Sep 1997 JP
9239075 Sep 1997 JP
9248353 Sep 1997 JP
9294833 Nov 1997 JP
9299519 Nov 1997 JP
10024126 Jan 1998 JP
10024128 Jan 1998 JP
10085369 Apr 1998 JP
10118227 May 1998 JP
10137372 May 1998 JP
10155943 Jun 1998 JP
10258142 Sep 1998 JP
10263121 Oct 1998 JP
10323410 Dec 1998 JP
10337347 Dec 1998 JP
2010-100943 May 2010 JP
2010100943 May 2010 JP
Non-Patent Literature Citations (5)
Entry
Golf Digest, Sep. 1982, p. 25.
Golf Digest, Dec. 1981, p. 58 59.
“Variable Face Thickness Technology,” Calloway Golf advertisement, cover and pp. 1-4, undated.
“Advantages of High-Formability SP-700 Titanium Alloy and Its Applications,” JFE Report GIHO, Aug. 2004, No. 5, pp. 63-64.
“Elastic Modulus Measurement,” Olympus Corporation, 2013, pp. 1-4.
Related Publications (1)
Number Date Country
20150360093 A1 Dec 2015 US
Continuations (1)
Number Date Country
Parent 13854817 Apr 2013 US
Child 14814371 US