This present technology generally relates to golf clubs, and more specifically to golf club heads having an improved sweet spot concentrated about the geometric center of the golf club head. Moreover, the present technology also utilizes a flexure at either the sole or crown portion of the golf club head to improve the compliance of the striking face of the golf club head.
In the competitive industry of golf club design, distance and accuracy are two of the most important performance factors that help define the desirability of a metal wood type golf club. Although some may argue that the look, feel, and sound of a golf club may influence their opinion of a golf club; there is no arguing that the performance factors play a major role in determining the desirability of a golf club. The performance factors of maximizing distance while maintaining accuracy becomes even more prevalent in a metal wood type golf club head. Unlike iron type golf club heads where accuracy of a golf shot clearly trumps the distance benefits gained by any individual golf club, metal wood type golf club heads are designed to allow a golfer to hit the golf ball as far as possible and as straight as possible.
In order to maximize distance while maintaining accuracy of a metal wood type golf club head, metal wood type golf clubs have been designed with the objective of maximizing the distance of a golf ball struck by a golf club head close to the geometric center of the golf club head. This geometric center of the golf club head, due to the inherent laws of physics, may generally produce a golf shot that maximizes the distance by reducing the energy loss between the golf ball and the golf club head. In order to quantify this value, the United States Golf Association (USGA), in conjunction with the golfing industry, have come up with various methods such as the calculation the Coefficient of Restitution (COR) or the calculation of the Characteristic Time (CT) as ways to quantify the rebounding characteristic of a golf ball after it impacts a golf club head.
U.S. Pat. No. 6,390,933 to Galloway et al. ('933 patent) discusses one of the methods to increase the COR of a golf club head by disclosing a golf club head having a coefficient of restitution greater than 0.845 and a durability to withstand 2000 impacts with a golf ball at 110 miles per hour, wherein the club head may be composed of three pieces, a face, a sole, and a crown. More specifically, the '933 patent discloses a golf club head that may be composed of a titanium material, having a volume in the range of 175 cubic centimeters to 400 cubic centimeters, a weight in the range of 165 grams to 300 grams, and a striking plate surface area in the range of 4.00 square inches to 7.50 square inches.
Focusing on accuracy instead of distance, U.S. Patent Publication No. 2004/0116202 to Lin ('202 patent Publication), discusses a method to increase the accuracy of a golf club head by disclosing a golf club head having a plurality of holes around the periphery of the club head, so that when the club head hits the golf ball, most of the vibration waves and sound waves generated are dispersed out of these holes thus improving accuracy of the direction of the striking golf ball.
However, upon closer examination, we can see that developments in maximizing distance while maintaining accuracy of a metal wood type golf club head are premised upon the fact that the golfer be capable of hitting the golf ball at the sweet spot. It may be difficult for the average golfer to consistently strike a golf ball in the sweet spot. Hence, in addition to the performance factors mentioned above, it may also be desirable to optimize the size and location of this sweet spot, so an average golfer may obtain the design benefits of maximizing the distance and accuracy of the golf club head.
The systems, methods, and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.
One aspect of the present technology is the realization that some golf club head constructions produce a sweet spot which is offset from the geometric center of the striking face. Thus, there exists a need for an improved golf club head construction which can utilize innovating features while focusing the sweet spot about the geometric center of the striking face. Embodiments disclosed herein provide golf club head constructions which improve the performance of golf club heads.
One non-limiting embodiment of the present technology includes a golf club head comprising a striking face; a posterior body portion comprising a crown portion and a sole portion, wherein said crown portion is coupled to an upper portion of said striking face and said sole portion is coupled to a lower portion of said striking face: wherein said striking face comprises: a heel side and a toe side; a major axis located on said striking face and oriented substantially from said heel side towards said toe side, wherein said major axis is the longest line that can be drawn on said striking face; a minor axis located on said striking face and oriented substantially from said crown portion towards said sole portion, wherein said minor axis is the longest line perpendicular to said major axis that can be drawn on said striking face; a variable thickness profile comprising: a thick central portion; a transition portion; and a thin perimeter portion; wherein said transition portion surrounds said thick central portion; wherein said thin perimeter portion surrounds said transition portion; wherein said thick central portion comprises a center, said center of said thick central portion located equidistant along an axis parallel to said major axis from a heel most portion of said thick central portion and a toe most portion of said thick central portion; wherein said center of said thick central portion is offset from a geometric center of said striking face along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology said center of said thick central portion is offset from said geometric center towards said toe side of said striking face at least 2 mm.
