The present invention relates generally to a golf club head with an improved striking face. More specifically, the present invention relates to a striking face of a golf club head manufactured utilizing an innovative quenching method that alters the Young's modulus of the material. The striking face portion in accordance with the present invention is generally created from a beta rich, near beta α+β titanium alloy such as SP 700 that will yield a reduced Young's modulus of the material to improve the performance of the striking face. The present invention could even create a change in the Young's modulus of the striking face while maintain the same alloy to further improve the performance of the striking face.
In order to improve the performance of a golf club, club designers are constantly struggling to achieve a golf club with higher performance. One of the recent trends in improving golf club performance has been focused on improving the striking face of a metalwood golf club head.
The striking face of a metalwood golf club head is one of the most important component of a golf club head, as it is the only part that comes in contact with the golf ball. In order to maximize the performance of a golf club head, golf club designers have experimented with variables such as improving the coefficient of restitution (COR) as well as increasing the size of the “sweet zone”. The “sweet zone”, as generally known in the golf industry, relates to the zone of substantially uniform high initial velocity or a high COR. These concepts of “sweet zone” and COR have already been discussed by U.S. Pat. No. 6,605,007 to Bissonnette et al., and the disclosure of which is hereby incorporated by reference in its entirety.
One of the ways to create a larger “sweet zone” is illustrated in U.S. Pat. No. 8,318,300 to Schmitt et al., wherein a frontal wall of the striking face has a variable thickness. More specifically, U.S. Pat. No. 8,318,300 discussed how a golf club having a variable thickness will resist cracking bucking, and to efficiently transmit impact forces to the head top wall.
U.S. Pat. No. 7,682,262 to Soracco et al. expands upon the above basic concept of a variable face thickness by going on to establish the concept of “flexural stiffness”, wherein different flexural stiffness in the striking face can be achieved by different materials, different thicknesses, or a combination of both different material and different thicknesses.
Despite all of the advances in attempting to improve the performance of the striking face of the golf club head, none of the references are capable of adjusting the performance of the striking face without varying the material or thickness, both of which have some minor drawbacks. Varying the material of the striking face would require a bonding process to occur at the striking face portion, which could potentially crack when subjected to the high impact forced with a golf ball. Varying the thickness of the striking face, although eliminates the problem with cracking, would require additional mass at the striking face portion by thickening up certain parts of the striking face.
More importantly, none of the prior art recognize the ability to alter the Young's modulus of the same material used for the striking face portion to improve upon the performance of the golf club head.
Hence, based on the above it can be seen, there exists a need for an ability to alter the performance of a striking face of a golf club head that takes advantage of the inherent material property of the material by altering its Young's modulus. More specifically, there is a need in the field for a striking face of a golf club head wherein the Young's modulus of the striking face could be changed independent or in combination with the adjustment in altering the thickness.
In one aspect of the present invention is a golf club head comprising of a striking face portion and an aft portion attached to the rear of the striking face portion. The striking face portion is made out of an α-β titanium having a Molybdenum Equivalency between 4.0 and 9.75 and wherein at least a portion of the striking face portion has a Young's modulus of less than about 90 GPa.
In another aspect of the present invention is a method of manufacturing a golf club head comprising the step of heating a striking face portion that is made of an α-β titanium alloy to a temperature that is 25-100° C. below a β-transus temperature of a material used to make said striking face portion and subsequently quenching the striking face portion using a die via conduction by maintaining the die in direct contact with the striking face portion for greater than about 15 seconds. The resulting face insert portion will comprise of at least one phase that is a body centered cubic β structure and where at least a portion of the striking face portion has a Young's modulus of less than about 90 GPa.
These and other features, aspects and advantages of the present invention will become better understood with references to the following drawings, description and claims.
