This disclosure generally relates to an iron-type golf club head with a back cavity and a back cavity insert.
It is common to affix inserts to the rear surface of an iron-type golf club head strikeface. Typical inserts affixed to the rear surface of the iron golf club head strikeface have continuous hard plastic or metallic covers comprising a single piece. When the golf club strikes a golf ball, the flex of the strikeface also attempts to move the insert rearward and to flex the insert affixed to the strikeface rear surface. Further, the designer may desire to thin the iron-type golf club head strikeface to both move more mass to the perimeter and also allow greater strikeface flexibility. In this iron-type golf club head design (having a thinner strikeface), a back cavity insert attached to the strikeface rear surface may have a greater effect on strikeface flexion. A single-piece hard plastic or metallic insert cover is put into tension as the insert flexes rearwards. This tension on the insert cover inhibits the rearward flexure of the insert. This inhibition of the flexing reduces the energy returned to the golf ball and reduces the distance the golf ball will travel after being struck. There is a need in the art for an iron-type golf club head with improved flexibility of a back cavity insert. The strikeface is then able to return more energy to the golf ball at impact if the back cavity flexion is improved, reducing the energy lost due to the insert's resistance to the strikeface flexing. Disclosed within is a back cavity insert with features to improve insert flexibility.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
The invention presented herein is directed to a back cavity insert for a cavity-backed iron-type golf club head. The rear perimeter of the iron-type golf club head and the rear surface of a strikeface cooperate to define a back cavity. The rear perimeter can comprise any edge or percentage of the perimeter of the back cavity. An insert may be placed into the back cavity such that the insert covers at least 60 percent to 100 percent of the strikeface rear surface area. When the insert is attached to the iron-type golf club head strikeface rear surface, it will interact with the iron-type golf club head strikeface when the strikeface deforms and rebounds. The insert thickness, composition, and stiffened outer surface may unduly restrain the deformation or flexing of the strikeface and reduce the amount of energy returned to the golf ball. Disclosed herein is a back cavity insert comprising a multiple layers, wherein one or more of the the back cavity insert layers are divided into discrete sections. The division provides expansion and flexing gaps for the insert. The iron-type golf club head with a back cavity insert disclosed herein provides an insert that reduces the amount of energy lost to the back cavity insert when striking a golf ball. This, in turn, provides for more energy returned to the golf ball and desirable flight characteristics (lower ball spin rate, higher launch angle, and higher ball speed) resulting in more distance for each golf stroke.
A. General Terminology
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the apparatus, methods, and/or articles of manufacture described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
B. Coordinate System
A coordinate system may be defined as an x-axis 1050 defined in a direction parallel to a ground plane 1000. The iron-type golf club head 100 defines a ground plane 1000 that is tangent to the sole 102 when the iron-type golf club head 100 is at an address position. The x-axis 1050 passes through the strikeface geometric center 140 from the heel portion 108 to the toe portion 106. A y-axis 1060 is defined as passing through the strikeface geometric center 140, perpendicular to the x-axis 1050 from the sole 102 towards the top portion 104. A z-axis 1070 is defined perpendicular to both the x-axis 1050 and the y-axis 1060, passing through the strikeface geometric center 140 from a strikeface 110 front surface 112 rearward through the strikeface rear surface 118.
The iron-type golf club head body comprises a top portion, a sole portion, a heel portion, a toe portion, a front portion further comprising a strikeface, and a back portion. The iron-type golf club head body further comprises a rear perimeter extension, extending rearward of a strikeface perimeter. The top portion extends rearwardly from the upper portion of the strikeface to form the rear perimeter extension top portion. The sole portion extends rearwardly from the lower portion of the strike face to form the rear perimeter extension sole portion. The heel portion extends rearwardly from the heel portion of the strike face to form a rear perimeter extension heel portion of the iron-type golf club head. The toe portion extends rearwardly from the toe portion of the strike face to form the rear perimeter extension toe portion. The rear perimeter extension and strikeface rear surface define an external rear cavity (on at least the rear surface). In many embodiments, an undercut recess circumscribes the external rear cavity, thereby forming a continuous or 360-degree undercut. In other embodiments, the undercut recess encompasses only a portion of the external rear cavity.
