Golf club head with localized grooves and reinforcement

Information

  • Patent Grant
  • 8007372
  • Patent Number
    8,007,372
  • Date Filed
    Tuesday, September 21, 2010
    14 years ago
  • Date Issued
    Tuesday, August 30, 2011
    13 years ago
Abstract
The present invention relates to a golf club head provided with a shell defining an inner cavity and having a face and a body. The face has a first or reinforcement portion with a first thickness and a second or remaining portion with a second thickness less than the first thickness. The reinforcement portion is located at the center of the face. In one embodiment, the exterior surface of the face defines at least one groove spaced from the center of the face.
Description
FIELD OF THE INVENTION

The invention relates to a golf club head. More particularly, the invention is related to a golf club head with a face provided with localized grooves on the exterior of the face and a reinforced central region on the interior of the face.


BACKGROUND OF THE INVENTION

The complexities of golf club design are well-known. The choice of specifications for each component of the club (i.e., the club head, shaft, hosel, grip, and subcomponents thereof) directly impacts the performance of the club. Thus, by varying the design specifications, a golf club can be tailored to desired performance characteristics.


The design of club heads has long been studied. Among the more prominent considerations in club head design are loft, lie, face angle, horizontal face bulge, vertical face roll, face progression, sole curvature, center of gravity location, and overall head weight. While this basic set of criteria is generally the focus of golf club engineering, several other considerations must also be addressed. The interior design of the club head may be tailored to achieve particular characteristics, such as by including hosel or shaft attachment means, perimeter weighting on the face or body of the club head, and fillers within hollow club heads. The choice of materials for manufacture of the club head, must also be considered.


The type of surface treatment on the outer surface of the face is an additional design consideration. The United States Golf Association (USGA), the organization that sets the rules of golf in the United States, has instituted a rule that prohibits the competitive use in any USGA sanctioned event of a golf club where the surface roughness within an impact area of the face exceeds that of decorative sandblasting or fine milling. To spite this rule, it is widely known that many players create a roughened club head face, in order to obtain a greater backspin on their shots.


Additionally, faces are traditionally provided with stria or grooves, at regularly spaced intervals on the surface. The grooves are usually parallel, and must conform to standards established by the USGA covering groove cross-sectional symmetry, groove edge roundness, distance between adjacent grooves, and groove depth.


Various theories have been advanced to either explain or dismiss the importance and influence of grooves. The physical influence of the groove on ball trajectory, for example, may be partly attributed to the momentary deformation of the golf ball cover into the groove upon impact. This deformation is dictated by the modulus of elasticity of the golf ball cover material. Grooves are generally credited with providing large-scale, or macro-roughening on the club head face, thereby increasing back spin. Grooves in the club face may also assist a player in club alignment at address. While the degree of influence of club facial grooves on ball trajectory is disputed, grooves are largely recognized as a meaningful consideration in club head design.


The designs for golf club heads also must be strong enough to withstand the impact forces that occur due to contact between the head and the ball. The loading that occurs during this brief impact can confer an acceleration to the golf ball that is 20,000 times the acceleration of gravity, which is about four orders of magnitude greater than that of gravity. Thus, the club face and body should be designed to resist permanent deformations or catastrophic failure, such as by cracking.


It is not unusual for the club heads of prior art woods to have a face thickness exceeding 0.12 inch. This thickness has typically been required so that the club head face can withstand the impact forces. The faces of irons must also withstand considerable stresses, and as disclosed in U.S. Pat. No. 5,971,868 to Kosmatka. Thus, the faces of irons may be provided with a contoured back surface to provide increased structural integrity. Nevertheless, the design of hollow woods presents distinctly different challenges from irons, particularly due to the cavities defined within hollow woods. Whether produced by investment casting, molding, or otherwise, woods are subjected to different manufacturing stresses, and different performance requirements than irons.