The foregoing and other features and advantages of the invention will be apparent from the following description of the invention as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any or all of the problems discussed above or may only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
The face insert 106 of the striking face 104, as discussed in this exemplary embodiment, may generally be comprised of a β rich α+β titanium material such as SP-700. A β rich titanium material is preferred because the change in Young's modulus of the face insert 106 contemplated by the present invention is achieved through the phase changes of the titanium between α and β phases via a heat treatment and quenching process. More information regarding the preferred material of SP-700 can be found in JFE's technical report titled Advantages of High Formability SP 700 Titanium Alloy and Its Applications (March 2005), the disclosure of which is incorporated by reference in its entirety. However, there are numerous other alloys that could potentially exhibit such a behavior which can generally be described as being near β titanium alloys. The nomenclature of titanium alloys as α or β is based on which phase is predominantly present in the alloy at room temperature. As can be expected an α titanium alloy has predominantly α phase present at room temperature. Conversely, a β alloy has predominantly β phase present at room temperature. And a α-β alloy has both phases present in significant quantities. It should be pointed out that for most titanium alloys of importance, β phase is not the equilibrium phase at room temperature as per the thermodynamic principles; it is in fact α phase. The reason β phase remains at room temperature is because the transformation of β to α is suppressed due to rapid cooling or quenching. Certain elements such as Mo, V, Cr, Fe, Ni, Co, Mn, Nb, Ta and W tend to stabilize the β phase and therefore alloying of titanium with such elements allows the alloy to be cooled slowly while still retaining β phase. When a titanium alloy containing significant amount of β phase is heated to elevated temperature, the β phase transforms into the equilibrium α phase. Thus the β phase in most titanium alloys is considered as metastable. It is possible to alloy the titanium to such an extent, that the β phase becomes the equilibrium phase and such an alloy cannot be heated to elevated temperature to transform into α. Alloys belonging to this category are not part of this invention. The discussion above relating to the transformation and stability of β phase can be described by a parameter called “Molybdenum Equivalency” summarized by Eq. (1) below
Mo-Eq=% Mo+0.2% Ta+0.28% Nb+0.4% W+0.67% V+1.25% Cr+1.25% Ni+1.7% Mn+1.7% Co+2.5% Fe Eq. (1)
where % indicates the weight percent of that element in the alloy.
A Mo-Eq greater than about 10 is considered necessary for retaining all the β phase at room temperature. A titanium alloy is considered near β alloy when the Mo-Eq. is close to 10 but not more than 10, although a clear definition of near β titanium alloy is not available, for the purpose of this discussion, a Mo-Eq of greater than about 10 can be considered a β rich alloy. For this invention it is speculated that alloys having Mo-Eq in the range 4-9.5 are suitable for die quenching to obtain the low Young's modulus discussed above. It should be pointed out that Young's modulus will depend on the alloying element and not strictly on the Mo-Eq. For example, it is possible to achieve a Mo-Eq. of 9 by alloying titanium with 9 wt % of Mo or 3.6 wt % of Fe. The resulting Young's modulus however is not the same for both alloys.
The Young's modulus of the face insert 106 that changes radially from the center may not does not require the Young's modulus of the face insert 106 to be different at each and every section that shifts away from the center 108 of the striking face 104. Rather, the radial change in Young's modulus, as referred to by the present invention, could alternatively be described as a mere change of the Young's modulus of the face insert 106 at different locations. The face insert 106, as described in the present embodiment, may generally be comprised of a single alloy such as SP-700 Titanium as described above, however, other alloys capable of α and β phase transformation may also be used without departing from the scope and content of the present invention.
In order to understand the need for a striking face 204 of a golf club head to have a varying Young's modulus that changes radially from the central zone 201, the intermediate zone 203, and the outer zone 205, a brief background discussion regarding the development of prior art striking face of a golf club may be beneficial.
FS=E*t3 Eq. (2)
where,
Before the discussion moves away from the Young's modulus of a material, it is worthwhile to note here that the Young's modulus of a material such as a striking face of a golf club head may generally be measured using a non-destructive ultrasonic test equipment, as the Young's modulus of a material is related to its Poisson's Ratio, which is a function of the longitudinal and shear wave sound velocity. Numerous devices such as the Olympus Thickness Gauges 38DL Plus, 45MG with Single Element Software, or Model 35 DL can all be used. Alternatively, Olympus Flaw Detectors with velocity measurement capabilities such as the EPOCH series instruments or even Olympus Pulse/Receivers such as Model 5072PR or 5077PR can all be used without departing from the scope and content of the present invention.
