This disclosure relates generally to golf clubs and, more particularly, to golf club heads with lightweight adjustable shaft-receiving structures.
In order to achieve maximum performance in the sport of golf, golf club heads must be customizable to particular players. One example of customizability in golf club head design is providing a golf club head with a loft angle and/or lie angle tailored to the player. Loft and lie angle adjustability is often achieved through the use of an adjustable shaft-receiving mechanism. However, such mechanisms require additional components comprising a significant amount of mass (in comparison to non-adjustable shaft-receiving mechanisms). Inclusion of the adjustable components reduces the amount of discretionary mass that can be reallocated in strategic areas of the club head to optimize club head mass properties (i.e center of gravity position and moment of inertia) and improve the performance of the club head.
Prior art club heads, illustrated in
Many prior-art shaft receiving structures 150 comprise a plurality of internal components that are formed by the club head body 101. As illustrated in
As illustrated in
In the prior art shaft-receiving structures 150, the various components described above (i.e. the hosel wall 154, hosel tube 160, hosel base 162, shaft sleeve 166, fastener 176, etc.) are formed of steel or another relatively high-density metal material. As such, providing an adjustable shaft-receiving structure in a golf club head has traditionally reduced the amount of discretionary mass available for improving the club head mass properties. There is a need in the art for a shaft-receiving structure that allows loft and lie adjustability, creates discretionary mass to be redistributed throughout the club head to increase performance, and preserves the structural integrity of the club head.
To facilitate further description of the embodiments, the following drawings are provided in which:
Described herein are various embodiments of a golf club head comprising a lightweight adjustable shaft-receiving structure. The lightweight shaft-receiving structure comprises a reduced mass that creates discretionary mass that can be applied to club head to improve mass properties such as CG position and moment of inertia. The shaft-receiving structure comprises a variety of components, some of which can be constructed of a lightweight material to reduce the overall mass of the shaft-receiving structure. A reduction in the mass of the shaft-receiving structure creates discretionary mass that can be redistributed in strategic locations to create a high-performance club head with improved mass properties.
In particular, the lightweight shaft-receiving structure provides lightweight (i.e. low-density) components in areas of the club head that do not bear significant stress load during the golf swing or at impact between the club head and a golf ball. In many embodiments, portions of the shaft receiving structure spaced away from the contact points between the hosel and the shaft sleeve and/or the contact points between the hosel base and the fastener typically experience negligible stress at impact. The shaft-receiving structure therefore does not rely on any structural components provided in said low-stress portions for the structural integrity of the club head. In many embodiments, lightweight components, such as a lightweight hosel tube insert, hosel insert, or end cap, can be provided in said areas for non-load-bearing purposes. In some embodiments, certain components typically provided in the prior art shaft-receiving structures, such as the hosel tube, can be removed entirely without sacrificing the structural integrity of the club head.
The lightweight shaft-receiving structure provides lightweight components to reduce the overall mass of the shaft-receiving structure and create discretionary mass. The lightweight shaft-receiving structure can create up to 12 more grams of discretionary mass in comparison to a similar prior art shaft-receiving structure lacking lightweight components. In many embodiments, the lightweight shaft-receiving structure comprises a lightweight hosel tube insert with a density less than 3 g/cm3 that seals the hosel bore from the interior cavity without contributing a significant amount of mass. In other embodiments, the lightweight shaft-receiving structure comprises a “tube-less” wherein the hosel tube is removed entirely, providing a maximum reduction in the mass of the shaft-receiving structure. In many embodiments, the discretionary mass created by the lightweight shaft-receiving structure provides a club head with improved mass properties. In many embodiments, the discretionary mass can be used to lower the CG height and/or alter the CG depth to provide a club head with higher launch, less spin, and/or more ball speed. In some embodiments, the discretionary mass can be used to provide an increased moment of inertia over a similar club head with a prior art shaft-receiving structure.
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present invention. The same reference numerals in different figures denote the same elements.
The terms “lightweight” or “low-density” as described herein, in reference to components of the shaft-receiving structure, describe components that are constructed of materials with a lesser density than the metallic material that makes up at least a portion of the club head body.
The terms “replacing” or “replace” as described herein, in reference to the lightweight components of the shaft-receiving structure, refer to the ability of the lightweight component in question to form a portion of the shaft-receiving structure which, in prior art embodiments, would otherwise be formed of the higher-density metallic club head body material. The present disclosure uses the prior art as a reference to illustrate features of the shaft-receiving structure that can be substituted or replaced by the lightweight components described herein.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
The terms “couple,” “coupled,” “couples,” “coupling,” and the like should be broadly understood and refer to connecting two or more elements or signals, electrically, mechanically and/or otherwise.
The term “strike face,” as used described, refers to a club head front surface that is configured to strike a golf ball. The term strike face can be used interchangeably with the “face.”
The term “strike face perimeter,” as described herein, can refer to an edge of the strike face. The strike face perimeter can be located along an outer edge of the strike face where the curvature deviates from a bulge and/or roll of the strike face.
The term “geometric centerpoint,” or “geometric center” of the strike face, as described herein, can refer to a geometric centerpoint of the strike face perimeter, and at a midpoint of the face height of the strike face. In the same or other examples, the geometric centerpoint also can be centered with respect to an engineered impact zone, which can be defined by a region of grooves on the strike face. As another approach, the geometric centerpoint of the strike face can be located in accordance with the definition of a golf governing body such as the United States Golf Association (USGA).
The term “ground plane,” as described herein, can refer to a reference plane associated with the surface on which a golf ball is placed. The ground plane can be a horizontal plane tangent to the sole at an address position.
The term “loft plane,” as described herein, can refer to a reference plane that is tangent to the geometric centerpoint of the strike face.
The term “loft angle,” as described herein, can refer to an angle measured between the loft plane and a plane perpendicular to the ground plane.
The term “face height,” as described herein, can refer to a distance measured parallel to loft plane between a top end of the strikeface perimeter and a bottom end of the strikeface perimeter.
The term “lie angle,” as described herein, can refer to an angle between a hosel axis, extending through the hosel, and the ground plane. The lie angle is measured from a front view.
The “depth” of the golf club head, as described herein, can be defined as a front-to-rear dimension of the golf club head.
The “height” of the golf club head, as described herein, can be defined as a crown-to-sole dimension of the golf club head. In many embodiments, the height of the club head can be measured according to a golf governing body such as the United States Golf Association (USGA).
The “length” of the golf club head, as described herein, can be defined as a heel-to-toe dimension of the golf club head. In many embodiments, the length of the club head can be measured according to a golf governing body such as the United States Golf Association (USGA).
The “geometric center height” of the fairway-type golf club head, as described herein, is a height measured perpendicular from the ground plane to the geometric centerpoint of the golf club head.
The “leading edge” of the club head, as described herein, can be identified as the most sole-ward portion of the strike face perimeter.
An “XYZ” coordinate system of the golf club head, as described herein, is based upon the geometric center of the strike face. The golf club head dimensions as described herein can be measured based on a coordinate system as defined below. The coordinate system is described in reference to
The term or phrase “center of gravity position” or “CG location” can refer to the location of the club head center of gravity (CG) 199 with respect to the XYZ coordinate system, wherein the CG position is characterized by locations along the X-axis 1040, the Y-axis 1050, and the Z-axis 1060. The term “CGx” can refer to the CG location along the X-axis 1050, measured from the origin point 120. The term “CG height” can refer to the CG location along the Y-axis 1050, measured from the origin point 120. The term “CGy” can be synonymous with the CG height. The term “CG depth” can refer to the CG location along the Z-axis 1060, measured from the origin point 120. The term “CGz” can be synonymous with the CG depth.
The XYZ coordinate system of the golf club head, as described herein defines an XY plane extending through the X-axis 1040 and the Y-axis 1050. The coordinate system defines XZ plane extending through the X-axis 1040 and the Z-axis 1060. The coordinate system further defines a YZ plane extending through the Y-axis 1050 and the Z-axis 1060. The XY plane, the XZ plane, and the YZ plane are all perpendicular to one another and intersect at the coordinate system origin located at the geometric center 120 of the strike face 102. In these or other embodiments, the golf club head 100 can be viewed from a front view when the strike face 102 is viewed from a direction perpendicular to the XY plane. Further, in these or other embodiments, the golf club head 100 can be viewed from a side view or side cross-sectional view when the heel 104 is viewed from a direction perpendicular to the YZ plane.