The thickness of the club head face impacts various club head parameters, including the overall weight of the club head, the rigidity of the face, the vibration characteristics of the club head, the sound produced upon impact of the face with a ball, and the location of the center of gravity of the club head. In some club heads, it is desirable to minimize face thickness. Any decrease in thickness, however, must be compensated for by adjusting other design considerations. Such adjustments may include the provision of other structural features on the back surface of the club face, or the inner surface of the club head shell. Another optional adjustment includes the use of a filler material in the shell. Furthermore, the overall construction of the club head may be adjusted, such as by using a face plate insert that is fit to a club head shell, by welding, soldering or other means. Alternatively, the face plate insert may be integrally formed with the shell.


Particularly during casting of a club head, it is difficult to repeatedly produce the desired shape to a tight dimensional tolerance. However, the performance of a golf club head, particularly a metal wood, is in part a function of the proper shape and size of the club face. One especially vexing problem encountered during casting of prior art club heads is that the club head face, which is initially cast with a generally convex exterior surface, upon cooling often collapses inward and fails to retain the desired shape. Such a problem may be exacerbated in club heads with thin faces.


Thus, there is a need for a golf club head that can be consistently manufactured with a desired club head shape and size, and has a face that can withstand the impact stresses encountered during ball striking. More particularly, there is a need for a club head with a thin face that performs well. Additionally, there is a need for a club head that minimizes the degree of backspin imparted to a golf ball.


SUMMARY OF THE INVENTION

The present invention relates to a golf club head adapted for attachment to a shaft. The head includes a shell that defines an inner cavity. The shell includes a face and a body. The face has an exterior surface and an interior surface. Grooves are formed on the exterior surface of the face offset from the sweet spot or center of the face.


Preferably, a localized reinforcement portion is provided on the interior surface of the face at the sweet spot or center. As a result, the face has two portions with different thicknesses. The localized reinforcement portion has a first thickness greater than the second thickness of the remaining portion of the face. The second portion surrounding the first portion has a second thickness less than or equal to about 0.12 inches, and the first thickness is greater than the second thickness. A grooveless region on the exterior of the face comprises at least 25% of the face area including the center thereof. Preferably, grooves do not extend across the exterior surface of the face at the localized reinforcement portion, and the grooves bound an area less than or equal to about 50% of an area of the face. The grooves preferably are spaced from the center of the face at least 0.375 inches in any direction.


In one embodiment, the first thickness or thickness of the reinforcement portion is greater than or equal to about 0.08 inches and less than or equal to about 0.12 inches. The second thickness is less than or equal to about 0.12 inches and more preferably less than or equal to about 0.08 inches. Most preferably the second thickness is less than or equal to about 0.06 inches. The first thickness can be uniform or varied across the reinforcement portion. The first portion and second portion are formed of the same material. At least one groove preferably extends substantially between a toe end and a heel end of the golf club


In another embodiment, the localized reinforcement portion has an area between about 10% to about 90% of the face area. Preferably, the reinforcement portion area is less than about 15% of the face area. In yet another embodiment, the area of the localized reinforcement portion is less than about 25% of the face area. Preferably, the shell of the club head has a crown plate, a sole plate, the face, and a hosel, with the sole plate formed integral with the shell. Alternatively, the crown plate is formed integral with the shell.


The present invention is also directed to a golf club head adapted for attachment to a shaft that includes a shell that defines an inner cavity. The shell further includes a face with first and second portions. The first portion is in the center of the face and has a first thickness. The second portion has a second thickness less than or equal to about 0.12 inches. The first thickness is greater than the second thickness. In addition, the face has an exterior surface with a substantially smooth portion having an area greater than about 25% of an area of the face. Preferably, the smooth portion is in the center of the face and is the part that lacks grooves. The smooth portion includes at least a portion of the first portion.


The present invention is also related to a method of forming a golf club head comprising the steps of forming a shell defining an inner cavity with a face and a body. The step of forming the shell includes the steps of: forming the face with a first portion of the face in the center of the face and having a first thickness, and a second portion surrounding the first portion and having a second thickness less than or equal to about 0.12, with the first thickness being greater than the second thickness; and forming grooves in the face spaced from the center. Preferably, the step of forming the shell further includes casting the first portion simultaneously with the face. Alternatively, the step of forming the shell includes casting the first portion separate from the face and subsequently coupling the first portion to the face. In one embodiment, the face is stamped. In another embodiment, the face is engraved.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:



FIG. 1 shows a front, perspective view of a first embodiment of a golf club head of the present invention.