Here, given that the Young's modulus of the face insert 306 is approximately 110 GPa and the thickness d1 of the face insert is about 2.5 mm, the Flexural Stiffness of this prior art face insert stay constant at approximately 1,700 kN-mm.
One factor useful to determine the ability of the face insert 306 to improve the coefficient of restitution over a greater area is to calculate the Flexural Stiffness Ratio of a the face insert 306, wherein the Flexural Stiffness Ratio is defined as follows by Eq. (3):
Here, in this prior art embodiment, the Flexural Stiffness Ratio is 1, as the Flexural Stiffness of the entire prior art face insert 306 stays constant across the entire cross-section.
This prior art face insert 406, by incorporating a variable face thickness, has a Flexural Stiffness Ratio of 2.75, indicative of the fact that the central zone 401 is approximately 2.75 more compliant than the outer zone 405, as the peak Flexural Stiffness and the trough Flexural Stiffness occur at the central zone 401 and outer zone 405 respectively.
In one preferred embodiment, the SP-700 titanium face insert 506 may generally be heated 50 C below the β transus temperature to about 845° C. for a time period of 6 minutes. Subsequent to the heating phase, the die 510 is introduced to the face insert 506 for a duration of greater than approximately 5 seconds, more preferably greater than about 10 seconds, most preferably greater than about 15 seconds. This die 510 may generally have an internal geometry the mirrors the ultimate geometry of the face insert 506, as the die 510 can also help form the geometry of the face insert 506 by applying pressure to the face insert 506 similar to that of a forging process. In this exemplary embodiment of the present invention, the temperature of the die 510 is not controlled, however, in a more precise embodiment; the temperature of the die 510 could be maintained at a desired temperature without departing from the scope and content of the present invention. For example, in an alternative embodiment of the present invention, the face insert 506 could be heated up to the previously discussed temperature of about 845° C., then quenched by a die 510 that is maintained at a temperature of less than about 250° C., more preferably less than about 200° C., and most preferably less than about 150° C. without departing from the scope and content of the present invention.
The die 510 shown in this exemplary embodiment of the present invention may generally be created from a carbon steel type material with a bulk conductivity of approximately 16 W/mK to allow heat of the face insert 506 to be conducted away to the die 510. However, numerous other materials such as iron with a bulk conductivity of approximately 55 W/mK, Zinc with a bulk conductivity of approximately 112 W/mK, aluminum with a bulk conductivity of approximately 167 W/mK, copper with a bulk conductivity of approximately 388 W/mK, or even silver with a bulk conductivity of approximately 418 W/mK all without departing from the scope and content of the present invention. In fact. The material of the die 510 may generally have a bulk conductivity of greater than about 10 W/mK, more preferably greater than about 15 W/mK, and most preferably greater than about 20 w/mK.
Here, in this current exemplary embodiment of the present invention, the face insert 506 may generally have a Flexural Stiffness Ratio of greater than about 2.60, more preferably greater than about 2.65, and most preferably greater than about 2.70, all without departing from the scope and content of the present invention. Notice here that the peak Flexural Stiffness occurs at the central zone 501 and the trough Flexural Stiffness occurs at the outer zone 505.
In order to provide a clearer explanation of the interaction between α and β phases within a Titanium alloy,
Similar to the face insert 506 shown in
In this current exemplary embodiment, the maximum change in Young's modulus is greater than about 20 GPa, more preferably greater than about 25 GPa, and most preferably greater than about 30 GPa. Additionally, in this current embodiment, the Flexural Stiffness takes advantage of both the change in Young's modulus of the face insert 806 as well as the change in thickness, to create a Flexural Stiffness Ratio of greater than about 3.30, more preferably greater than about 3.50, most preferably greater than about 4.0.
Ultimately, the face insert 906 in accordance with this embodiment of the present invention may generally have a Flexural Stiffness Ratio of about 1.36. Notice in this embodiment, the peak Flexural Stiffness occurs at the center of the golf club, while the trough Flexural Stiffness occurs near an intermediate zone.