In an additional non-limiting embodiment of the present technology said center of said thick central portion is offset from said geometric center towards said toe side of said striking face at least 3 mm and less than 7 mm.
In an additional non-limiting embodiment of the present technology said center of said thick central portion is offset from said geometric center towards said toe side of said striking face at least 4 mm and less than 6 mm.
In an additional non-limiting embodiment of the present technology a distance H from said center of said thick central portion to a heel most portion of said transition portion is at least 1 mm longer than a distance G from said center of said thick central portion to a toe most portion of said transition portion, wherein said distance H and said distance G are each measured along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology said striking face comprises a sweet spot, said sweet spot defined by the portion of said striking face capable of producing at least 99.7% of the maximum resultant ball speed achievable when a golf ball strikes said striking face, wherein said sweet spot is substantially centered about said geometric center of said striking face.
In an additional non-limiting embodiment of the present technology |(CTToe-0.5″/CTCenter)−1|≦0.06 and |(CTHeel-0.5″/CTCenter)−1|≦0.06, wherein CTCenter is the CT measurement at said geometric center of said striking face, CTToe-0.5″ is the CT measurement at a point offset 0.5″ towards said toe side from said geometric center along an axis parallel to said major axis, and CTHeel-0.5″ is the CT measurement at a point offset 0.5″ towards said heel side from said geometric center along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology said thick central portion is substantially elliptical in shape and substantially constant in thickness, and wherein said geometric center of said striking face is located at a midpoint of said minor axis.
An additional non-limiting embodiment of the present technology includes a golf club head comprising: a striking face; a posterior body portion further comprising a crown portion and a sole portion, wherein said crown portion is coupled to an upper portion of said striking face and said sole portion is coupled to a lower portion of said striking face; wherein said striking face comprises: a heel side and a toe side; a major axis located on said striking face and oriented substantially from said heel side towards said toe side, wherein said major axis is the longest line that can be drawn on said striking face; a minor axis located on said striking face and oriented substantially from said crown portion towards said sole portion, wherein said minor axis is the longest line perpendicular to said major axis that can be drawn on said striking face; a variable thickness profile comprising: a thick central portion; a transition portion; and a thin perimeter portion; wherein said transition portion surrounds said thick central portion; wherein said thin perimeter portion surrounds said transition portion; wherein said thick central portion comprises a center, said center of said thick central portion located equidistant along an axis parallel to said major axis from a heel most portion of said thick central portion and a toe most portion of said thick central portion; wherein said sole portion further comprises a flexure spaced from said striking face, said flexure comprising a front wall, an apex, and a rear wall, wherein said front wall and said rear wall both extend into an interior of said golf club head, and wherein said front wall and said rear wall are coupled at said apex; wherein said flexure is offset from a geometric center of said striking face along an axis parallel to said major axis; wherein said center of said thick central portion is offset from said geometric center of said striking face along an axis parallel to said major axis in substantially the same direction as said flexure.
In an additional non-limiting embodiment of the present technology said flexure comprises a center, said center of said flexure located equidistant along an axis parallel to said major axis from a heel most portion of said flexure and a toe most portion of said flexure, said center of said flexure offset at least 2 mm from said geometric center of said golf club, and wherein said center of said thick central portion of said striking face is offset at least 2 mm from said geometric center of said golf club.
In an additional non-limiting embodiment of the present technology center of said flexure is offset at least 3 mm and less than 7 mm from said geometric center, and wherein said center of said thick central portion is offset at least 3 mm and less than 7 mm from said geometric center.