Illustrated in
The term or phrase “moment of inertia” (hereafter “MOI”) as define herein can refer to values measured about the CG 199. The term “Ixx” can refer to the MOI measured in the heel-to-toe direction, about the X′-axis 1070. The term “Iyy” can refer to the MOI measured in the sole-to-crown direction, about the Y′-axis 1080. The term “Izz” can refer to the MOI measured in the front-to-back direction, about the Z′-axis 1090. The MOI values Ixx, Iyy, and Izz determine how forgiving the club head 100 is for off-center impacts with a golf ball.
A “driver-type golf club head,” also referred to as a driver, as described herein, can be defined by specific dimensional ranges. In particular, the driver, as described with regard to the invention disclosed herein, includes a loft angle and volume within the ranges defined below. The specified ranges below limit the driver-type golf club head to a driver-type club head. In other words, the driver-type golf club head cannot be a fairway-type, a hybrid-type, an iron-type, or a putter-type golf club head.
The “loft angle” of the driver as defined herein can be less than approximately 16 degrees, less than approximately 15 degrees, less than approximately 14 degrees, less than approximately 13 degrees, less than approximately 12 degrees, less than approximately 11 degrees, or less than approximately 10 degrees.
The “volume” of the driver as defined herein can be greater than approximately 300 cm3, greater than approximately 350 cm3, greater than approximately 400 cm3, greater than approximately 425 cm3, greater than approximately 450 cm3, greater than approximately 475 cm3, greater than approximately 500 cm3, greater than approximately 525 cm3, greater than approximately 550 cm3, greater than approximately 575 cm3, greater than approximately 600 cm3, greater than approximately 625 cm3, greater than approximately 650 cm3, greater than approximately 675 cm3, or greater than approximately 700 cm3.
A “fairway-type golf club head” as defined herein is a club head having particular lofts, volumes, and dimensions that can be defined by specific dimensional ranges. In particular, the fairway-type club head, as described with regard to the invention disclosed herein, includes a loft angle and volume within the ranges defined below. The specified ranges below limit the fairway-type golf club head to a fairway-type club head. In other words, the fairway-type golf club head cannot be a driver type, a hybrid-type, an iron-type, or a putter-type golf club head.
The “loft angle” of the fairway-type club head as defined herein can be less than approximately 35 degrees, less than approximately 34 degrees, less than approximately 33 degrees, less than approximately 32 degrees, less than approximately 31 degrees, or less than approximately 30 degrees. In some embodiments, the loft angle of the fairway-type golf club head can be greater than approximately 12 degrees, greater than approximately 13 degrees, greater than approximately 14 degrees, greater than approximately 15 degrees, greater than approximately 16 degrees, greater than approximately 17 degrees, greater than approximately 18 degrees, greater than approximately 19 degrees, or greater than approximately 20 degrees. For example, in some embodiments, the loft angle of the fairway-type golf club head can be between 14 degrees and 35 degrees, between 15 degrees and 35 degrees, between 20 degrees and 35 degrees, or between 12 degrees and 30 degrees.
The “volume” of the fairway-type club as defined herein can be less than approximately 170 cm3, less than approximately 180 cm3, less than approximately 190 cm3, or less than approximately 200 cm3. However, the volume of the fairway-type club cannot be less than 160 cm3. In some embodiments, the volume of the fairway-type club head can be between approximately 150 cm3 to 200 cm3, between approximately 160 cm3 to 170 cm3, between approximately 160 cm3 to 180 cm3, or between approximately 170 cm3 to 190 cm3. The volume of the fairway-type club cannot be greater than 200 cm3. In one exemplary embodiment, the volume of the fairway-type club is 169 cm3.
A “hybrid-type golf club head” as defined herein is a club head having particular lofts, volumes, and dimensions that can be defined by specific dimensional ranges. In particular, the fairway-type club head, as described with regard to the invention disclosed herein, includes a loft angle and volume within the ranges defined below. The specified ranges below limit the hybrid-type golf club head to a hybrid-type club head. In other words, the hybrid-type golf club head cannot be a driver type, a fairway-type, an iron-type, or a putter-type golf club head.
The “loft angle” of the hybrid-type club head as defined herein can be less than approximately 40 degrees, less than approximately 39 degrees, less than approximately 38 degrees, less than approximately 37 degrees, less than approximately 36 degrees, less than approximately 35 degrees, less than approximately 34 degrees, less than approximately 33 degrees, less than approximately 32 degrees, less than approximately 31 degrees, or less than approximately 30 degrees. Further, in many embodiments, the loft angle of hybrid-type club heads can be greater than approximately 16 degrees, greater than approximately 17 degrees, greater than approximately 18 degrees, greater than approximately 19 degrees, greater than approximately 20 degrees, greater than approximately 21 degrees, greater than approximately 22 degrees, greater than approximately 23 degrees, greater than approximately 24 degrees, or greater than approximately 25 degrees.
The “volume” of the hybrid-type club head as defined herein can be less than approximately 200 cc, less than approximately 175 cc, less than approximately 150 cc, less than approximately 125 cc, less than approximately 100 cc, or less than approximately 75 cc. In some embodiments, the volume of hybrid-type club heads can be approximately 100 cc-150 cc, approximately 75 cc-150 cc, approximately 100 cc-125 cc, or approximately 75 cc-125 cc.
I. General Golf Club Head Construction
Described herein are various embodiments of a lightweight shaft-receiving structure that can be applied to a wood-type golf club head to create discretionary mass and improve the club head mass properties. The lightweight shaft-receiving structure can be applied to a wood-type golf club head. Referring to the drawings, club head 100 is used to illustrate generic features of any club head to which any of the below-described lightweight shaft-receiving structures can be applied.
The club head 100 is a wood-type club head such as a driver, fairway wood, or hybrid as described in this disclosure. Although the figures depict various illustrations of a fairway wood-type club head, it should be noted that the any of the lightweight shaft-receiving structures described herein can be applied to any wood-type club head, including driver-type or hybrid-type club heads. The strike face 102 and the body 101 can define an interior cavity 107 of the club head 100. The body 101 can extend over the crown 110, the sole 112, the heel 104, the toe 106, the rear 111, and a perimeter of the front 108. In these embodiments, the body 101 defines an opening in the front 108 of the club head 100 and the strike face 102 is positioned within the opening to form the club head 100. In other embodiments, the strike face 102 extends over the perimeter of the front 108 and can include a return portion 122 extending rearward from the strike face 102. The return portion 122 can extend over at least one of the crown 110, the sole 112, the heel 104, and the toe 106. In embodiments comprising the return portion 122, the return portion 122 of the strike face 102 is secured to the body 101 to form the club head 100. In these embodiments, as illustrated in
As described above and illustrated in
Referring to
In many embodiments, a significant portion of the club head body 101 can be formed of a metallic material. The lightweight shaft-receiving structures described herein can be applied to a club head 100 comprising a body 101 that is either completely metallic or made of multiple materials. In certain embodiments, the lightweight shaft-receiving structures described herein can be applied to a club head 100 wherein at least a portion of the body 101 is formed of a lightweight, non-metallic material. However, in the description of the various shaft-receiving structures below, the term “body material” is used in reference to the metallic material forming portions of the body.
The body material can comprise, but is not limited to, limited to, steel, steel alloys, stainless steel alloys, nickel, nickel alloys, cobalt, cobalt alloys, titanium alloys, an amorphous metal alloy, or other similar materials. For example, the body material can comprise, but is not limited to, Ti-8Al-1Mo-1V alloy, 17-4 stainless steel, C300, C350, Ni (Nickel)-Co (Cobalt)-Cr (Chromium)-Steel Alloy, 565 Steel, AISI type 304 or AISI type 630 stainless steel, 17-4 stainless steel, a titanium alloy, for example, but not limited to Ti-6-4, Ti-3-8-6-4-4, Ti-10-2-3, Ti 15-3-3-3, Ti 15-5-3, Ti185, Ti 6-6-2, Ti-7s, Ti-9s, Ti-92, T9s+, or Ti-8-1-1 titanium alloy, an amorphous metal alloy, or other similar metals. The body material comprises a greater density than the lightweight material used to provide the lightweight components of the shaft-receiving structure. In general, the density of the body material can range between approximately 4 g/cm3 and 10 g/cm3. In many embodiments of the lightweight shaft-receiving structure described below, the shaft-receiving structure can be formed by a combination of body material and lightweight material.