Although all of the proceeding discussion relates to the incorporation of the die quenching process on the striking face of a golf ball, the same process could be applied to different portions of the golf club head such as the crown, the sole, the hosel, or even the skirt all without departing from the scope and content of the present invention. Additionally, the same die quenching process discussed above is not limited to a metalwood type golf club, but could extend to cover iron type golf clubs as well without departing from the scope and content of the present invention.
Other than in the operating example, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moment of inertias, center of gravity locations, loft, draft angles, various performance ratios, and others in the aforementioned portions of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear in the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the aforementioned specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the present invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1318325 | Klin | Oct 1919 | A |
1319233 | Mattern | Oct 1919 | A |
1467435 | Kinneak | Sep 1923 | A |
1525352 | Aitken | Feb 1925 | A |
1543691 | Beat | Jun 1925 | A |
1582836 | Link | Apr 1926 | A |
1589363 | Butchart | Jun 1926 | A |
1595589 | Tyler | Aug 1926 | A |
1605551 | Mattern | Nov 1926 | A |
1699874 | Buhrke | Jan 1929 | A |
1704119 | Buhrke | Mar 1929 | A |
1704165 | Buhrke | Mar 1929 | A |
1720867 | Webster | Jul 1929 | A |
2034936 | Barnhart | Mar 1936 | A |
2087685 | Hackney | Jul 1937 | A |
2176845 | Temple | Oct 1939 | A |
2662537 | Doyle | Dec 1953 | A |
3334882 | Rossbach | Aug 1967 | A |
3567228 | Lynn | Mar 1971 | A |
3571900 | Hardesty | Mar 1971 | A |
3619184 | Bomberger et al. | Nov 1971 | A |
3625518 | Solheim | Dec 1971 | A |
3659855 | Hardesty | May 1972 | A |
3863932 | Lezatte | Feb 1975 | A |
3985363 | Jepson et al. | Oct 1976 | A |
4023802 | Jepson et al. | May 1977 | A |
4193601 | Reid, Jr. et al. | Mar 1980 | A |
4213613 | Nygren | Jul 1980 | A |
4214754 | Zebelean | Jul 1980 | A |
D267965 | Kobayashi | Feb 1983 | S |
4429879 | Schmidt | Feb 1984 | A |
4432549 | Zebelean | Feb 1984 | A |
4449707 | Hayashi et al. | May 1984 | A |
4451041 | Hayashi et al. | May 1984 | A |
4451042 | Hayashi et al. | May 1984 | A |
4465221 | Schmidt | Aug 1984 | A |
4471961 | Masghati et al. | Sep 1984 | A |
4489945 | Kobayashi | Dec 1984 | A |
4511145 | Schmidt | Apr 1985 | A |
4762324 | Anderson | Aug 1988 | A |
4792140 | Yamaguchi et al. | Dec 1988 | A |
4826172 | Antonious | May 1989 | A |
4842243 | Butler | Jun 1989 | A |
4913438 | Anderson | Apr 1990 | A |
4915385 | Anderson | Apr 1990 | A |
4915386 | Antonious | Apr 1990 | A |
4919430 | Antonious | Apr 1990 | A |
4919431 | Antonious | Apr 1990 | A |
4921252 | Antonious | May 1990 | A |