FIG. 2 shows a bottom, perspective view of the golf club head of FIG. 1 with a sole plate removed.



FIG. 3 shows a front view of a first embodiment of a face of the golf club head of FIG. 1.



FIG. 3A shows a cross-sectional view through the face of FIG. 3 along line 3A-3A.



FIG. 3B shows a cross-sectional view the face of FIG. 3 along line 3B-3B.



FIG. 4 shows a front view of a second embodiment of the face of the golf club head of the present invention.



FIG. 5 shows a plot of safety factor as a function of COR for various faces of uniform and non-uniform thickness.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIGS. 1 and 2, a first embodiment of a golf club head 10 of the present invention is shown. Club head 10 includes shell 12 with a body 14, face 16, toe portion 18, heel portion 20, and top portion 24. The head 10 further includes a sole plate 26 (shown in phantom), hosel 27, and top portion 24. The sole plate 26 fits in a recess 29 defined in the body 14. The shell 12 and sole plate 26 create an inner cavity 30. The face 16 is preferably provided with grooves 32 on its exterior surface 34. In a preferred embodiment, at least one groove 32 extends substantially between toe portion 18 and heel portion 20.


During use, a golf club shaft (not shown) is attached at hosel 27. The hosel may extend to the bottom of the club head, may terminate at a location intermediate the top portion 27 and sole plate 26, or the hosel 27 may terminate at the top portion 24 of the head.


Inner cavity 30 of club head 10 may be empty, or alternatively may be filled with a foam or other low specific gravity material. Preferably, the shell is entirely cast, or at least face 16 is formed from a higher strength alloy than body 14. More preferably, shell 12 is formed so that the body 14 and face 16 may be combined to be integral, such as by welding, thus forming a homogeneous shell.


In an alternate embodiment, shell 12 has a body 14, face 16, toe portion 18, heel portion 20, sole plate 26, and hosel 27. The sole plate is formed integral with shell 12. In this embodiment, a separate crown plate (not shown) is fitted to shell 12, thereby creating the hollow, inner cavity. The crown plate may alternatively be formed integral with the shell.


In a preferred embodiment, face 16 is cold forged or stamped from as-rolled sheet stock of high strength SP-700 titanium alloy (Ti-4.5% AI-3% V-2% Mo-2% Fe).


Alternatively, face 16 is formed of a high strength forging titanium alloy such as 10-2-3 (Ti-10% V-2% Fe-3% AI) or 15-3-3-3 (Ti-15% V-3% Cr-3% Sn-3% AI). Body 14 along with sole plate 26 or a crown plate are produced from a different titanium alloy from that of face 16, preferably by casting a 6-4 alloy (Ti-6% Al-4% V).


Referring to FIG. 2, localized reinforcement portion 36 is provided in a central region of an interior surface 40 of face 16. In a preferred embodiment, the reinforcement portion 36 is formed of additional material that may be integrally cast as part of the face 16, or formed as a separate piece affixed to the face 16 by other means, such as welding and the like. The reinforcement portion 36 is preferably made of the same material as the shell 12 to facilitate casting, or to facilitate bonding to interior surface 40. Alternatively, the reinforcement portion 36 may be made of a different material. Preferably, reinforcement portion 36 has a rectangular perimeter. In an alternate embodiment, reinforcement portion 36 may have any other shaped perimeter, such as an arcuate shape perimeter or re-entrant shapes. Reinforcement portion 36 may also have a shape that follows another geometrical pattern or contour, and may be symmetrical or asymmetrical.


Referring to FIG. 3B, in the preferred embodiment, sides 42 of reinforcement portion 36 lie generally perpendicular with respect to the interior surface 40 of face 16. It is also contemplated that the interfacial edges defined at lower lines of transition 44 of face 16 and reinforcement portion 36 may have an irregular or sloping profile. Other profiles for sides 42 may be employed, including a gradual or stepped slope from top surface 46 of reinforcement portion 36 to the lower lines of transition 44.