II. Lightweight Shaft-Receiving Structure
In many prior art club heads, adjustable shaft-receiving structures comprise various components integrally formed together from the body material. The material of the shaft-receiving structure is typically the same material as at least a large portion of the club head body and is typically a material suitable for casting, such as a steel or titanium alloy. In many prior art multi-material club heads, the shaft-receiving structure is integrally formed with the metal component of the body and comprises the same metallic material as the body. The metallic body material is necessary in many portions of the body (such as the sole, the crown return, the rear, etc.) for durability and mass distribution purposes. However, because certain portions of the shaft-receiving structure (i.e. the hosel tube) do not bear significant portions of the impact load, said portions do not need to be formed entirely of the body material. As discussed in further detail below, the shaft-receiving structure does not have the same strength requirements as the sole, crown return, or other portions of the club head that are formed by the body. As an example, any stresses imparted to the golf club head during use through the shaft are transmitted through the shaft sleeve at the contact points of the hosel bore opening and the hosel base. Because the hosel tube is not in contact with the shaft sleeve, the hosel tube bears only a small amount of the golf swing stress loading. Therefore, portions of the shaft-receiving structure such as the hosel tube can be provided with lightweight material without jeopardizing the structural integrity of the golf club head.
Because portions of the golf club head in and around the shaft receiving structure are under less stress when the club head is used to strike a golf ball, those portions do not require the same material properties as the portions of the golf club head that bear higher stresses during impact with a golf ball. Consequently, materials having a lower material strength, but also a lower density (lighter weight), can replace the portions of the shaft receiving structure that are under less stress.
The lightweight adjustable shaft-receiving structure creates discretionary mass by providing lightweight components in replacement of portions of the shaft-receiving structure typically formed of body material (or removing said components entirely in some cases). In many embodiments, portions of the hosel body, hosel transition, hosel tube, and/or hosel base can be constructed from lightweight materials. Such components can be constructed from lightweight materials (i.e. materials lighter than the material of the body) in order to reduce the mass of the shaft-receiving structure.
The lightweight shaft-receiving structure can comprise one or more portions or components constructed of a lightweight material having a density lower than that of the body material. In many embodiments, one or more portions or components of the lightweight shaft-receiving structure can be formed of a polymeric material, a composite material, or a lightweight metallic material having a density lower than that of the metal forming the body. In many embodiments, one or more portions or components of the lightweight shaft-receiving structure can be formed of a material including, but not limited to, a polymeric resin or a fiber-reinforced polymeric resin. The polymer resin can comprise a thermoset or a thermoplastic resin, a filled thermoplastic, a fiber-reinforced composite, a thermoplastic polyurethane (TPU) or a thermoplastic elastomer (TPE). For example, the resin can comprise polyphenylene sulfide (PPS), polyetheretheretherketone (PEEK), polyimides, polyamides such as PA6 or PA66, polyamide-imides, polyphenylene sulfides (PPS), polycarbonates, polyvinyl chloride (PVC), silicone or silicone plastic, nylon, nylon 6, nylon 66, ABS, polystyrene, acrylics, engineering polyurethanes, and/or other similar materials. In some embodiments, the one or more portions or components of the lightweight shaft-receiving structure can be formed of a lightweight metallic material including, but not limited to, aluminum or aluminum alloys, magnesium or magnesium alloys, and/or any other suitable lightweight alloy. Any of the components described as being formed of a “lightweight” material in the following embodiments can comprise any one or combination of the above materials.
One or more portions or components of the lightweight shaft-receiving structure can comprise a density significantly less than the density of the body material. In many embodiments, the density of the lightweight material forming the one or more lightweight components of the shaft-receiving structure can be less than approximately 3 g/cm3. In many embodiments, the density of the lightweight material forming one or more of the lightweight components can be less than 2.75 g/cm3, less than 2.50 g/cm3, less than 2.25 g/cm3, less than 2.00 g/cm3, less than 1.75 g/cm3, less than 1.50 g/cm3, less than 1.25 g/cm3, less than 1.00 g/cm3, less than 0.75 g/cm3, or less than 0.50 g/cm3. Forming portions of the shaft-receiving structure with a lightweight material that would otherwise be formed of body material reduces the overall mass of the shaft-receiving structure.
As such, the benefit of the lightweight shaft-receiving structure is only realized when various embodiments of the shaft-receiving structure described herein are applied to golf club heads comprising at least a partially metallic body. For example, the lightweight shaft-receiving structure is applicable and beneficial in a fully metallic club head or in a multi-component component club head comprising a metallic component that would normally form the shaft-receiving structure. For example, the lightweight shaft-receiving structure would not provide particular benefit if applied to an entirely composite golf club head, as there would be no high-density body material in the shaft-receiving structure to replace with lightweight material. Although the shaft-receiving structures described herein are illustrated on a multi-material club head body, it should be noted that any of said shaft-receiving structures can alternatively be applied to a single-material or completely metallic club head body.
The lightweight shaft-receiving structure may be formed of a combination of body material and lightweight material. As such, the body material may still form certain portions of the shaft-receiving structure, whereas the remainder of the shaft-receiving structure can be formed of separate components comprising a lightweight material. The inclusion of lightweight material creates discretionary mass over a shaft-receiving structure formed entirely by body material.
The benefit of the lightweight shaft-receiving structure is the creation of discretionary mass that can be redistributed throughout the golf club head. The lightweight shaft-receiving structure can create between 3 grams and 12 grams of discretionary mass. In some embodiments, the lightweight shaft-receiving structure can create between 3 and 6 grams, between 4 and 7 grams, between 5 and 8 grams, between 6 and 9 grams, between 7 and 10 grams, between 8 and 11 grams, or between 9 and 12 grams of discretionary mass. In some embodiments, the lightweight shaft-receiving structure can create greater than 3 grams, greater than 4 grams, greater than 5 grams, greater than 6 grams, greater than 7 grams, greater than 8 grams, greater than 8 grams, greater than 10 grams, greater than 11 grams, or greater than 12 grams of discretionary mass.
The discretionary mass can be redistributed to advantageous locations in the golf club head to improve performance. The discretionary mass can be redistributed to alter the mass properties of the club head, such a providing a desirable CG location and/or increasing MOI.
In many embodiments, the discretionary mass created by the inclusion of the lightweight shaft-receiving structure can be redistributed to provide a lower CG position (i.e. a lower CGy). In many embodiments, the discretionary mass can be added to a mass pad on the sole to lower the CG position. As such, the club head can comprise a substantially heavy mass pad in the sole. In many embodiments, the mass pad can comprise a mass between 15 grams and 40 grams. In some embodiments, the mass pad can comprise a mass between 15 grams and 20 grams, between 20 grams and 25 grams, between 25 and 30 grams, between 30 and 35 grams, or between 35 and 40 grams. In some embodiments, the mass pad can comprise a mass greater than 15 grams, greater than 20 grams, greater than 25 grams, greater than 30 grams, greater than 35 grams, or greater than 40 grams.
In many embodiments, the discretionary mass created by the inclusion of the lightweight shaft-receiving structure can lead to increases in club head MOI over a similar club head with a prior-art shaft-receiving structure. The inclusion of the lightweight shaft-receiving structure disclosed herein provides a club head with a high MOI. In many embodiments, the discretionary mass can be added to a removable weight near the rear of the club head. Redistributing the mass saved by the lightweight shaft-receiving structure to the removable weight can increase the club head MOI. As such, the club head can comprise a substantially heavy removable weight proximate the rear. In many embodiments, the removable weight can comprise a mass between 1.0 gram and 35 grams. In some embodiments, the mass of the removable weight can range from 1.0 gram to 20 grams, or 20 grams to 35 grams. In some embodiments, the mass of the removable weight can range from 1.0 gram to 15 grams, 5 grams to 20 grams, 10 grams to 25 grams, 15 grams to 30 grams, or 20 grams to 35 grams. For example, the mass of the removable weight can be 1.0 gram, 1.5 grams, 2.0 grams, 3.0 grams, 4.0 grams, 5.0 grams, 6.0 grams, 7.0 grams, 8.0 grams, 9.0 grams, 10 grams, 11 grams, 12 grams, 13 grams, 14 grams, 15 grams, 16 grams, 17 grams, 18 grams, 19 grams, 20 grams, 21 grams, 22 grams, 23, grams, 24, grams, 25 grams, 26 grams, 27 grams, 28 grams, 29, grams, 30 grams, 31 grams, 32 grams, 33 grams, 34 grams, or 35 grams.