4928965 | Yamaguchi et al. | May 1990 | A |
4930781 | Allen | Jun 1990 | A |
4932658 | Antonious | Jun 1990 | A |
4955610 | Creighton et al. | Sep 1990 | A |
D312858 | Anderson et al. | Dec 1990 | S |
5000454 | Soda | Mar 1991 | A |
5024437 | Anderson | Jun 1991 | A |
5028049 | McKeighen | Jul 1991 | A |
5046733 | Antonious | Sep 1991 | A |
5056705 | Wakita et al. | Oct 1991 | A |
5060951 | Allen | Oct 1991 | A |
5067715 | Schmidt et al. | Nov 1991 | A |
5090702 | Viste | Feb 1992 | A |
5094383 | Anderson | Mar 1992 | A |
5106094 | Desbiolles et al. | Apr 1992 | A |
5141230 | Antonious | Aug 1992 | A |
5163682 | Schmidt et al. | Nov 1992 | A |
5180166 | Schmidt et al. | Jan 1993 | A |
5183255 | Antonious | Feb 1993 | A |
5213328 | Long et al. | May 1993 | A |
5221087 | Fenton et al. | Jun 1993 | A |
5240252 | Schmidt et al. | Aug 1993 | A |
5242167 | Antonious | Sep 1993 | A |
5255918 | Anderson et al. | Oct 1993 | A |
5261663 | Anderson | Nov 1993 | A |
5261664 | Anderson | Nov 1993 | A |
5271621 | Lo | Dec 1993 | A |
5292129 | Long et al. | Mar 1994 | A |
5295689 | Lundberg | Mar 1994 | A |
5301945 | Schmidt et al. | Apr 1994 | A |
5318300 | Schmidt et al. | Jun 1994 | A |
5328184 | Antonious | Jul 1994 | A |
5344140 | Anderson | Sep 1994 | A |
5346218 | Wyte | Sep 1994 | A |
5351958 | Helmstetter | Oct 1994 | A |
5358249 | Mendralla | Oct 1994 | A |
5362047 | Shaw et al. | Nov 1994 | A |
5362055 | Rennie | Nov 1994 | A |
5366223 | Werner et al. | Nov 1994 | A |
5380010 | Werner et al. | Jan 1995 | A |
5390924 | Antonious | Feb 1995 | A |
5395113 | Antonious | Mar 1995 | A |
5397126 | Allen | Mar 1995 | A |
5401021 | Allen | Mar 1995 | A |
5405136 | Hardman | Apr 1995 | A |
5405137 | Vincent et al. | Apr 1995 | A |
5407202 | Igarashi | Apr 1995 | A |
RE34925 | McKeighen | May 1995 | E |
5417419 | Anderson et al. | May 1995 | A |
5417559 | Schmidt | May 1995 | A |
5423535 | Shaw et al. | Jun 1995 | A |
5429357 | Kobayashi | Jul 1995 | A |
5431396 | Shieh | Jul 1995 | A |
5433440 | Lin | Jul 1995 | A |
5447307 | Antonious | Sep 1995 | A |
5447309 | Vincent | Sep 1995 | A |
5451056 | Manning | Sep 1995 | A |
5460376 | Schmidt et al. | Oct 1995 | A |
5467983 | Chen | Nov 1995 | A |
5470069 | Schmidt et al. | Nov 1995 | A |
5474296 | Schmidt et al. | Dec 1995 | A |
5482279 | Antonious | Jan 1996 | A |
5497993 | Shan | Mar 1996 | A |
5505453 | Mack | Apr 1996 | A |
5522593 | Kobayashi et al. | Jun 1996 | A |
5524331 | Pond | Jun 1996 | A |
5533729 | Leu | Jul 1996 | A |
5536006 | Shieh | Jul 1996 | A |
5547630 | Schmidt | Aug 1996 | A |
5549297 | Mahaffey | Aug 1996 | A |
5564994 | Chang | Oct 1996 | A |
5584770 | Jensen | Dec 1996 | A |
5595552 | Wright et al. | Jan 1997 | A |
5611741 | Schmidt et al. | Mar 1997 | A |
5611742 | Kobayashi | Mar 1997 | A |
D379393 | Kubica | May 1997 | S |
5626530 | Schmidt et al. | May 1997 | A |