It is recommended that reinforcement portion 36 has an area that is between about 10% and about 90% of the interior surface area 40 or face area. The interior surface and exterior face areas are substantially the same. However, in an embodiment where they vary, either can be used as a comparison to the reinforcement area. In a preferred embodiment, the reinforcement area is approximately about 25% of the face area. Most preferably, the reinforcement area is about 15% of the face area.


Referring to FIGS. 3A and 3B, the reinforcement portion 36 has a thickness t2 greater than the thickness t1 of the remainder of the face 16. The thicknesses t1 and t2 are the maximum thicknesses of the respective areas, because thickness varies at grooves 32 to a minimum. It is preferred that the reinforcement thickness t2 is between about 0.08 inches and about 0.12 inches. The thicknesses t1 and t2 can be uniform or varied. It is preferred that the thickness tt of the remaining portion of the face surrounding the reinforcement portion 36 is less than about 0.12 inches, more preferably less than about 0.08 inches, and most preferably less than 0.06 inches.


Reinforcement portion 36 is provided at or aligned with a sweet spot or the center of face 16, as defined below, where impact forces are expected to be greatest. This permits a thinner face 16 to be used, as compared with a non-reinforced design. The reinforcement distributes the stresses such that the structural integrity of face 16 is sound.


The sweet spot is generally defined, in mechanical terms, as the intersection of a longitudinal line passing through the center of gravity and the face 16. The center of the face includes the sweet spot, but refers to a larger area of the face. The center is a portion of the face that can be defined and still be surrounded on all four sides with a remaining portion of the face without the reinforcement portion. Thus, the reinforcement portion can be located aligned with the sweet spot or more generally in the center of the face.


Preferably, the horizontal projection of the center of gravity intersects the face 16 in the reinforcement portion 36, the thickened region of the club face. More preferably, the intersection of the horizontal projection of the center of gravity with the face is located substantially in the center of reinforcement portion 36.


As shown in FIG. 3, the grooves 32 on external surface 34 of face 16 are provided in localized areas surrounding the sweet spot or center. The grooves, also referred to as corrugation, are formed by scoring, engraving, cutting, stamping, or casting the shapes into the head face. Preferably, the face is stamped and/or engraved. In a preferred embodiment, the grooves 32 on the exterior surface 34 are V-shaped (as best shown in FIGS. 3A and 3B). In an alternate embodiment, the grooves are another shape, such as square or V-shaped. The grooveless portion of the club face is at least about 25% of the face area. Preferably, the grooveless portion includes the area at the center of the face. Also, the grooves are preferably offset from and do not extend across the reinforcement portion, while covering an area less than or equal to about 50% of the face area. In a preferred embodiment, at least one groove is spaced at least 0.375 inch from the center of the face in any direction. A circle with a diameter of 0.75 inch, free of grooves, may for example be formed at the center of the face.



FIG. 4 shows an alternate embodiment of a face 16′ for use with the club head 10 (as shown in FIG. 1) of the present development. The face 16′ lacks grooves (as shown in FIG. 1). This “grooveless” face 16′ preferably has an extremely smooth external surface 34′, as can be achieved with grinding and polishing techniques known in the art. Such a grooveless surface may be effective in minimizing the degree of back spin imparted to a golf ball upon impact with the club face 16′, thus reducing the tendency of a ball that has been hit from a non-central part of face 16′ to hook or slice. The lack of grooves may also provide an additional benefit of giving a golfer enhanced control of the trajectory of a golf ball upon impact, as well as increased roll. Thus, a golfer may be able to achieve a longer distance shot for a given club with grooveless faces as compared to grooved or partially grooved faces. The face 16′ has the reinforcement portion 36 (as shown in phantom), as discussed above.


It should be noted that the lack of grooves 32 in the sweet spot or central area of face 16 (as shown in FIG. 1) confers a similar benefit as the completely grooveless head faces described above. The provision of localized grooves 32, as shown for example in FIG. 3, in some instances may provide more desirable ball flight on the course following misaligned shots. This is due to the limited gripping interaction of the groove with the surface of the ball, or limited deformation of the ball within the groove.