In many embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between 3000 g*cm2 and 4800 g*cm2. In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between than 3000 g*cm2 and 3200 g*cm2, between 3200 g*cm2 and 3400 g*cm2, between 3400 g*cm2 and 3600 g*cm2, between 3600 g*cm2 and 3800 g*cm2, between 3800 g*cm2 and 4000 g*cm2, between 4000 g*cm2 and 4200 g*cm2, between 4200 g*cm2 and 4400 g*cm2, between 4400 g*cm2 and 4600 g*cm2, or between 4600 g*cm2 and 4800 g*cm2.
In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between 4500 g*cm2 and 6000 g*cm2. In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between than 4500 g*cm2 and 5000 g*cm2, between 4600 g*cm2 and 5100 g*cm2, between 4700 g*cm2 and 5200 g*cm2, between 4800 g*cm2 and 5300 g*cm2, between 4900 g*cm2 and 5400 g*cm2, between 5000 g*cm2 and 5500 g*cm2, between 5100 g*cm2 and 5600 g*cm2, between 5200 g*cm2 and 5700 g*cm2, between 5300 g*cm2 and 5800 g*cm2, between 5400 g*cm2 and 5900 g*cm2, or between 5500 g*cm2 and 6000 g*cm2.
In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 2400 g*cm2 and 3000 g*cm2. In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 2400 g*cm2 and 2500 g*cm2, between 2500 g*cm2 and 2600 g*cm2, between 2600 g*cm2 and 2700 g*cm2, between 2700 g*cm2 and 2800 g*cm2, between 2800 g*cm2 and 2900 g*cm2, or between 2900 g*cm2 and 3000 g*cm2.
In many embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between 1400 g*cm2 and 2200 g*cm2. In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between than 1400 g*cm2 and 1500 g*cm2, between 1500 g*cm2 and 1600 g*cm2, between 1600 g*cm2 and 1700 g*cm2, between 1700 g*cm2 and 1800 g*cm2, between 1800 g*cm2 and 1900 g*cm2, between 1900 g*cm2 and 2000 g*cm2, between 2000 g*cm2 and 2100 g*cm2, or between 2100 g*cm2 and 2200 g*cm2.
In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between 2800 g*cm2 and 4000 g*cm2. In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between than 2900 g*cm2 and 4000 g*cm2, between 3000 g*cm2 and 3200 g*cm2, between 3100 g*cm2 and 3300 g*cm2, between 3200 g*cm2 and 3400 g*cm2, between 3300 g*cm2 and 3500 g*cm2, between 3400 g*cm2 and 3600 g*cm2, between 3500 g*cm2 and 3700 g*cm2, between 3600 g*cm2 and 3800 g*cm2, between 3700 g*cm2 and 3900 g*cm2, or between 3800 g*cm2 and 4000 g*cm2.
In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 1600 g*cm2 and 2400 g*cm2. In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 1600 g*cm2 and 1700 g*cm2, between 1700 g*cm2 and 1800 g*cm2, between 1800 g*cm2 and 1900 g*cm2, between 1900 g*cm2 and 2000 g*cm2, between 2000 g*cm2 and 2100 g*cm2, between 2100 g*cm2 and 2200 g*cm2 between 2200 g*cm2 and 2300 g*cm2, or between 2300 g*cm2 and 2400 g*cm2.
In many embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between 750 g*cm2 and 1000 g*cm2. In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Ixx moment of inertia between than 750 g*cm2 and 800 g*cm2, between 800 g*cm2 and 850 g*cm2, between 850 g*cm2 and 900 g*cm2, between 900 g*cm2 and 950 g*cm2, or between 950 g*cm2 and 1000 g*cm2.
In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between 2500 g*cm2 and 3200 g*cm2. In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Iyy moment of inertia between than 2500 g*cm2 and 2600 g*cm2, between 2600 g*cm2 and 2700 g*cm2, between 2700 g*cm2 and 2800 g*cm2, between 2800 g*cm2 and 2900 g*cm2, between 2900 g*cm2 and 3000 g*cm2, between 3000 g*cm2 and 3100 g*cm2, or between 3100 g*cm2 and 3200 g*cm2.
In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 2200 g*cm2 and 3000 g*cm2. In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise an Izz moment of inertia between 2200 g*cm2 and 2300 g*cm2, between 2300 g*cm2 and 2400 g*cm2, between 2400 g*cm2 and 2500 g*cm2, between 2500 g*cm2 and 2600 g*cm2, between 2600 g*cm2 and 2700 g*cm2, between 2700 g*cm2 and 2800 g*cm2, between 2800 g*cm2 and 2900 g*cm2, or between 2900 g*cm2 and 3000 g*cm2.
Further, the discretionary mass created by the inclusion of the lightweight shaft-receiving structure can allow mass to be repositioned to provide a more desirable CG position. In many embodiments, discretionary mass can be reallocated to lower the CG height and/or increase the CG depth. Lowering the CG height can improve the performance characteristics of the club head, by increasing the launch angle, decreasing the ball spin rate, and/or improving ball speed.
In many embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between 0 inch and −0.300 inch. In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between 0 inch and −0.050 inch, between −0.050 inch and −0.100 inch, between −0.100 inch and −0.150 inch, between −0.150 inch and −0.200 inch, between −0.200 inch and −0.250 inch, or between −0.250 inch and −0.300 inch.
In many embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 1.25 inch and 2.00 inches. In some embodiments, a driver-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 1.25 inch and 1.75 inch, between 1.30 inch and 1.80 inch, between 1.35 inch and 1.85 inch, between 1.40 inch and 1.90 inch, between 1.45 inch and 1.95 inch, or between 1.50 inch and 2.00 inch.
In many embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between −0.140 inch and −0.200 inch. In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between −0.140 inch and −0.145 inch, between −0.145 inch and −0.150 inch, between −0.150 inch and −0.155 inch, between −0.155 inch and −0.160 inch, between −0.160 inch and −0.165 inch, between −0.165 inch and −0.170 inch, between −0.170 inch and −0.175 inch, between −0.175 inch and −0.180 inch, between −0.180 inch and −0.185 inch, between −0.185 inch and −0.190 inch, between −0.190 inch and −0.195 inch, or between −0.195 inch and −0.200 inch,
In many embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 1.00 inch and 1.50 inch. In some embodiments, a fairway wood-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 1.00 inch and 1.05 inch, between 1.05 inch and 1.10 inch, between 1.10 inch and 1.15 inch, between 1.15 inch and 1.20 inch, between 1.20 inch and 1.25 inch, between 1.25 inch and 1.30 inch, between 1.30 inch and 1.35 inch, between 1.35 inch and 1.40 inch, between 1.40 inch and 1.45 inch, or between 1.45 inch and 1.50 inch
In many embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between −0.220 inch and −0.320 inch. In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise a CG height between −0.220 inch and −0.230 inch, between −0.230 inch and −0.240 inch, between −0.240 inch and −0.250 inch, between −0.250 inch and −0.260 inch, between −0.260 inch and −0.270 inch, between −0.270 inch and −0.280 inch, between −0.280 inch and −0.290 inch, between −0.290 inch and −0.300 inch, between −0.300 inch and −0.310 inch, or between −0.310 inch and −0.320 inch.
In many embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 0.900 inch and 1.25 inch. In some embodiments, a hybrid-type club head comprising the lightweight shaft-receiving structure can comprise a CG depth between 0.900 inch and 1.00 inch, between 0.925 inch and 1.025 inch, between 0.950 inch and 1.050 inch, between 0.975 inch and 1.075 inch, between 1.00 inch and 1.100 inch, between 1.025 inch and 1.125 inch, between 1.050 inch and 1.150 inch, between 1.075 inch and 1.175 inch, between 1.100 inch and 1.200 inch, between 1.125 inch and 1.225 inch, or between 1.150 inch and 1.250 inch.
The lightweight-shaft receiving structure can reduce the mass of portions of the prior-art shaft-receiving structures that do not provide structural support. Referring to
Some embodiments of shaft-receiving structures comprise portions that also are not required for retaining a golf shaft within the hosel bore. Referring to
Various embodiments of shaft-receiving structures comprising lightweight components are presented in further detail below. The various embodiments are differentiated in reference to the portions of the prior art shaft-receiving structures that are replaced by lightweight components or removed entirely. The various embodiments are further differentiated by the overall amount of discretionary mass created over a prior art shaft-receiving structure. In many embodiments, some or all of the mass of the hosel, the hosel wall, the hosel tube, and/or the hosel base can be replaced with a lightweight material or lightweight component. Different embodiments comprise different combinations of shaft-receiving structure portions that are replaced by lightweight components. Different embodiments balance the desire to create the greatest amount of discretionary mass with the need to provide loft angle and lie angle adjustability, the need to seal the interior cavity, and the desire for a simple manufacturing and/or assembly process. Further benefit of the lightweight shaft-receiving structure can include the removal of expensive body material to be replaced by lightweight components. As such, providing the lightweight shaft-receiving structure can reduce the cost of manufacturing the club head.