Referring to
Still referring to
The iron-type golf club head comprises a face height 122 measured between a topmost edge of the top portion 104 and a bottommost edge of the sole 102. In many embodiments, the face height 122 can be measured as a maximum distance between a top rail edge and a sole edge leading edge. The face height 122 is measured parallel to the loft plane 1010 tangent to the strikeface 110 at the strikeface geometric center 140, between the topmost edge of the top portion 104 and the bottommost edge of the sole 102. The face height 122 can range from 1.4 inches to 2.2 inches. In other embodiments, the face height can range from 1.4 inches to 1.8 inches or 1.8 inches to 2.2 inches. In other embodiments still, the face height can range from 1.4 inches to 1.9 inches, 1.5 inches to 2.0 inches, 1.6 inches to 2.1 inches, or 1.7 inches to 2.2 inches. For example, the face height 122 can be 1.4 inches, 1.5 inches, 1.6 inches, 1.7 inches, 1.8 inches, 1.9 inches, 2.0 inches, 2.1 inches, or 2.2 inch inches.
The strikeface 110 comprises a measured from the strikeface front surface 117 to the strikeface rear surface 118 in a direction perpendicular to the loft plane 1010 or the strikeface front surface 117. The multi-component insert 200 allows the strikeface 110 to be thinner compared to iron, devoid of the multi-component insert. The insert 200 further reinforces the strikeface 110 and allows the strikeface thickness to be reduced. In many embodiments, the strikeface 110 comprises a variable face thickness with a maximum thickness positioned near the strikeface geometric center 140 and a minimum thickness positioned near the strikeface perimeter 142. The strikeface thickness can range from 0.065 to 0.14 inch. In other embodiments, the strikeface thickness can range from 0.065 to 0.12 inch, 0.07 to 0.13 inch, or 0.075 to 0.14 inch. For example, the strikeface thickness can be 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.10, 0.11, 0.12, 0.13, or 0.14 inch. For example, the strikeface thickness near the geometric strikeface center 140 can range from 0.10 to 0.13 inch, and the strikeface thickness near the strikeface perimeter 142 can range from 0.065 to 0.095 inch. A strikeface thickness of an iron-type club head 100 devoid of the multi-component insert can require a strikeface thickness above 0.14 inch and a strikeface perimeter thickness above 0.10 inch to have sufficient durability and proper flexural response. When the strikeface thickness is in the lower portions of this range, the strikeface will flex more under impact. A back cavity insert adhered to the strikeface rear surface (as discussed herein below) will affect the flexure of the strikeface for any strikeface thickness, but more so as the strikeface thickness decreases.
The aspects of the iron-type golf club 100 described herein may be applied to one or more golf clubs within a set of irons. In some embodiments, the set of irons comprises irons having varying clubhead size, shaft length, lie angle, loft angle, head weight, and/or other parameters. Each clubhead in the set of irons can be numbered according to the convention, with numbers ranging from 1 to 10. Most commonly, a set is numbered from 2 to 9, wedge, and utility clubs. Furthermore, the set of irons can comprise one or more wedges, which have a loft angle higher than the numbered irons.
Referring to
The volume of the iron-type golf club head 100 described herein comprises a volume of between 1.9 cubic inches and 2.7 cubic inches. In some embodiments, the total volume of the iron-type golf club head 100 can be between 1.9 cubic inches and 2.4 cubic inches, 2.0 cubic inches and 2.5 cubic inches, 2.1 cubic inches and 2.6 cubic inches, 2.2 cubic inches and 2.7 cubic inches, 2.3 cubic inches, and 2.7 cubic inches, or 2.4 cubic inches and 2.7 cubic inches. In other embodiments, the total volume of the iron-type golf club head 100 can be 1.9 cubic inches, 2.0 cubic inches, 2.1 cubic inches, 2.2 cubic inches, 2.3 cubic inches, 2.4 cubic inches, 2.5 cubic inches, 2.6 cubic inches, or 2.7 cubic inches.