5643104 | Antonious | Jul 1997 | A |
5643108 | Cheng | Jul 1997 | A |
5643110 | Igarashi | Jul 1997 | A |
5649872 | Antonious | Jul 1997 | A |
5651409 | Sheehan | Jul 1997 | A |
5655976 | Rife | Aug 1997 | A |
5669827 | Nagamoto | Sep 1997 | A |
5669829 | Lin | Sep 1997 | A |
5674132 | Fisher | Oct 1997 | A |
D387113 | Burrows | Dec 1997 | S |
5695411 | Wright et al. | Dec 1997 | A |
5709614 | Horiba | Jan 1998 | A |
5709615 | Liang | Jan 1998 | A |
5711722 | Miyajima et al. | Jan 1998 | A |
5716292 | Huang | Feb 1998 | A |
5718641 | Lin | Feb 1998 | A |
5720673 | Anderson | Feb 1998 | A |
5743813 | Chen et al. | Apr 1998 | A |
5753170 | Muang | May 1998 | A |
5755624 | Helmstetter | May 1998 | A |
5762567 | Antonious | Jun 1998 | A |
5766092 | Mimeur et al. | Jun 1998 | A |
5766094 | Mahaffey et al. | Jun 1998 | A |
5766095 | Antonious | Jun 1998 | A |
5776011 | Su et al. | Jul 1998 | A |
5807190 | Krumme et al. | Sep 1998 | A |
5827132 | Bamber | Oct 1998 | A |
RE35955 | Lu | Nov 1998 | E |
D401652 | Burrows | Nov 1998 | S |
5830084 | Kosmatka | Nov 1998 | A |
5839975 | Lundberg | Nov 1998 | A |
5842934 | Ezaki et al. | Dec 1998 | A |
5851159 | Burrows | Dec 1998 | A |
5863261 | Eggiman | Jan 1999 | A |
5873791 | Allen | Feb 1999 | A |
5873795 | Wozny et al. | Feb 1999 | A |
D406294 | Burrows | Mar 1999 | S |
5888148 | Allen | Mar 1999 | A |
5890973 | Gamble | Apr 1999 | A |
5896642 | Peker et al. | Apr 1999 | A |
D411272 | Burrows | Jun 1999 | S |
5908357 | Hsieh | Jun 1999 | A |
5921872 | Kobayashi | Jul 1999 | A |
5931746 | Soong | Aug 1999 | A |
5935019 | Yamamoto | Aug 1999 | A |
5938541 | Allen et al. | Aug 1999 | A |
5941782 | Cook | Aug 1999 | A |
5944619 | Cameron | Aug 1999 | A |
5954596 | Noble et al. | Sep 1999 | A |
D415807 | Werner et al. | Oct 1999 | S |
5961394 | Minabe | Oct 1999 | A |
5967905 | Nakahara et al. | Oct 1999 | A |
5971868 | Kosmatka | Oct 1999 | A |
5993329 | Shieh | Nov 1999 | A |
6001495 | Bristow et al. | Dec 1999 | A |
6007432 | Kosmatka | Dec 1999 | A |
6017280 | Hubert | Jan 2000 | A |
6027416 | Schmidt et al. | Feb 2000 | A |
6139445 | Werner et al. | Oct 2000 | A |
6152833 | Werner et al. | Nov 2000 | A |
6248025 | Murphy et al. | Jun 2001 | B1 |
6319150 | Werner et al. | Nov 2001 | B1 |
6338683 | Kosmatka | Jan 2002 | B1 |
6354962 | Galloway et al. | Mar 2002 | B1 |
6381828 | Boyce et al. | May 2002 | B1 |
6390933 | Galloway et al. | May 2002 | B1 |
6398666 | Evans et al. | Jun 2002 | B1 |
6413169 | Kosmatka | Jul 2002 | B1 |
6435982 | Galloway et al. | Aug 2002 | B1 |
6565452 | Helmstetter et al. | May 2003 | B2 |
6605007 | Bissonnette | Aug 2003 | B1 |
6607693 | Saito | Aug 2003 | B1 |
6663501 | Chen | Dec 2003 | B2 |
6755627 | Chang | Jun 2004 | B2 |
6800243 | Tetyukhin et al. | Oct 2004 | B2 |
6913546 | Kakiuchi | Jul 2005 | B2 |