The design of a club head may be evaluated using computational techniques, which can include the use of finite element analysis models. When computer modeling club heads, a mass of 200 grams was maintained by adjusting the value of the point masses as the thickness of the face changed. Facial stresses were determined assuming a 109 mph club head speed, and such stresses may be used to evaluate face integrity. Also of interest in the design of the club head is the coefficient of restitution (COR), which is the ratio of the velocity of separation to the velocity of approach. In this model, therefore, COR was determined using the following formula:

(vball-post−vclub-post)/vclub-pre

where,

    • vball-post represents the velocity of the ball after impact;
    • vclub-post represents the velocity of the club after impact; and
    • vclub-pre represents the velocity of the club before impact.


      The COR, in general, depends on the shape and material properties of the colliding bodies. A perfectly elastic impact has a COR of one (1), indicating that no energy is lost, while a perfectly inelastic or plastic impact has a COR of zero, indicating that the colliding bodies did not separate after impact resulting in a maximum loss of energy.


Referring to FIG. 5, the design of club heads was investigated by using a two-parameter design space consisting of the COR and maximum stress or a safety factor. By performing iterative calculations within this space, it was possible to approach the target COR of 0.829 (for a relative velocity of 160 ft/sec), while still having a safety factor greater than 1. The target COR corresponds to the regulated value established by the USGA. A club head exhibiting a safety factor above 1.0 is the minimum design whose face will not cave-in during use. Club heads with data points within the shaded area 60 have a safety factor above 1.0, and therefore are acceptable.


Line 62 has points that represent Conventional Club Heads with different face thickness t1. Line 62 shows that as thickness increases from 0.80 inches to 0.105 inches COR decreases. The club head represented by point A exhibits a safety factor of 1.0 and therefore is acceptable. The club head at point A has a face thickness of 0.105 inches. The club head at point A has a COR of about 0.72 for the considered club head.


Line 64 represents Inventive Club Heads with a central reinforcement portion so that the club head at point B had a reinforcement thickness greater than remaining face thickness t 1, as discussed above. The club head represented by point B exhibits a safety factor of greater than 1.0, therefore the point B is within the shaded or acceptable area 60. The club head at point B has a COR of about 0.77, which is greater than the COR for the club head at point A.












TEST












Face






Thickness
Thickness
Percent of



Examples
Description
Value(s)
Regulated COR
COR





Comparative Club 1
Uniform
0.08 inches
 104%
0.862


Comparative Club 2
Uniform
0.09 inches
101.3% 
0.840


Comparative Club 3
Uniform
0.10 inches
98.7%
0.818









Drivers (Comparative Club 1, Comparative Club 2, and Comparative Club 3) were produced having uniform face thicknesses of 0.08 inches, 0.09 inches and 0.10 inches, respectively. A robot manufactured by True Temper and called Iron Byron was used to test these clubs.


COR values for Comparative Club I, Comparative Club 2 and Comparative Club 3 were 104%, 101.3% and 98.7% of regulated value, respectively. Thus, as thickness increased from Club 1 to Club 3, COR decreased undesirably. Comparative Club 1 and Comparative Club 2 both exhibited face collapse under the testing conditions (i.e., a swing speed of 109 mph). Thus, Comparative Club 1 and Comparative Club 2 are unacceptable.


An Inventive Club has a 1.2 inch by 0.9 inch reinforcement portion at the center. The reinforcement thickness t2 is 0.12 inches. The thickness of the remaining portion is 0.08 inches. Computer modeling confirmed that the Inventive Club has reduced stress in the face center compared to uniform thickness conventional clubs. The thickness t1 may be further adjusted to account for off-center hits, possibly decreasing COR.


Advantageously, the use of a reinforcement portion, such as with the Inventive Club, allows an acceptable COR to be obtained with a club head that exhibits superior behavior under stress when compared, for example, to Comparative Club 3. In addition, a portion of the face of such an Inventive Club has a substantially smaller thickness than permitted by acceptable uniform face thickness clubs, such as Comparative Club 3.