The mass of the iron-type golf club head 100 described herein comprises a total mass of between 200 grams and 300 grams. In some embodiments, the iron-type golf club head 100 can comprise a total mass of between 200 grams and 210 grams, 210 grams and 220 grams, 220 grams and 230 grams, 230 grams and 240 grams, 240 grams and 250 grams, 250 grams, and 260 grams, 255 grams and 260 grams, 260 grams to 270 grams, 265 grams to 275 grams, 270 grams and 280 grams, 275 grams, and 280 grams, or 250 grams and 270 grams. In other embodiments, the total mass can be 200 grams, 205 grams, 210 grams, 220 grams, 225 grams, 230 grams, 235 grams, 240 grams, 245 grams, 250 grams, 255 grams, 260 grams, 265 grams, 270 grams, 275 grams, 280 grams, 285 grams, 290 grams, 295 grams, or 300 grams.
Referring to
1. General Insert Structure
The iron-type golf club head 100 can further comprise a back cavity insert 200 adhesively attached to a strikeface rear surface. In one embodiment, a multi-material back cavity insert 200 can be formed from an elastomeric material, plastic, and/or aluminum. In other embodiments, the back cavity insert 200 can be formed solely of an elastomeric material or other flexible polymeric materials. In still other embodiments, the back cavity insert 200 can be formed from an adhesive layer and a stiffening cap. The structure of the back cavity insert 200 may comprise two or more layers comprising different materials permanently affixed one to another.
The back cavity insert may cover 100 percent of the strikeface rear surface. The back cavity insert may cover less than 100 percent of the strikeface rear surface. The back cavity insert may cover between 60 percent and 100 percent of the strikeface rear surface. The back cavity insert may cover 60 percent, 65 percent, 70 percent, 75 percent, 80 percent, 85 percent, 90 percent, 95 percent, or 100 percent of the strikeface rear surface.
Referring to
In one embodiment, the elastomeric layer 210 and the cap 220 are configured to form a plurality of discontinuous insert sections 224. The elastomeric layer 210 is discontinuous, comprising a plurality of elastomeric layer portions 212. The cap 220 is discontinuous, comprising a plurality cap portions 222. Each one of the plurality of elastomeric layer portions 212 is bonded with a single one of the plurality of cap portions 222 to form a plurality of insert sections 224. Each of the bonded elastomeric layer portions 212 is shaped congruently to each of the cap portions 222 to which it is bonded. Each insert section 224 comprising an elastomeric portion 212 and a cap portion 222 is affixed to the adhesive layer 204 such that the elastomeric portion 212 is entirely affixed to the adhesive layer 204. The plurality of insert sections are not continuous. The insert sections 224 are positioned on the adhesive layer 204 such that the outer edges of any one insert section do not directly abut the outer edges of any adjacent insert sections. The adhesive layer 204 is not completely covered by the insert sections 224; instead, the insert sections 224 are separated by gaps 240 between the spaced-apart, outside edges of the insert sections defined by the uncovered areas of the adhesive layer 204. As explained further below, the gaps 240 provide increased insert flexibility and, in turn, allows more energy to be returned to the golf ball when struck by the golf club.
Referring to
Referring to
The adhesive layer 204 is applied to and adheres to the strikeface rear surface 118. When present, the elastomeric layer 210 abuts directly against and is attached to the adhesive layer 204. When present, the elastomeric layer 210, is located between the adhesive layer 204 and the cap 220. The insert cap 220 comprises an insert 200 outer surface. The cap 220 comprises the outermost, rearward layer of the insert 200, with an inner side adhering to the elastomeric layer 210. The cap 220 may function as a stiffener layer. The insert 200 further comprises an interior surface, wherein the insert interior surface comprises the exposed portion of adhesive layer 204 prior to the installation of the insert 200 into the back cavity 116.