III. Lightweight Shaft-Receiving Structure with Lower End Cap
Referring to
The tube insert 230 comprises an upper end 231 proximate the hosel wall upper portion 280 and a lower end 232 proximate the hosel base 262. In many embodiments, the tube insert 230 can comprise a tube insert length measured from the upper end 231 to the lower end 232, parallel to the hosel bore axis 268. In many embodiments, the tube insert length can be between 1.00 inch and 1.50 inch. In some embodiments, the tube insert length can be between 1.00 and 1.10 inch, between 1.10 inch and 1.20 inch, between 1.20 inch and 1.30 inch, between 1.30 inch and 1.40 inch, or between 1.40 inch and 1.50 inch.
In many embodiments, the length of the tube insert 230 can further be characterized relative to a distance between the hosel bore opening 258 and the hosel base 262 (hereafter referred to as the “hosel length”). The hosel length can be measured parallel to the hosel bore axis 268. In many embodiments, the tube insert length can be between 70% and 90% of the hosel length. In some embodiments, the tube insert length can be between 70% and 75%, between 75% and 80%, between 80% and 85%, or between 85% and 90% of the hosel length. The tube insert length is significant in relation to the hosel length. If the tube insert length is too short, discretionary mass will not be maximized. However, if the tube insert length is too long, the tube insert upper end 231 may be too close to the hosel bore opening 258, wherein the tube insert 230 may experience too high of stress at impact.
In order to not compromise the structural integrity of the club head 100, the tube insert 230 can be spaced away from the high-stress areas located proximate the hosel bore opening 258. The tube insert top end 231 can be offset from the topmost edge of the hosel bore opening 258 a tube insert offset distance 234. The tube offset distance 234 can be measured parallel to the hosel bore axis 268. In many embodiments, the tube insert offset distance 234 can be in a range of 0.150 inch to 0.350 inch. In some embodiments, the tube insert offset distance 234 can be between 0.150 and 0.200 inch, between 0.200 and 0.250 inch, between 0.250 and 0.300 inch, or between 0.300 and 0.350 inch. In some embodiments, the tube insert offset distance 234 can be 0.150 inch, 0.160 inch, 0.170 inch, 0.180 inch, 0.190 inch, 0.200 inch, 0.210 inch, 0.220 inch, 0.230 inch, 0.240 inch, 0.250 inch, 0.260 inch, 0.270 inch, 0.280 inch, 0.290 inch, 0.300 inch, 0.310 inch, 0.320, 0.330, 0.340, or 0.350 inch.
As discussed above in reference to
In the embodiment illustrated in
Although the hosel bore opening 258 is formed by the hosel 252 itself, the majority of the hosel bore 256 is defined by the inner surface of the tube insert 230. In many embodiments, the hosel wall upper portion 280 forms the hosel bore opening 258 and an upper portion of the hosel bore 256 (i.e. the portion of the hosel bore 256 proximate the hosel bore opening 258) while the tube insert 230 forms a remainder of the hosel bore 280. The tube insert 230 completely separates the hosel bore 256 from the remainder of the interior cavity 207. The tube insert 230 is sealed on both the top end 231 and bottom end 232 at the lip 278 and the hosel base 262, respectively. The tube insert 230 completely seals the hosel bore 256 off from the interior cavity 207 such that no debris or other particulate can get into the interior cavity 207 through the hosel bore opening 258, even if the shaft sleeve 266 is removed. The seal created by the tube insert 230 also keeps water from entering the interior cavity 207 through the hosel bore opening 258. This can be especially important for keeping the interior surfaces of the club head 200 from rusting.
The tube insert 230 is formed of a lightweight material, as described above, with a lesser density than the density of the body material. Replacing the tube portion and portions of the hosel wall 254 with the lightweight tube insert 230 reduces the mass of the shaft-receiving structure 250 in comparison to a similar structure formed entirely of body material. The inclusion of the lightweight tube insert 230 provides structure for retaining the shaft and shaft sleeve 266 in the hosel bore 256 and sealing the hosel bore 256 from the interior cavity 207 while creating discretionary mass that can be redistributed in advantageous locations to improve the mass properties of the club head 200.
As mentioned above, the bottom end 232 of the tube insert 230 couples to the hosel base 262 and creates a seal. In the illustrated embodiment of
The end cap 240 can be constructed of a lightweight material, (said lightweight materials and the associated densities defined above can be applied to the end cap 240). In some embodiments, the material of the end cap 240 can be the same as the material of the tube insert 230. In other embodiments, the end cap 240 and the tube insert 230 can be formed of different lightweight materials.
In some embodiments, as illustrated in
Forming hosel base 262 with the removable end cap 240 allows the tube insert 230 to be inserted into the interior cavity 207 through the lower opening 274, rather than requiring the tube insert 230 be inserted from the top through the hosel bore opening 258. Referring to
In many other embodiments, the tube insert 230 can be held in place by adhesive means. In such embodiments, the shaft-receiving structure 250 can form a plurality of lap joints near the bottom and top ends 232, 231 of the tube insert 230.
Insertion of the tube insert 230 through the lower opening 274 allows for a simplified manufacturing and assembly process. The tube insert 230 does not need to be inserted through the hosel bore opening 256, and therefore the hosel wall upper portion 280 and hosel bore opening 256 can be formed integrally with the remainder of the hosel 252. If not for the ability to insert the tube insert 230 through the lower opening 274, the hosel wall upper portion 280 and hosel bore opening 256 would need to be formed separately from the remainder of the hosel 252 and coupled thereto in order to enclose the top end 231 of the tube insert 230. The shaft-receiving structure 250 capable of receiving the tube insert 230 through the lower opening 274 therefore allows the geometry of the hosel 252, including any receiving geometries configured to receive the shaft sleeve 266, to be integrally cast as one piece.
As alluded to above, the inclusion of the lightweight components to replace portions of the shaft-receiving structure reduces the mass of the shaft-receiving structure. In some embodiments, the lightweight shaft-receiving structure creates between 3 grams and 12 grams of discretionary mass. The discretionary mass created by the lightweight shaft-receiving structure can be allocated throughout the club head to improve mass properties and performance.
IV. Lightweight Shaft-Receiving Structure with Lightweight Collar
The collar 386 is configured to interact with the shaft sleeve 366. The collar 386 forms the hosel bore opening 386. In many embodiments, the collar can form a receiving geometry configured to receive the shaft sleeve 366. For example, in some embodiments, the hosel collar 386 can form one or more lobes configured to receive one or more surface features of the shaft sleeve 366 and provide adjustability to the club head loft angle and/or lie angle. Thus, the collar 386 is configured to receive the shaft sleeve 366 and hold it in place. As illustrated in
The hosel wall 354 and the collar 386 can be coupled at a juncture formed between the upper edge 355 of the hosel wall 354 and a lower edge 388 of the collar 386. In many embodiments, the hosel wall 354 and the collar 386 comprise mating geometries configured to facilitate coupling the collar 386 to the hosel wall 354 by mechanical interlock and/or adhesion. In some embodiments, as illustrated by
In some embodiments, the collar 386 comprises a lightweight material, as defined above. In many embodiments, the collar 386 is formed of a lightweight metallic material, with a lesser density than that of the metallic body 301. In many embodiments, the collar 386 is provided by a lightweight metal because the collar 386 is located at the upper end of the hosel 352, which typically experiences higher stresses than other portions of the shaft-receiving structure 350. For example, in some embodiments, the collar 386 can be formed of aluminum, an aluminum alloy, titanium, a titanium alloy, magnesium, or a magnesium alloy. In many embodiments, the collar 386 is formed of a metallic material similar to the metallic material of the shaft sleeve 366. both the collar 386 and the shaft sleeve 366 as similar metals prevents galling between any receiving geometries of each respective component.
The shaft receiving-structure 350 comprising the collar 386 further comprises a lightweight tube insert 330 identical or substantially identical to the tube insert 230 described above in relation to club head 200. The top end 331 of the tube insert 330 abuts against the lip 378 formed by the collar 386 and extends downward toward the hosel base 362 and the lower opening 374. Similar to the first embodiment, the tube insert 330 forms the majority of the hosel bore 356 and seals the hosel bore 356 from the rest of the interior cavity 307.