While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment can be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims
  • 1. A golf club head comprising: a shell defining an inner cavity, the shell comprising a crown, a sole, a skirt, and a face, wherein the face comprises: a first portion having a first perimeter, the first perimeter encompassing a center of the face;a separate piece of reinforcing material affixed to a back side of the first portion, the separate piece of reinforcing material configured to distribute stresses to maintain a structural integrity of the face, wherein the first portion and the separate piece of reinforcing material together have a combined first thickness;a second portion having a second perimeter greater than the first perimeter, the second portion in contact with and surrounding the first portion and having a second thickness;wherein the first thickness is greater than the second thickness, and the second thickness is less than or equal to 0.08 inches; andwherein the first portion comprises no corrugations on a front side of the face.
  • 2. The golf club head of claim 1, wherein the first and second portions are comprised of a first material, and the separate piece of reinforcing material is comprised of a second material different than the first material.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 10/943,978, filed Sep. 20, 2004, which is a continuation of U.S. patent application Ser. No. 09/551,893, filed Apr. 19, 2000, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (200)
Number Name Date Kind
1318325 Klin Oct 1919 A
1319233 Mattern Oct 1919 A
1467435 Kinnear Sep 1923 A
1525352 Aitken Feb 1925 A
1543691 Beat Jun 1925 A
1582836 Link Apr 1926 A
1589363 Butchart Jun 1926 A
1595589 Tyler Aug 1926 A
1605551 Mattern Nov 1926 A
1699874 Buhrke Jan 1929 A
1704119 Buhrke Mar 1929 A
1704165 Buhrke Mar 1929 A
1720867 Webster et al. Jul 1929 A
2034936 Barnhart Mar 1936 A
2087685 Hackney Jul 1937 A
3567228 Lynn Mar 1971 A
3571900 Hardesty Mar 1971 A
3625518 Solheim Dec 1971 A
3659855 Hardesty May 1972 A
3863932 Lezatte Feb 1975 A
3985363 Jepson et al. Oct 1976 A
4023802 Jepson et al. May 1977 A
4193601 Reid, Jr. et al. Mar 1980 A
4213613 Nygren Jul 1980 A
4214754 Zebelean Jul 1980 A
D267965 Kobayashi Feb 1983 S
4429879 Schmidt Feb 1984 A
4449707 Hayashi et al. May 1984 A
4451041 Hayashi et al. May 1984 A
4451042 Hayashi et al. May 1984 A
4465221 Schmidt Aug 1984 A
4471961 Masghati et al. Sep 1984 A
4489945 Kobayashi Dec 1984 A
4511145 Schmidt Apr 1985 A
4762324 Anderson Aug 1988 A
4792140 Yamaguchi et al. Dec 1988 A
4826172 Antonious May 1989 A
4842243 Butler Jun 1989 A
4913438 Anderson Apr 1990 A
4915385 Anderson Apr 1990 A
4915386 Antonious Apr 1990 A
4919430 Antonious Apr 1990 A
4919431 Antonious Apr 1990 A
4921252 Antonious May 1990 A
4930781 Allen Jun 1990 A
4932658 Antonious Jun 1990 A
4955610 Creighton et al. Sep 1990 A
D312858 Anderson et al. Dec 1990 S
5000454 Soda Mar 1991 A
5024437 Anderson Jun 1991 A
5028049 McKeighen Jul 1991 A