The insert thickness 230 comprises the sum of the thicknesses for each of the one or more layers. The thickness may be constant for each of the one or more layers. The thickness may vary for each of the one or more layers. Referring to
Referring to
The adhesive layer 204 may have an adhesive layer thickness in a range of 0.003 inch to 0.120 inch. The adhesive layer thickness may be 0.003 inch, 0.005 inch, 0.010 inch, 0.020 inch, 0.030 inch, 0.040 inch, 0.050 inch, 0.060 inch, 0.070 inch, 0.080 inch, 0.090 inch, 0.100 inch, 0.110 inch, or 0.120 inch. The elastomeric layer 210 may have an elastomeric layer thickness in a a range of 0.020 inch to 0.400 inch. The elastomeric layer thickness may be 0.020 inch, 0.030 inch, 0.040 inch, 0.050 inch, 0.060 inch, 0.070 inch, 0.080 inch, 0.090 inch, 0.100 inch, 0.110 inch, 0.120 inch, 0.130 inch, 0.140 inch, 0.150 inch, 0.160 inch, 0.170 inch, 0.180 inch, 0.190 inch, 0.200 inch, 0.210 inch, 0.220 inch, 0.230 inch, 0.240 inch, 0.250 inch, 0.260 inch, 0.270 inch, 0.280 inch, 0.290 inch, 0.300 inch, 0.310 inch, 0.320 inch, 0.330 inch, 0.340 inch, 0.350 inch, 0.360 inch, 0.370 inch, 0.380 inch, 0.390 inch, or 0.400 inch. The cap 220 may have a cap thickness in a range of 0.010 inch to 0.100 inch. The cap 220 thickness may be 0.010 inch, 0.020 inch, 0.030 inch, 0.040 inch, 0.050 inch, 0.060 inch, 0.070 inch, 0.080 inch, 0.090 inch, or 0.100 inch.
The insert 200 comprises an insert top end, bottom end, toe end, heel end. The insert comprises a maximum insert length 252 measured from the most toeward point of the toe end to the most heelward point of the heel end. The insert comprises a maximum insert width 254 measured from the most topward portion of the insert top end to the most bottomward portion of the insert bottom end. The maximum insert length 252 may vary in a range of 2.5 inches to 3.2 inches. The maximum insert length may be 2.5 inches, 2.6 inches, 2.7 inches, 2.8 inches, 2.9 inches, 3.0 inches, 3.1 inches, or 3.2 inches. The maximum insert width 254 may vary in a range of 1.0 inch to 1.4 inches. The maximum insert width 254 may be 1.0 inch, 1.1 inches, 1.2 inches, 1.3 inches, or 1.4 inches.
2. General Insert Function
A typical insert having a single, continuous, unbroken outer layer, usually metallic, lacks the ability to fully conform to the changing shape of a strikeface flexing at impact. Instead, the outer layer of the insert is put into tension as it is pushed rearwards, resisting the rearward bowing of the strikeface to some degree. The disclosed insert reduces the flexural resistance of the insert 200. Referring to
Referring to
Referring to
The iron-type golf club head strikeface 110 typically flexes the most near the geometric center 140. It is, therefore, advantageous for insert sections 224 to be arranged such that gaps between insert sections are on or very near the region of strikeface 110 directly surrounding the strikeface geometric center 140. It is advantageous for a plurality of insert sections 224 outer edges to be in a range of 0.1 inch to 0.5 inch of the strikeface geometric center. The plurality of insert section 224 outer edges can be 0.1 inch, 0.2 inch, 0.3 inch, 0.4 inch, or 0.5 inch from the strikeface geometric center for a more advantageous flexing effect. The insert sections 224 may be arranged in a variety of configurations. In some embodiments, polygonal insert sections can be arranged around the strikeface geometric center such that a vertex of each polygonal insert is on or near the geometric center 140. In other embodiments, longer edges of two or more insert sections of any shape may be positioned on or near the geometric center 140. Providing gapping at or near the geometric center 140 allows the insert 200 to expand at the area of greatest strikeface deformation under impact. The gaps 240 have a gap width 242 and a gap depth that is same as the thickness of the insert sections surrounding each of the gaps 240. Because the flexure of the strikeface 110 at impact is in three dimensions, the flexure of the back cavity insert attached to the strikeface rear surface is also three dimensional. As a result, the rearward flexion of the badge extends the gap width more at the outer surface of the back cavity insert than it does at the surface of the adhesive layer 204. The gaps 240 must, therefore, spread apart in the same manner the jaws of a set of pliers would spread apart; the bottom portion will spread apart less than the top portion as the jaws are opened.