In an additional non-limiting embodiment of the present technology said center of said flexure and said center of said thick central portion are offset substantially the same distance from said geometric center along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology flexure and said thick central portion are both offset towards said toe side of said striking face.
In an additional non-limiting embodiment of the present technology said striking face comprises a sweet spot, said sweet spot defined by the portion of said striking face capable of producing at least 99.7% of the maximum resultant ball speed achievable when a golf ball strikes said striking face, wherein said sweet spot is substantially centered about said geometric center of said striking face.
In an additional non-limiting embodiment of the present technology |(CTToe-0.5″/CTCenter)−1|≦0.06 and |(CTHeel-0.5″/CTCenter)−1|≦0.06, wherein CTCenter is the CT measurement at said geometric center of said striking face, CTToe-0.5″ is the CT measurement at a point offset 0.5″ towards said toe side from said geometric center along an axis parallel to said major axis, and CTHeel-0.5″ is the CT measurement at a point offset 0.5″ towards said heel side from said geometric center along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology said thick central portion is substantially elliptical in shape and substantially constant in thickness, and wherein said geometric center of said striking face is located at a midpoint of said minor axis.
An additional non-limiting embodiment of the present technology includes a golf club head comprising: a striking face; a posterior body portion further comprising a crown portion and a sole portion, wherein said crown portion is coupled to an upper portion of said striking face and said sole portion is coupled to a lower portion of said striking face; wherein said striking face comprises: a heel side and a toe side; a major axis located on said striking face and oriented substantially from said heel side towards said toe side, wherein said major axis is the longest line that can be drawn on said striking face; a minor axis located on said striking face and oriented substantially from said crown portion towards said sole portion, wherein said minor axis is the longest line perpendicular to said major axis that can be drawn on said striking face; a variable thickness profile comprising: a thick central portion; a transition portion; and a thin perimeter portion; wherein said transition portion surrounds said thick central portion; wherein said thin perimeter portion surrounds said transition portion; wherein said thick central portion comprises a center, said center of said thick central portion located equidistant along an axis parallel to said major axis from a heel most portion of said thick central portion and a toe most portion of said thick central portion; wherein said sole portion further comprises a flexure spaced from said striking face, said flexure comprising a front wall, an apex, and a rear wall, wherein said front wall and said rear wall both extend into an interior of said golf club head, and wherein said front wall and said rear wall are coupled at said apex; wherein said flexure comprises a toe portion toeward of a geometric center of said striking face and a heel portion heelward of said geometric center; wherein either said toe portion of said flexure or said heel portion of said flexure is more compliant than the opposite portion; wherein said center of said thick central portion is offset along an axis parallel to said major axis towards the more compliant portion of said flexure.
In an additional non-limiting embodiment of the present technology said center of said thick central portion of said striking face is offset at least 2 mm from said geometric center.
In an additional non-limiting embodiment of the present technology said center of said thick central portion is offset at least 3 mm and less than 7 mm from said geometric center.
In an additional non-limiting embodiment of the present technology wherein said center of said thick central portion is offset at least 4 mm and less than 6 mm from said geometric center.
In an additional non-limiting embodiment of the present technology said striking face comprises a sweet spot, said sweet spot defined by the portion of said striking face capable of producing at least 99.7% of the maximum resultant ball speed achievable when a golf ball strikes said striking face, wherein said sweet spot is substantially centered about said geometric center of said striking face.
In an additional non-limiting embodiment of the present technology |(CTToe-0.5″/CTCenter)−1|≦0.06 and |(CTHeel-0.5″/CTCenter)−1|≦0.06, wherein CTCenter is the CT measurement at said geometric center of said striking face, CTToe-0.5″ is the CT measurement at a point offset 0.5″ towards said toe side from said geometric center along an axis parallel to said major axis, and CTHeel-0.5″ is the CT measurement at a point offset 0.5″ towards said heel side from said geometric center along an axis parallel to said major axis.
In an additional non-limiting embodiment of the present technology said thick central portion is substantially elliptical in shape and substantially constant in thickness, wherein said geometric center of said striking face is located at a midpoint of said minor axis, and wherein said thick central portion is offset towards said toe side of said striking face from said geometric center.