5046733 Antonious Sep 1991 A
5056705 Wakita et al. Oct 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5090702 Viste Feb 1992 A
5094383 Anderson et al. Mar 1992 A
5106094 Desbiolles et al. Apr 1992 A
5141230 Antonious Aug 1992 A
5163682 Schmidt et al. Nov 1992 A
5180166 Schmidt et al. Jan 1993 A
5183255 Antonious Feb 1993 A
5213328 Long et al. May 1993 A
5221087 Fenton et al. Jun 1993 A
5240252 Schmidt et al. Aug 1993 A
5242167 Antonious Sep 1993 A
5255918 Anderson et al. Oct 1993 A
5261663 Anderson Nov 1993 A
5261664 Anderson Nov 1993 A
5271621 Lo Dec 1993 A
5292129 Long et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301945 Schmidt et al. Apr 1994 A
5318300 Schmidt et al. Jun 1994 A
5328184 Antonious Jul 1994 A
5344140 Anderson Sep 1994 A
5346218 Wyte Sep 1994 A
5351958 Helmstetter Oct 1994 A
5358249 Mendralla Oct 1994 A
5362047 Shaw et al. Nov 1994 A
5362055 Rennie Nov 1994 A
5390924 Antonious Feb 1995 A
5395113 Antonious Mar 1995 A
5397126 Allen Mar 1995 A
5397127 Kawada et al. Mar 1995 A
5401021 Allen Mar 1995 A
5405137 Vincent et al. Apr 1995 A
5407202 Igarashi Apr 1995 A
RE34925 McKeighen May 1995 E
5417419 Anderson et al. May 1995 A
5417559 Schmidt May 1995 A
5423535 Shaw et al. Jun 1995 A
5429357 Kobayashi Jul 1995 A
5431396 Shieh Jul 1995 A
5433440 Lin Jul 1995 A
5437088 Igarashi Aug 1995 A
5447307 Antonious Sep 1995 A
5447309 Vincent Sep 1995 A
5451056 Manning Sep 1995 A
5460376 Schmidt et al. Oct 1995 A
5467983 Chen Nov 1995 A
5470069 Schmidt et al. Nov 1995 A
5474296 Schmidt et al. Dec 1995 A
5482279 Antonious Jan 1996 A
5497993 Shan Mar 1996 A
5505450 Stuff Apr 1996 A
5505453 Mack Apr 1996 A
5522593 Kobayashi et al. Jun 1996 A
5524331 Pond Jun 1996 A
5527034 Ashcraft et al. Jun 1996 A
5533729 Leu Jul 1996 A
5536006 Shieh Jul 1996 A
5547630 Schmidt Aug 1996 A
5549297 Mahaffey Aug 1996 A
5564994 Chang Oct 1996 A
5584770 Jensen Dec 1996 A
5595552 Wright et al. Jan 1997 A
5611741 Schmidt et al. Mar 1997 A
5611742 Kobayashi Mar 1997 A
5620382 Cho et al. Apr 1997 A
D379393 Kubica et al. May 1997 S
5626530 Schmidt et al. May 1997 A
5643104 Antonious Jul 1997 A
5643108 Cheng Jul 1997 A
5643110 Igarashi Jul 1997 A
5649872 Antonious Jul 1997 A
5651409 Sheehan Jul 1997 A
5655976 Rife Aug 1997 A
5669827 Nagamoto Sep 1997 A
5669829 Lin Sep 1997 A
D387113 Burrows Dec 1997 S
5695411 Wright et al. Dec 1997 A
5697855 Aizawa Dec 1997 A
5709614 Horiba Jan 1998 A
5709615 Liang Jan 1998 A
5709617 Nishimura et al. Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5716292 Huang Feb 1998 A
5718641 Lin Feb 1998 A
5720673 Anderson Feb 1998 A
5743813 Chen et al. Apr 1998 A
5753170 Muang May 1998 A
5755624 Helmstetter May 1998 A
5755627 Yamazaki et al. May 1998 A
5762567 Antonious Jun 1998 A
5766092 Mimeur et al. Jun 1998 A
5766094 Mahaffey et al. Jun 1998 A
5766095 Antonious Jun 1998 A
5776011 Su et al. Jul 1998 A
5797807 Moore Aug 1998 A
5800285 Thorne et al. Sep 1998 A
5807190 Krumme et al. Sep 1998 A
5827132 Bamber Oct 1998 A
RE35955 Lu Nov 1998 E
D401652 Burrows Nov 1998 S