In addition to replacing the mass of the hosel tube with the lightweight tube insert 330, replacing the body material of the hosel wall upper portion with the lightweight collar 386 further reduces the mass of the shaft-receiving structure 350. The replacement of mass via the lightweight tube insert 330 and collar 386 creates discretionary mass to be reallocated throughout the club head 300. In some embodiments, the lightweight shaft-receiving structure 350 including a tube insert 330 and collar 386 can create between 3 and 12 grams of discretionary mass.
Similar to the tube insert 230 described above, tube insert top end 331 of the tube insert 330 can be offset from the topmost edge of the hosel bore opening 358 a tube insert offset distance 334. The tube offset distance 334 can be measured parallel to the hosel bore axis 368. In many embodiments, the tube insert offset distance 334 can be in a range of 0.150 inch to 0.350 inch. In some embodiments, the tube insert offset distance 334 can be between 0.150 and 0.200 inch, between 0.200 and 0.250 inch, between 0.250 and 0.300 inch, or between 0.300 and 0.350 inch. In some embodiments, the tube insert offset distance 334 can be 0.150 inch, 0.160 inch, 0.170 inch, 0.180 inch, 0.190 inch, 0.200 inch, 0.210 inch, 0.220 inch, 0.230 inch, 0.240 inch, 0.250 inch, 0.260 inch, 0.270 inch, 0.280 inch, 0.290 inch, 0.300 inch, 0.310 inch, 0.320, 0.330, 0.340, or 0.350 inch.
As discussed above in reference to
In many embodiments, such as the embodiment illustrated in
The tube insert 330 can be retained in the interior cavity 307 by mechanical and/or adhesive means. In some embodiments, the tube insert 330 is held in place by surrounding structures. As illustrated by
In many embodiments, the tube insert 330 can be held in place by adhesive means. In such embodiments, the shaft-receiving structure 350 can form a plurality of lap joints near the bottom and top ends 332, 331 of the tube insert 330.
As alluded to above, providing a hosel 352 with a separate collar 386 to replace an upper portion of the hosel wall can allow for greater mass reduction of the shaft receiving structure 350, because the collar 386 can be formed of a lighter material than the hosel 350. The inclusion of the lightweight tube insert 330 and lightweight collar 386 reduces the mass of the shaft-receiving structure 350 in comparison to a prior-art shaft-receiving structure formed from the body material. In some embodiments, the inclusion of the lightweight tube insert 330 and collar 386 to replace denser material reduces the mass of the shaft receiving structure 350 by between 3 grams and 12 grams. The mass reduction of the shaft-receiving structure 350 frees up discretionary mass that can be allocated throughout the club head 300 to improve mass properties and performance.
V. Lightweight Shaft-Receiving Structure with Hosel Insert
The hosel insert 430 further comprises a tube portion 437 extending downward from the bottom of the wall portion 435 through the hosel transition opening 465 and toward the hosel base 462. An inner surface of the tube portion 437 forms the lower portion of the hosel bore 456. The tube portion 437 seals off the hosel bore 456 and the exterior of the club head 400 from the interior cavity 407, preventing debris, particulate, and water from entering the interior cavity 407 through the hosel bore 456 opening.
The hosel insert 430 is a generally tubular, hollow member that forms an outer diameter and an inner diameter defined by the outer surface and the inner surface, respectively. The outer diameter of the hosel insert 430 can vary along different portions of the hosel insert 430. As illustrated in
In some embodiments, the hosel transition 464 can further comprise a bonding wall 461 in the interior cavity 407, configured to center the tube portion 437 and provide a surface for the hosel insert 430 to bond to. The bonding wall 461 can be a cylindrical wall that is integrally formed with the hosel transition 464. The bonding wall 461 extends from the hosel transition opening 465 at least partially toward the hosel base 462. The bonding wall 461 comprises an inner diameter corresponding to the outer diameter of the tube portion 437. The tube portion 437 of the hosel insert 430 fits flush against and adheres to the bonding wall 461. The bonding wall 461 therefore serves as a lap joint that can secure and center the hosel insert 430 within the interior cavity 407.
The club head 400 of the third embodiment further forms a hosel base 462 creating a floor for the hosel insert 430, wherein a bottom end of the hosel tube portion 437 is configured to abut the hosel base 462. The bottom end of the hosel insert 430 (i.e. the bottom end of the hosel tube portion 437) can rest against the hosel base 462. The hosel base 462 of the third embodiment may be substantially similar to the integrally formed hosel base 462 of the second embodiment. The hosel base 462 can be integrally cast with the club head body 401 and close off the lower opening 474, separating the exterior of the club head from the interior cavity 407 near the sole. As illustrated in
The hosel insert 430 can be retained within the shaft-receiving structure 450 by mechanical and/or adhesive means. In many embodiments, the hosel insert 430 is held in place by a tensive force created by the fastener 476, the shaft sleeve 466, and the hosel base 462. As illustrated by
In many other embodiments, the hosel insert 430 can be held in place by adhesive means. In such embodiments, the shaft-receiving structure 450 can form a plurality of lap joints configured to couple the hosel insert 430 to the club head body 401 via the use of an adhesive or epoxy.
The inclusion of the lightweight hosel insert 430 reduces the mass of the shaft-receiving structure 450 in comparison to a similar structure formed from entirely from body material. In some embodiments, the inclusion of the lightweight hosel insert 430 replacing denser material reduces the mass of the shaft receiving structure 450 by between 3 grams and 12 grams. The mass reduction of the shaft-receiving structure 450 frees up discretionary mass that can be allocated throughout the club head 400 to improve mass properties and performance.
Because the hosel insert 430 forms exterior portions of the hosel 452 and extends all the way up to the hosel bore opening 458, the hosel insert 430 may experience greater stresses at impact than the hosel tubes 230, 330 of previous embodiments, as such, it may be advantageous to provide the hosel insert 430 with a material comprising a higher strength than a composite material. In many embodiments, the hosel insert 430 can be constructed of a lightweight metal material, rather than a non-metal material. In some embodiments, the hosel insert 430 can be formed of aluminum, an aluminum alloy, or any lightweight metal material with a lower density than the body material. The hosel insert 430 being provided of a lightweight metal allows the mass of the shaft-receiving structure 450 to be reduced (by virtue of the lightweight metal comprising a lesser density than the body material) which still retaining the structural integrity of the club head 400.
VI. Tube-Less Lightweight Shaft-Receiving Structure
The tube-less shaft-receiving structure 550 can be substantially similar to the shaft-receiving structure 250 illustrated in
The shaft-receiving structure 550 further comprises an end cap 540 forming a hosel base 562. The end cap 540 can be formed as a separate component from the club head body 101. The end cap 540 is provided to form the hosel base 562 with a lightweight material, rather than forming a hosel base out of body material, as is common in the prior art. In many embodiments, the end cap 540 can be substantially similar to end cap 240. The end cap 540 can be configured to close off the lower opening 574.
As illustrated in
Due to the lack of a tube insert or hosel tube, the tube-less shaft-receiving structure 550 does not comprise a continuous hosel bore. In other words, tube-less shaft receiving structure 550 does not comprise a hosel bore extending all the way from the hosel bore opening 558 to the hosel base 562. As illustrated in
There is no structure connecting the upper hosel bore 556a to the lower hosel bore 556b. The upper hosel bore 556a and the lower hosel bore 556b each individually feed into the interior cavity 507. The upper hosel bore 556a and the lower hosel bore 556b do not feed into one another. The shaft sleeve 566 extends through a gap 557 formed between the upper hosel bore 556a and the lower hosel bore 556b, wherein the shaft sleeve 566 is thereby exposed to the interior cavity 507.
The tube-less shaft-receiving structure 550 can be held together by the fastener 576, the shaft sleeve 566, and the end cap 540. The shaft sleeve 566 is inserted into the upper hosel bore 556a through the hosel bore opening 558 and is configured to abut against the hosel wall upper portion 580. The fastener 576 is inserted into the lower hosel bore 556b through an aperture 548 formed in the end cap 540 and is configured to abut an exterior surface of the end cap 540. When tightened, the fastener 576 presses against the exterior surface of the end cap 540 to hold the shaft sleeve 566 in tension. The fastener 576 and shaft sleeve 566, when securely coupled together, create opposing forces holding the components of the shaft-receiving structure 550 together. The fastener 576 creates an upward force pushing against the end cap 540, while the shaft sleeve 566 creates an opposing downward force against the interior surface of the hosel wall upper portion 580. As such, the shaft sleeve 566 is retained within the upper hosel bore 556a by the tensive force pulling downward on the shaft sleeve 566. The tensive force created between the fastener 576 and the shaft sleeve 566 holds the components of the shaft-receiving structure 550 in place.