In an additional non-limiting embodiment of the present invention the front wall of the flexure has a wall thickness greater than or equal to the rear wall thickness of the flexure, and the apex of the flexure has a wall thickness greater than or equal to the rear wall thickness
In an additional non-limiting embodiment of the present invention the sole portion further comprises of a flexure spaced from said striking face. The flexure further comprises of a central portion, located near a geometric center of the striking face, a plurality of two or more intermediate transition regions, located nears a toe portion and a heel portion of the central portion; and a plurality of two or more outer transition regions, located near a toe and a heel portion of the plurality of two or more intermediate transition regions. The central portion further comprises of a front wall, a rear wall, and an apex, and the front wall has a wall thickness greater than a wall thickness of the rear wall, the rear wall has a wall thickness greater than a wall thickness of the plurality of two or more intermediate transition regions, and the plurality of two or more intermediate transition regions has a wall thickness greater than a wall thickness of the plurality of two or more outer transition regions
The accompanying drawings form a part of the specification and are to be read in conjunction therewith. The illustrated embodiments, however, are merely examples and are not intended to be limiting. Like reference numbers and designations in the various drawings indicate like elements.
In the following detailed description, reference is made to the accompanying drawings, which form a part of the present disclosure. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and form part of this disclosure. For example, a system or device may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such a system or device may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. Alterations and further and further modifications of inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, moments of inertias, center of gravity locations, loft and draft angles, and others in the following portion of the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount, or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
In describing the present technology, the following terminology may have been used: The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more items. The term “plurality” refers to two or more of an item. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide. A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same lists solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to a selection of one of two or more alternatives, and is not intended to limit the selection of only those listed alternative or to only one of the listed alternatives at a time, unless the context clearly indicated otherwise.
Features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the illustrated features serve to explain certain principles of the present disclosure.
Embodiments described herein generally relate to golf clubs having an improved sweet spot. More specifically, some embodiments relate to golf club head constructions which concentrate the sweet spot about the geometric center of the golf club head.
Golf club head 100, as shown in the current exemplary embodiment depicted by
It should be noted in
The length of the major axis 220 may generally be defined as the distance of the longest line that can be drawn on the striking face 202. Here, in this current exemplary embodiment shown in
The length of the major axis 220, as shown in the current exemplary embodiment, may generally be less than about 120 mm (millimeters), more preferably less than about 110 mm, and most preferably less than about 100 mm. The length of the minor axis 222 on the other hand, as shown in the current exemplary embodiment, may generally be greater than about 40 mm, more preferably greater than about 45 mm, and most preferably greater than about 50 mm. Hence, it can be seen that when the length of the minor axis 222 is divided by the length of the major axis 220, the resulting elliptical factor may generally be within the range discussed above.
The frontal view of golf club head 200 shown in
To understand the rationale behind the tilting of the striking face 202 of the golf club head 200, it may be beneficial to view
Returning to
Turning now to
In some embodiments, a golf club head can include various features which may affect the location of the sweet spot relative to the geometric center of the striking face of the golf club head. Examples of such features may be found in commonly owned U.S. patent application Ser. No. 14/089,574 to Golden et al., Golf Club with Flexure, filed on Nov. 25, 2013, the disclosure of which is hereby incorporated by reference in its entirety. Flexures 536, 538, as illustrated in
As discussed above, it is preferable to locate the sweet spot at the geometric center of the striking face, as illustrated in
As illustrated in
In some embodiments, Distance A can be between 0.25 mm and 15 mm. In some embodiments, Distance A can be between 1 mm and 10 mm. In some embodiments, Distance A can be between 2 mm and 8 mm. In some embodiments, Distance A can be between 3 mm and 7 mm. In some embodiments, Distance A can be between 4 mm and 6 mm. In some embodiments, Distance A can be greater than 1 mm. In some embodiments, Distance A can be greater than 2 mm. In some embodiments, Distance A can be greater than 3 mm. In some embodiments, Distance A can be greater than 4 mm. In some embodiments, Distance A can be greater than 5 mm.