The insert 200 with insert sections 224 is designed to flex with the strikeface 110 when a ball is struck and to minimize the dissipation of the energy imparted by the impact with the golf ball. However, some impact energy is still lost in the insert 200. Therefore, the insert 200 also serves to reinforce the strikeface 110 to some extent. The strikeface 110 comprises a strikeface thickness 119 measured between the strikeface front surface 117 and the strikeface rear surface 118. The strikeface thickness 119 contributes to the durability of the strikeface 110 under impact. The impact energy that is absorbed by the insert 200 allows the strikeface thickness 119 to be smaller than it could be while remaining sufficiently durable without the insert 200 attached to the strikeface rear surface 118.
A first and second embodiment of the back cavity insert disclosed within are presented below. However, the claimed back cavity insert is not limited to the first and second embodiments disclosed. Other back cavity insert configurations are disclosed in the discussion of general insert structure and general insert function. These may include, but are not limited to, back cavity inserts having a different number of insert sections, different insert section shapes, and any combination of the attribute ranges disclosed herein.
C) First Embodiment of the Back Cavity Insert
Referring to
Referring to
Referring to
The upper heel-side section 351 is adjacent to the top rail, the lower heel-side section 352, the upper central section 355, and the lower, heel-side central section 356. The lower heel-side section 352 is adjacent the upper heel-side section 351, and the lower, heel-side central section 356. The upper toe-side section 353 is adjacent to the top rail, the lower toe-side section 354, the upper central section 355, and the lower, toe-side central section 357. The lower toe-side section 354 is adjacent the upper toe-side section 353, and the lower, toe-side central section 357. The upper central section 355, lower, heel-side central section 356, and lower, toe-side central section 357 are all adjacent to each other such that each central section has a side parallel to each of the other two central sections. Further, the upper central section 355, lower, heel-side central section 356, and lower, toe-side central section 357 form an intersection wherein one corner or vertex of each of the central sections are all adjacent at an insert center 358. The insert 300 is oriented in the back cavity 116 such that the insert center 358 is located on the strikeface rear surface 118 approximately opposite a strikeface geometric center 140. The three central sections completely surround the insert center 358, such that each shared corner of the three central sections defines an approximately 120-degree angle with the two intersecting central section walls at that corner.
Referring to
D) Second Embodiment of the Back Cavity Insert
Referring to
Referring to
Referring to
Referring to
Further, the heel side section 451, the toe side section 452, the top section 453, and the bottom section 454 form an intersection wherein one corner, vertex, or edge of each of the sections can be adjacent to the geometric center 140 of the strikeface 110. The heel side section 451, the toe side section 452, the top section 453, and the bottom section 454 form a center gap 441 adjacent to the geometric center 140 of the strikeface 110. Wherein a corner, vertex, or edge of each of the sections 424 forms a perimeter of the center gap 441. Referring to
Referring to
Still referring to
Referring to
The iron-type golf club head and insert design were identical between the flexible (with gaps) and stiff (without gaps) inserts, except that the flexible insert 300 had the gaps 340 and insert sections 324 as described in the first insert 300 embodiment. Referring to
In summary, the Example 1 iron-type golf club having an iron-type golf club head comprising the flexible insert 300 comprising the gaps 340 and insert sections 324 only differed from the control iron-type golf club head back cavity insert in having the insert with gaps 340. All other factors were controlled to be identical. In this Example 1, the improved flight characteristics of higher launch angle, maximum ball flight height, greater ball speed, and lower launch spin rates cooperated to provide a 2-yard carry distance improvement.