The tube-less shaft-receiving structure 550 provides a maximum amount of discretionary mass to be redistributed about the club head 500. The tube-less shaft receiving structure 550 comprises minimal structure due to the complete elimination of the hosel tube. Further, the tube-less shaft-receiving structure 550 does not reintroduce any mass, however negligible, through the inclusion of any separate tube inserts. The tube-less shaft-receiving structure 550 can be advantageous to include in club heads 500 wherein maximum discretionary mass is desired over the ability to seal the interior cavity 507.
VII. Lightweight Shaft-Receiving Structure with External Hosel Insert
The hosel insert 630 comprises an inner surface with an inner diameter that defines at least an upper portion of the hosel bore 656. In many embodiments, the inner surface of the hosel 652 defines a portion of the hosel bore 656 extending from the hosel bore opening 658 to the hosel transition opening 665. In many embodiments, as illustrated by
In some embodiments, rather than being formed as a separate insert and attached to the crown via mechanical or adhesive means, a lightweight hosel and hosel transition 664 can be integrally formed with a portion of the club head body 601. This configuration is applicable to a club head comprising a multi-material construction with a lightweight non-metal component forming a majority of the crown 610, such as a crown insert made from a composite material. The lightweight hosel insert 630 and hosel transition 664 can serve as an extension of the crown 610, extending upward from the crown 610 at the heel end and forming the hosel transition 664 and hosel wall 654. In such embodiments, due to the integral formation of the hosel wall 654 and hosel transition 664 with the composite crown 610, the material of the hosel wall 654 and hosel transition 664 can be the same as the material of the composite crown 610. The integral hosel wall 654 and hosel transition 664 can be formed in combination with any variation of the composite crown described in detail above, such as a composite crown 610 that wraps around the skirt 614 and forms a portion of the sole 612 on the heel 604 and/or toe 606.
Replacing the hosel wall 654 and hosel transition 664 with a lightweight material, whether formed integrally with the composite crown 610 of a multi-material club head, or as a separate insert coupled at the hosel transition opening 665, reduces the mass of the shaft-receiving structure 650 in comparison to a similar structure formed entirely of body material. In some embodiments, replacing the hosel wall 654 and forming a hosel transition 664 with a lightweight material by including the hosel insert 630 reduces the mass of the shaft-receiving structure 650 by between 3 grams and 12 grams. The mass reduction of the shaft-receiving structure 650 frees up discretionary mass that can be allocated throughout the club head 600 to improve mass properties and performance.
As discussed above, the prior art shaft receiving structure comprises portions, such as the hosel tube 160, that, surprisingly, do not significantly contribute to the structural integrity of the golf club head. After the analysis showing this low stress on the hosel tube 160 was done, experiments were conducted to determine if the hosel tube could simply be removed, or replaced with lighter materials, in order to provide discretionary mass.
To expand upon the analysis illustrated in
At the peak stress during impact, the strike face 102, the crown return portion 122, and the sole 112 proximate to the leading edge 103 absorb the force impact and are highly stressed. These areas require the high-strength body material to avoid impact induced failure. In contrast, the hosel tube 160 illustrated in
The portion of the golf club head 100 proximate to the hosel 152 and within the interior cavity 107 of the club head 100 is a lower stress portion at impact compared to the strike face 102, crown return 122, and sole 112 proximate the leading edge 103 of the golf club head 100. Other lower stress zones are located further from the strike face 102. The lower stress portion of the club head 100 proximate the hosel 152 and within the interior 107 of the golf club head can be replaced without compromising the club head durability at impact. As described above, a significant portion of the impact force experienced by the shaft-receiving structure 150 occurs proximate upper contact plane 186 and lower contact plane 187 (illustrated in
The analysis illustrated in
The mass properties were compared between a plurality of exemplary club heads with lightweight shaft-receiving structures and a control club head. The MOI values of each club head were compared. Further, the amount of discretionary mass created by the inclusion of the lightweight shaft-receiving structure in each exemplary club head was compared, with the control club head as a baseline. Each club head was similarly constructed, but for the differences in the shaft-receiving structures.
The first exemplary club head was a fairway wood-type club head comprising a lightweight shaft-receiving structure similar to shaft-receiving structure 250. The first exemplary club head comprised a lightweight tube insert forming a hosel tube and a lightweight lower end cap forming a hosel base. The tube insert was inserted through the lower opening into the interior cavity. The end cap covered the lower opening and enclosed the tube insert within the interior cavity.
The second exemplary club head was a fairway wood-type club head comprising a lightweight shaft-receiving structure similar to shaft-receiving structure 550. The second exemplary club head comprised a tube-less design. The second exemplary embodiment was devoid of a tube insert. The club head comprised an upper hosel bore formed by an interior surface of the hosel wall upper portion and a lower hosel bore formed by an interior surface of a hosel base wall. The upper hosel bore and the lower hosel bore were not connected and both fed into the interior cavity. As such, when the shaft sleeve was inserted, the shaft sleeve outer wall was exposed to the interior cavity. The second exemplary club head comprised a lightweight end cap forming a hosel base and covering the lower opening.
The control club head was a prior art fairway wood-type club head comprising a prior-art shaft receiving structure similar to shaft-receiving structure 150. The control club head comprised a hosel, a hosel tube, and a hosel base each formed integrally with the club head body and formed out of body material. The control club head shaft-receiving structure did not comprise any lightweight components.
Table 1 below displays the CG positions of each exemplary club head and the control club head. The values for discretionary mass represent how much mass is saved by the inclusion of the lightweight shaft-receiving structure in each exemplary club head, relative to the control club head.
As evidenced by Table 1, the exemplary club heads exhibited discretionary mass gains, wherein the discretionary mass was redistributed about the club head to improve mass properties. Specifically, in the present example, the discretionary mass was redistributed to improve the CG position, prioritizing a lower CG position to provide higher launch, less spin, and more ball speed. The discretionary mass was reintroduced to the club head by adding mass to a mass pad on the sole. In other words, portions of the sole mass pad were thickened in the exemplary club heads to produce a lower CG position. As such, the control club head and both of the exemplary club heads comprised the same overall mass, but with the exemplary club heads comprising a more advantageous mass distribution for CG placement purposes.
Exemplary club head 1 exhibited an increase in discretionary mass of 4.5 grams relative to the control club head, leading to a lowering of the CG height (CGy) by 0.031 inch and an increase in CG depth (CGz) of 0.011 inch. The lower CG depth of the first exemplary club head can provide increased performance, such as a higher launch, less spin, and more ball speed. The increase in CG depth can help increase and/or retain MOI.
Exemplary club head 2 exhibited an increase in discretionary mass of 5.5 grams relative to the control club head, leading to a lowering of the CG height (CGy) by 0.036 inch and an increase in CG depth (CGz) of 0.015 inch. The lower CG depth of the secondary exemplary club head can provide increased performance, such as a higher launch, less spin, and more ball speed. The increase in CG depth can help increase and/or retain MOI.
The comparison illustrates the benefits of providing a lightweight shaft-receiving structure. The lightweight shaft-receiving structures created between 4.5 and 5.5 grams of discretionary mass relative to the control club head, leading to improvements in the club head CG position to influence performance characteristics. As discussed above, the creation of discretionary mass and improvements in CG position come without any sacrifice to the structural integrity of the club head, as the lightweight components of the lightweight shaft-receiving structures described herein are not critical to bearing stress load.
The ball flight performance of an exemplary club head was compared to a control club head. The ball speed, launch angle, and spin rate were measured for each club head in a field test and compared.
The exemplary club head was a fairway wood-type club head comprising a lightweight shaft-receiving structure similar to shaft-receiving structure 250. The first exemplary club head comprised a lightweight tube insert forming a hosel tube and a lightweight lower end cap forming a hosel base. The tube insert was inserted through the lower opening into the interior cavity. The end cap covered the lower opening and enclosed the tube insert within the interior cavity.
The control club head was a prior art fairway wood-type club head comprising a prior-art shaft receiving structure similar to shaft-receiving structure 150. The control club head comprised a hosel, a hosel tube, and a hosel base each formed integrally with the club head body and formed out of body material. The control club head shaft-receiving structure did not comprise any lightweight components.
Table 2 below illustrates the results of the comparative test.