As discussed above in relation to
In some embodiments, Distance D can be between 0.25 mm and 15 mm. In some embodiments, Distance D can be between 1 mm and 10 mm. In some embodiments, Distance D can be between 2 mm and 8 mm. In some embodiments, Distance D can be between 3 mm and 7 mm. In some embodiments, Distance D can be between 4 mm and 6 mm. In some embodiments, Distance D can be greater than 1 mm. In some embodiments, Distance A can be greater than 2 mm. In some embodiments, Distance D can be greater than 3 mm. In some embodiments, Distance D can be greater than 4 mm. In some embodiments, Distance D can be greater than 5 mm.
As discussed above and as illustrated in
In some embodiments, the center 737 of the flexure 736 may not be offset from the geometric center 701 of the striking face 702, but may still provide asymmetric stiffness properties, shifting the sweet spot from the geometric center 701. Asymmetric stiffness properties can be produced by a plurality of constructions which may include, for example, asymmetric proportions, asymmetric thicknesses, asymmetric curvature, hosel structure, asymmetric ribbing, etc. Therefore, in some embodiments, the golf club head 701 can include a flexure 736 with a center 737 which is not offset from the geometric center 701, as well as a thick central portion 742 with a center 741 offset towards the toe from the geometric center 701. In another embodiment, the center 741 of the thick central portion 742 could be offset towards the heel. In some embodiments, the center 741 of the thick central portion 742 could be offset towards the portion of the golf club head which includes the more compliant portion of the flexure 736 or other golf club head feature.
One method of measuring the performance of a striking face is Characteristic Time (CT). Measurement of CT is outlined in the Procedure for Measuring the Flexibility of a Golf Clubhead, USGA-TPX3004, Revision 1.0.0, May 1, 2008 by the United States Golf Association. CT can be measured at various locations on the striking face 702 of the golf club head 700. CT can be measured at the geometric center 701 of the striking face 702 (CTCenter). CT can be measured at a location offset from the geometric center 701 of the striking face 702, such as a point offset 0.5″ towards the toe from the geometric center 702 along an axis parallel to the major axis (CTToe-0.5″), or a point offset 0.5″ towards the heel from the geometric center 702 along an axis parallel to the major axis (CTHeel-0.5″). In some embodiments, the golf club head 700 can have a CT relationship wherein |(CTToe-0.5″/CTCenter)−1|≦0.06. In some embodiments, the golf club head 700 can have a CT relationship wherein |(CTHeel-0.5″/CTCenter)−1|≦0.06.
For example, one embodiment of a club head could have a CTCenter value of 235, a CTToe-0.5″ value of 247, and a CTHeel-0.5″ value of 234. The absolute value of (CTToe-0.5″/CTCenter)−1 equals 0.051064 which satisfies |(CTToe-0.5″/CTCenter)−1|≦0.06. Also, the absolute value of (CTHeel-0.5″/CTCenter)−1 equals 0.012766 which satisfies |(CTHeel-0.5″/CTCenter)−1|≦0.06. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTToe-0.5″/CTCenter)−1|≦0.05. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTHeel-0.5″/CTCenter)−1|≦0.05. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTToe-0.5″/CTCenter)−1|≦0.04. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTHeel-0.5″/CTCenter)−1|≦0.04. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTToe-0.5″/CTCenter)−1|≦0.03. In another embodiment, the golf club head 700 can have a CT relationship wherein |(CTHeel-0.5″/CTCenter)−1|≦0.03.
Based on the above, it can be said that the flexure 1036 may have a front wall 1071 thickness equal to the rear wall 1072 thickness, while the maximum thickness of the flexure 1036 may generally occur at the apex 1073. The maximum thickness is generally greater than about 120% of the thickness of the front wall 1071 and the rear wall 1072, more preferably greater than about 125% of the thickness of the front wall 1071 and the rear wall 1072, and most preferably greater than about 130% of the thickness of the front wall 1071 and the rear wall 1072.