5830084 Kosmatka Nov 1998 A
5839975 Lundberg Nov 1998 A
5842934 Ezaki et al. Dec 1998 A
5851159 Burrows Dec 1998 A
5863261 Eggiman Jan 1999 A
5873791 Allen Feb 1999 A
5873795 Wozny et al. Feb 1999 A
D406294 Burrows Mar 1999 S
5888148 Allen Mar 1999 A
5890973 Gamble Apr 1999 A
D411272 Burrows Jun 1999 S
5908357 Hsieh Jun 1999 A
5921872 Kobayashi Jul 1999 A
5931746 Soong Aug 1999 A
5935019 Yamamoto Aug 1999 A
5938541 Allen et al. Aug 1999 A
5954596 Noble et al. Sep 1999 A
5961394 Minabe Oct 1999 A
5967905 Nakahara et al. Oct 1999 A
5971868 Kosmatka Oct 1999 A
6089992 Onuki et al. Jul 2000 A
6224497 Antonious May 2001 B1
6248025 Murphy et al. Jun 2001 B1
6338683 Kosmatka Jan 2002 B1
6354962 Galloway et al. Mar 2002 B1
6428426 Helmstetter et al. Aug 2002 B1
6428427 Kosmatka Aug 2002 B1
6443856 Galloway et al. Sep 2002 B1
6575845 Galloway et al. Jun 2003 B2
6582323 Soracco et al. Jun 2003 B2
6602150 Kosmatka Aug 2003 B1
6605007 Bissonnette et al. Aug 2003 B1
6623377 Evans et al. Sep 2003 B2
6663504 Hocknell et al. Dec 2003 B2
6824475 Burnett et al. Nov 2004 B2
6863626 Evans et al. Mar 2005 B2
6966848 Kusumoto Nov 2005 B2
7014570 Evans et al. Mar 2006 B2
7018303 Yamamoto Mar 2006 B2
7220190 Hirano May 2007 B2
7384348 Lin et al. Jun 2008 B2
7387579 Lin et al. Jun 2008 B2
7682262 Soracco et al. Mar 2010 B2
7753808 Matsunaga Jul 2010 B2
20030064823 Yamamoto Apr 2003 A1
Foreign Referenced Citations (66)
Number Date Country
1114911 Jan 1996 CN
0484931 May 1992 EP
2268693 Jan 1994 GB
2331938 Jun 1999 GB
59207169 Nov 1984 JP
61033682 Feb 1986 JP
61162967 Jul 1986 JP
61181477 Aug 1986 JP
61185281 Aug 1986 JP
61240977 Oct 1986 JP
1244770 Sep 1989 JP
4020357 Jan 1992 JP
4327864 Nov 1992 JP
5212526 Aug 1993 JP
6007487 Jan 1994 JP
6114126 Apr 1994 JP
6126002 May 1994 JP
6154367 Jun 1994 JP
6182005 Jul 1994 JP
6269518 Sep 1994 JP
08164229 Jun 1996 JP
8168541 Jul 1996 JP
8243194 Sep 1996 JP
8280853 Oct 1996 JP
8280854 Oct 1996 JP
8294550 Nov 1996 JP
9028842 Feb 1997 JP
9047531 Feb 1997 JP
9154985 Jun 1997 JP
9168613 Jun 1997 JP
09168613 Jun 1997 JP
9192270 Jul 1997 JP
9192273 Jul 1997 JP
9239074 Sep 1997 JP
9239075 Sep 1997 JP
9248353 Sep 1997 JP
09253243 Sep 1997 JP
9294833 Nov 1997 JP
9299519 Nov 1997 JP
09322952 Dec 1997 JP
10024126 Jan 1998 JP
10024128 Jan 1998 JP
2717759 Feb 1998 JP
10085369 Apr 1998 JP
10118227 May 1998 JP
10137372 May 1998 JP
10155943 Jun 1998 JP
10258142 Sep 1998 JP
10263121 Oct 1998 JP
10323410 Dec 1998 JP
10337347 Dec 1998 JP
2880109 Apr 1999 JP
11169493 Jun 1999 JP
11299938 Nov 1999 JP
2000296190 Oct 2000 JP
2001161868 Jun 2001 JP
2002-191727 Jul 2002 JP
2003-210623 Jul 2003 JP
2003339921 Dec 2003 JP
2004-135963 May 2004 JP
2004-187795 Jul 2004 JP
2004-222905 Aug 2004 JP
2004329544 Nov 2004 JP
2006043460 Feb 2006 JP
2006087928 Apr 2006 JP
2007007276 Jan 2007 JP
Related Publications (1)
Number Date Country
20110034272 A1 Feb 2011 US
Continuations (2)
Number Date Country
Parent 10943978 Sep 2004 US
Child 12887173 US
Parent 09551893 Apr 2000 US
Child 10943978 US