6932716 | Ehlers et al. | Aug 2005 | B2 |
6994635 | Poyner | Feb 2006 | B2 |
7029403 | Rice et al. | Apr 2006 | B2 |
7066832 | Willett et al. | Jun 2006 | B2 |
7096558 | Sano | Aug 2006 | B2 |
7207898 | Rice et al. | Apr 2007 | B2 |
7261643 | Rice et al. | Aug 2007 | B2 |
7281985 | Galloway | Oct 2007 | B2 |
7361099 | Rice et al. | Apr 2008 | B2 |
7621824 | Sano | Nov 2009 | B2 |
7878925 | Ogawa | Feb 2011 | B2 |
8047931 | Yokota | Nov 2011 | B2 |
8409032 | Myrhum et al. | Apr 2013 | B2 |
20010000337 | Naruo et al. | Apr 2001 | A1 |
20010001773 | Naruo et al. | May 2001 | A1 |
20010051549 | Inoue | Dec 2001 | A1 |
20050020379 | Kumamoto | Jan 2005 | A1 |
20050026723 | Kumamoto | Feb 2005 | A1 |
20050072496 | Hwang et al. | Apr 2005 | A1 |
20050192117 | Knuth | Sep 2005 | A1 |
20050221913 | Kusumoto | Oct 2005 | A1 |
20060189410 | Soracco | Aug 2006 | A1 |
20080090676 | Matsunaga et al. | Apr 2008 | A1 |
20130310192 | Wahl et al. | Nov 2013 | A1 |
20130324301 | Boyd et al. | Dec 2013 | A1 |
20140080633 | Bezilla et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1114911 | Jan 1996 | CN |
2268693 | Jan 1994 | GB |
2331938 | Jun 1999 | GB |
59207169 | Nov 1984 | JP |
61033682 | Feb 1986 | JP |
61162967 | Jul 1986 | JP |
61181477 | Aug 1986 | JP |
61185281 | Aug 1986 | JP |
61240977 | Oct 1986 | JP |
1244770 | Sep 1989 | JP |
02130519 | May 1990 | JP |
4020357 | Jan 1992 | JP |
4327864 | Nov 1992 | JP |
5212526 | Aug 1993 | JP |
05237207 | Sep 1993 | JP |
6007487 | Jan 1994 | JP |
06031016 | Feb 1994 | JP |
6114126 | Apr 1994 | JP |
6126002 | May 1994 | JP |
6154367 | Jun 1994 | JP |
6182005 | Jul 1994 | JP |
6269518 | Sep 1994 | JP |
8168541 | Jul 1996 | JP |
08224327 | Sep 1996 | JP |
8243194 | Sep 1996 | JP |
8280853 | Oct 1996 | JP |
8280854 | Oct 1996 | JP |
8294550 | Nov 1996 | JP |
9028842 | Feb 1997 | JP |
9047531 | Feb 1997 | JP |
9154985 | Jun 1997 | JP |
9168613 | Jun 1997 | JP |
9192270 | Jul 1997 | JP |
9192273 | Jul 1997 | JP |
9239074 | Sep 1997 | JP |
9239075 | Sep 1997 | JP |
9248353 | Sep 1997 | JP |
9294833 | Nov 1997 | JP |
9299519 | Nov 1997 | JP |
10024126 | Jan 1998 | JP |
10024128 | Jan 1998 | JP |
10085369 | Apr 1998 | JP |
10118227 | May 1998 | JP |
10137372 | May 1998 | JP |
10155943 | Jun 1998 | JP |
10258142 | Sep 1998 | JP |
10263121 | Oct 1998 | JP |
10323410 | Dec 1998 | JP |
10337347 | Dec 1998 | JP |
2010-100943 | May 2010 | JP |
2010100943 | May 2010 | JP |
Entry |
---|
Golf Digest, Sep. 1982, p. 25. |
Golf Digest, Dec. 1981, p. 58 59. |
“Variable Face Thickness Technology,” Calloway Golf advertisement, cover and pp. 1-4, undated. |
“Advantages of High-Formability SP-700 Titanium Alloy and Its Applications,” JFE Report GIHO, Aug. 2004, No. 5, pp. 63-64. |
“Elastic Modulus Measurement,” Olympus Corporation, 2013, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20140295988 A1 | Oct 2014 | US |