The present embodiment of the present invention, in order to reduce the wall thickness of the flexure 1236 at portions that do not experience high stress, slowly reduce the wall thickness as the flexure 1236 moves away from the central portion of the flexure 1236. The wall thickness at the intermediate transition regions 1274 may generally be thinner than the wall thickness at the rear wall 1272, while the wall thickness at the outer transition regions 1276 is generally even thinner than the wall thickness at the intermediate transition region 1274. More specifically, in this current embodiment of the present invention, the front wall 1271 may generally have a thickness of between about 1.50 mm to about 2.0 mm, more preferably between about 1.60 mm to about 1.90 mm, and most preferably between about 1.65 mm to about 1.85 mm. The rear wall 1272 in accordance with the present invention may generally be thinner than the front wall 1271, and have a thickness of between about 1.20 mm to about 1.70 mm, more preferably between about 1.30 mm to about 1.60 mm, and most preferably between about 1.35 mm to about 1.55 mm. The intermediate transition region 1274 may generally be slightly thinner than the rear wall 1272 and have a thickness of between about 1.10 mm to about 1.60 mm, more preferably between about 1.20 mm to about 1.50 mm, and most preferably between about 1.25 mm to about 1.45 mm. Finally, the outer transition region 1276 may generally be even thinner than the intermediate transition region 1274 and have a thickness of between about 0.80 mm to about 1.10 mm, more preferably between about 0.85 mm to about 1.05 mm, and most preferably between about 0.90 mm to about 1.00 mm.
Based on the above, it can be said that the flexure 1236 may generally have the thickest portion located at the front wall 1271, next thickest region located at the rear wall 1272, followed by the intermediate transition region 1274, and the thinnest wall thickness occurs at the outer transition region 1276.
In a preferred embodiment of the present invention, the thickness variations of the various portions of the golf club head, including the striking face and the flexure region, may generally be achieved by simply thickening up the wall thickness. However, in an alternative embodiment of the present invention, the different thickness variations could be achieved via an internal weight pad, an external weight pad, or any other types of features that can be used to alter the thickness of the walls all without departing from the scope and content of the present invention.
It is important to note that a flexure is not the only golf club head feature than can alter the flex characteristics of the golf club head when impacting a golf ball. Other features, which may include for example, wall thicknesses, curvature, ribbing, weight ports, hosel structure, etc., can asymmetrically affect the stiffness of a golf club head and thus effect the location of a sweet spot on the striking face of the golf club head. The various embodiments of variable thickness profile as well as shifted thick central portions discussed herein can be utilized to complement a plurality of golf club head features in addition to the flexures discussed herein.
In another embodiment, a golf club head can be formed from a plurality of pieces which are joined together to form the golf club head. In some embodiments, the sole portion and striking face can be formed from one integral part utilizing a technique called super plastic forming. Super plastic forming is performed at high temperatures, and sometimes in a vacuum, to achieve larger than conventional elongation in a material during the formation process. The process is especially attractive in the processing of titanium materials. In some embodiments, a pressurized gas can be used in place of a male die to form a part rather than a physical die contacting the surface of the material during deformation. A pressurized gas can apply a more uniform force while minimizing localized friction which leads to the formation holes in the material. Super plastic forming can allow for more complex geometries to be formed. Super plastic forming also allows for little to no spring back, aiding in accuracy of manufacture. Additionally, unlike a casted material, a sole and striking face formed with super plastic forming has no alpha case or presence of oxygen on the surface, minimizing surface imperfections, creating a smooth surface, and minimizing stress crack propagation. In some embodiments, various features such as the flexure and variable thickness profile discussed above could be produced using the super plastic forming process, including for example, the striking face, the sole, the flexure, and the variable thickness profile.
In describing the present technology herein, certain features that are described in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable sub combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub combination or variation of a sub combination.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure as well as the principle and novel features disclosed herein.
This application is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 14/479,002, filed Sep. 5, 2014, the disclosure of which is disclosed by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14479002 | Sep 2014 | US |
Child | 14814334 | US |