As evidenced by Table 2, the exemplary club head exhibited an increase in launch angle, a slight decrease in ball speed, and a substantially similar spin rate to the control club head. The increase in launch angle is a result of the lower CG position achieved by the discretionary mass created by the inclusion of the lightweight shaft-receiving structure (as evidenced in Example 2). Although the exemplary club head exhibited a slight decrease in raw ball speed, the increased launch angle provides the ability to deloft the exemplary club head, which would return ball speed to the exemplary club head and reduce spin rate. The ability to deloft the exemplary club head provided by the increased launch angle provides an overall higher performance by resulting in a club head with similar or greater ball speed and less spin, in comparison to the control club head.
The exemplary club head of Example 3 was further tested for durability. Three samples of the exemplary club head were subjected to an air cannon test, wherein a golf ball was fired at the club head face at a speed of 115 mph, simulating a high-speed impact occurring during a golf swing between the club head and the ball. The first sample survived 3164 impacts, the second sample survived 3197 impacts, and the third sample survived 2413 impacts. As such, each of the three samples comprised durability on part with a prior-art golf club head. The durability of all three samples through a typical number of impacts illustrates that the structural integrity of the exemplary club head is sufficient for use in the field. The results of the durability test exhibit that the inclusion of the lightweight shaft-receiving structure provides mass property and performance benefits (outlined in Examples 1 and 2) without sacrificing the durability of the club head.
Clause 1. A golf club head comprising: a strike face and a body secured together to define an interior cavity; the body comprising a crown, a sole opposite the crown, a heel, a toe opposite the heel, a skirt adjoining the crown and the sole, and a shaft-receiving structure; the shaft-receiving structure comprising a hosel and a shaft sleeve, the hosel formed of a first material comprising a first density; wherein: the hosel comprises a hosel wall forming at least a first portion of a hosel bore, hosel wall upper portion forming a hosel bore opening, and a hosel base opposite the hosel bore opening, the hosel base formed at an interior surface of the sole, near the heel; the hosel defines a hosel bore axis concentric with the hosel bore; the shaft sleeve is insertable into the hosel through the hosel bore opening and configured to couple a golf club shaft with the hosel; the hosel bore opening is configured to receive the shaft sleeve; a lip formed at a bottom portion of the hosel wall upper portion; the shaft-receiving structure further comprises a tube insert extending through the interior cavity, from the lip to the hosel base; the tube insert is separated from the hosel bore opening by the hosel wall upper portion; wherein the tube insert is formed of a second material comprising a second density less than the first density; the tube insert forms a remainder of the hosel bore; and the tube insert seals the hosel bore from the interior cavity.
Clause 2. The golf club head of clause 1, wherein the shaft-receiving structure further comprises a hosel length, measured parallel to the hosel bore axis from the hosel bore opening to the hosel base; the tube insert comprises a tube insert length measured from a top end of the tube insert to a bottom end; and wherein the tube insert length is between 70 and 90% of the hosel length.
Clause 3. The golf club head of clause 2, wherein the tube insert length is between 1.00 inch and 1.50 inch.
Clause 4. The golf club head of clause 1, wherein the lip is formed by a change in thickness between the hosel wall upper portion and a remainder of the hosel wall, wherein the hosel wall upper portion comprises a greater thickness than the remainder of the hosel wall.
Clause 5. The golf club head of clause 1, wherein the second material is selected from the group consisting of: a thermoset resin, a thermoplastic resin, a filled thermoplastic, a fiber-reinforced composite, a thermoplastic polyurethane (TPU) or a thermoplastic elastomer (TPE), and an aluminum alloy.
Clause 6. The golf club head of clause 1, wherein the second density is less than 3 g/cm3.
Clause 7. The golf club head of clause 1, wherein a top end of the tube insert is retained by the lip, the shaft sleeve, and the hosel wall; and wherein a bottom end of the tuber insert is retained by a bottom lap joint, the hosel base, and an end cap.
Clause 8. The golf club head of clause 1, wherein the hosel wall forms a top lap joint proximate the lip and the body forms a bottom lap joint extending from the hosel base into the interior cavity; wherein the tube insert is configured to be adhesively coupled to the top lap joint and the bottom lap joint.
Clause 9. A golf club head comprising: a strike face and a body secured together to define an interior cavity; the body comprising a crown, a sole opposite the crown, a heel, a toe opposite the heel, a skirt adjoining the crown and the sole, and a shaft-receiving structure; the shaft-receiving structure comprising a hosel and a shaft sleeve, the hosel formed of a first material comprising a first density; wherein: the hosel comprises a hosel wall forming at least a first portion of a hosel bore, a hosel bore opening located at an upper end of the hosel wall, and a hosel base opposite the hosel bore opening, the hosel base formed at an interior surface of the sole, near the heel; the hosel defines a hosel bore axis concentric with the hosel bore; the shaft sleeve is insertable into the hosel through the hosel bore opening and configured to couple a golf club shaft with the hosel; the hosel bore opening is configured to receive the shaft sleeve; the hosel further hosel wall upper portion proximate the hosel bore opening; the shaft-receiving structure further comprises a tube insert extending through the interior cavity, from the hosel wall upper portion to the hosel base; the tube insert is formed of a second material comprising a second density less than the first density; the tube insert forms a remainder of the hosel bore; the tube insert seals the hosel bore from the interior cavity; wherein the shaft-receiving structure comprises a tube insert offset distance defined as a distance between the hosel bore opening and a top end of the tube insert, measured parallel to the hosel bore axis; and wherein the tube insert offset distance is greater than 0.20 inch.
Clause 10. The golf club head of clause 9, wherein the shaft-receiving structure comprises a mass of at least 3 grams less than the mass of a similar shaft-receiving structure formed entirely of the first material.
Clause 11. The golf club head of clause 9, wherein the second material is selected from the group consisting of: a thermoset resin, a thermoplastic resin, a filled thermoplastic, a fiber-reinforced composite, a thermoplastic polyurethane (TPU) or a thermoplastic elastomer (TPE), and an aluminum alloy.
Clause 12. The golf club head of clause 9, wherein the second density is less than 3 g/cm3.
Clause 13. A golf club head comprising: a strike face and a body secured together to define an interior cavity; the body comprising a crown, a sole opposite the crown, a heel, a toe opposite the heel, a skirt adjoining the crown and the sole, and a shaft-receiving structure; the shaft-receiving structure comprising a hosel and a shaft sleeve, the hosel formed of a first material comprising a first density; wherein: the hosel comprises a hosel wall forming at least a first portion of a hosel bore and hosel wall upper portion forming a hosel bore opening; the shaft sleeve is insertable into the hosel through the hosel bore opening and configured to couple a golf club shaft with the hosel; the hosel bore opening is configured to receive the shaft sleeve; a lower opening located on the sole and opposite the hosel bore opening; an end cap configured to couple to the sole and close the lower opening; the shaft-receiving structure further comprises a tube insert extending through the interior cavity, from the hosel bore upper portion to the end cap; wherein the tube insert is formed of a second material comprising a second density less than the first density; wherein the end cap is formed of a third material comprising a third density less than the first density; wherein the tube insert forms a remainder of the hosel bore; and wherein the tube insert seals the hosel bore from the interior cavity.
Clause 14. The golf club head of clause 13, wherein the end cap further comprises one or more notches configured to receive a lower end of the tube insert.
Clause 15. The golf club head of clause 13, wherein the end cap further comprises an end cap body and a protrusion extending upward from the end cap body, such that the protrusion extends at least partially into the hosel bore.
Clause 16. The golf club head of clause 13, wherein the end cap further comprises an aperture extending through the end cap from an end cap bottom surface to and end cap top surface.
Clause 17. The golf club head of clause 13, wherein the tube insert is configured to be inserted into the interior cavity through the lower opening.
Clause 18. The golf club head of clause 13, wherein the second material is selected from the group consisting of: a thermoset resin, a thermoplastic resin, a filled thermoplastic, a fiber-reinforced composite, a thermoplastic polyurethane (TPU) or a thermoplastic elastomer (TPE), and an aluminum alloy.
Clause 19. The golf club head of clause 13, wherein the second density is less than 3 g/cm3.
Clause 20. The golf club head of clause 13, wherein the third density is less than 3 g/cm3.
Replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to ocm3ur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims, unless such benefits, advantages, solutions, or elements are stated in such claim.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This claims the benefit of U.S. Provisional Application No. 63/267,183, filed Jan. 26, 2022, the contents of which are fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63267183 | Jan 2022 | US |