As the rules to golf may change from time to time (e.g., new regulations may be adopted, or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA), the Royal and Ancient Golf Club of St. Andrews (R&A), etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described regarding specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This claims priority benefit from U.S. Provisional Application No. 63/108,226 filed Oct. 30, 2020, and claims priority benefit from U.S. Provisional Application No. 63/227,938 filed Jul. 30, 2021, all of which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2846228 | Reach | Aug 1958 | A |
4667963 | Yoneyama | May 1987 | A |
4883274 | Hsien | Nov 1989 | A |
4928972 | Nakanishi | May 1990 | A |
4964640 | Nakanishi et al. | Oct 1990 | A |
5290036 | Fenton | Mar 1994 | A |
5409229 | Schmidt | Apr 1995 | A |
5588923 | Schmidt | Dec 1996 | A |
5626530 | Schmidt | May 1997 | A |
6045456 | Best | Apr 2000 | A |
6491593 | Takeda | Dec 2002 | B2 |
6592469 | Gilbert | Jul 2003 | B2 |
6835144 | Best | Dec 2004 | B2 |
6857973 | Wieland et al. | Feb 2005 | B2 |
6899638 | Iwata | May 2005 | B2 |
6902495 | Pergande et al. | Jun 2005 | B2 |
6942580 | Hou et al. | Sep 2005 | B2 |
7125343 | Imamoto | Oct 2006 | B2 |
7220189 | Wieland et al. | May 2007 | B2 |
7244188 | Best | Jul 2007 | B2 |
7473190 | Hocknell et al. | Jan 2009 | B2 |
7481718 | Soracco | Jan 2009 | B2 |
7731604 | Wahl et al. | Jun 2010 | B2 |
7789771 | Park | Sep 2010 | B2 |
7803068 | Clausen et al. | Sep 2010 | B2 |
7854665 | Dewhurst | Dec 2010 | B2 |
7892106 | Matsunaga | Feb 2011 | B2 |
8057322 | Wallans | Nov 2011 | B2 |
8282506 | Holt | Oct 2012 | B1 |
8333667 | Kumamoto | Dec 2012 | B2 |
8491412 | Roach et al. | Jul 2013 | B2 |
8632421 | Park et al. | Jan 2014 | B2 |
8753220 | Roach et al. | Jun 2014 | B2 |
8808109 | Roach | Aug 2014 | B2 |
8834292 | Tsuji et al. | Sep 2014 | B2 |
8864603 | Kumamoto | Oct 2014 | B2 |
8920261 | Taylor | Dec 2014 | B2 |
8951141 | Mizutani | Feb 2015 | B2 |
9039543 | Mizutani | May 2015 | B2 |
9393469 | Shimahara | Jul 2016 | B2 |
9517393 | Cardani et al. | Dec 2016 | B2 |
9533200 | Dolezel et al. | Jan 2017 | B2 |
9586104 | Roach | Mar 2017 | B2 |
9623298 | Ban | Apr 2017 | B2 |
9675852 | Westrum | Jun 2017 | B2 |
9873028 | Franklin | Jan 2018 | B2 |
9901788 | Franklin et al. | Feb 2018 | B2 |
9950397 | Taylor | Apr 2018 | B2 |
9975016 | Nakamura et al. | May 2018 | B2 |
9993704 | Hebreo | Jun 2018 | B2 |
10039965 | Seluga | Aug 2018 | B1 |
10112084 | Stokke et al. | Oct 2018 | B2 |
10335652 | Wallans | Jul 2019 | B2 |
10350714 | Taylor et al. | Jul 2019 | B2 |
10357693 | Franklin | Jul 2019 | B2 |
10357696 | Doi | Jul 2019 | B2 |
10427018 | Taylor | Oct 2019 | B2 |
10449428 | Parsons et al. | Oct 2019 | B2 |
10716979 | Hosooka | Jul 2020 | B2 |
10737152 | Seluga et al. | Aug 2020 | B2 |
10792541 | Cardani | Oct 2020 | B2 |
10821338 | Hebreo et al. | Nov 2020 | B2 |
10821344 | Mata | Nov 2020 | B2 |
10905920 | Parsons | Feb 2021 | B2 |
20050130765 | Wieland | Jun 2005 | A1 |
20050181888 | Hou | Sep 2005 | A1 |
20070135233 | Perras | Jun 2007 | A1 |
20090131198 | Wallans | May 2009 | A1 |
20090247314 | Matsunaga | Oct 2009 | A1 |
20120252600 | Tsuji | Oct 2012 | A1 |
20140171220 | Taylor | Jun 2014 | A1 |
20160332043 | Cardani | Dec 2016 | A1 |
20170173410 | Nakamura | Jun 2017 | A1 |
20180185716 | Doi | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
200738301 | Oct 2007 | TW |
Number | Date | Country | |
---|---|---|---|
20220134195 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
63227938 | Jul 2021 | US | |
63108226 | Oct 2020 | US |