The present application claims priority on Patent Application No. 2018-026888 filed in JAPAN on Feb. 19, 2018. The entire contents of this Japanese Patent Application are hereby incorporated by reference.
The present disclosure relates to a golf club head.
There has been proposed a head having a rib projected toward a hollow portion side. Japanese patent No. 5902912 (US2013/0109503) discloses a head in which at least a part of a crown is formed by a resin member composed of a fiber reinforced resin. This resin member includes a rib projected toward a hollow portion side.
Materials can be selected for respective members in a head including a body having an opening and a lid member disposed so as to close the opening. Therefore, such a head is excellent in degree of freedom of design. However, the rigidity of the head is likely to be reduced due to the presence of the opening. When the rigidity of the lid member is not high, the rigidity of the head can be further reduced. In addition, there is a possibility of further reducing the rigidity of the head depending on a joining method of the body and the lid member. Such a reduced head rigidity lowers the hitting sound.
The present disclosure relates to a structure of improving the rigidity of a head in which an opening is covered by another member.
In one aspect, a golf club head includes a hollow portion, a first member having an opening, and a second member attached to the first member and covering the opening. The first member includes a first rib projected toward the hollow portion. The second member includes a second rib projected toward the hollow portion. The first rib is engaged with the second rib.
The following will describe embodiments in detail with appropriate reference to the drawings.
The head 2 includes a hitting face 4, a crown 6, a sole 8, and a hosel 10. The hosel 10 includes a hosel hole 12. A shaft having a sleeve fixed to a tip end portion of the shaft is detachably fixed to the hosel hole 12.
As shown in
The head 2 is a driver head. The head 2 is a wood type head. The type of the head 2 is not limited. Examples of the type of the head 2 include a wood type head, a hybrid type head, an iron type head, and a putter type head.
The head 2 includes a rib Rb. As described later, the rib Rb is formed by a plurality of ribs being composited. In this respect, the rib Rb is also referred to as a composite rib. The composite rib Rb is provided on the inner surface of the sole 8. The position of the composite rib Rb is not limited. For example, the composite rib Rb may be provided on the inner surface of the crown 6. For example, the composite rib Rb may continuously extend from the inner surface of the crown 6 to the inner surface of the sole 8.
The head 2 is formed by joining a plurality of members to each other. As shown in
The second member M2 is joined to the first member M1. The method for this joining is adhesion with an adhesive. The joining method is not limited. Examples of the joining method include adhesion with an adhesive, brazing, welding, fitting, and combinations of those.
The first member M1 is a body of the head 2. The first member M1 constitutes at least a part of the crown 6. In the present embodiment, the first member M1 constitutes the whole crown 6. The first member M1 constitutes at least a part of the hitting face 4. In the present embodiment, the first member M1 constitutes the whole hitting face 4. The first member M1 constitutes at least a part of the sole 8. In the present embodiment, the first member M1 constitutes a part of the sole 8. The first member M1 constitutes at least apart of the hosel 10. In the present embodiment, the first member M1 constitutes the whole hosel 10. The structure of the first member M1 is not limited. For example, the first member M1 may be formed by joining a cup face including the hitting face 4 to another part.
The first member M1 includes an opening 100. The opening 100 is provided in the sole 8. The opening 100 penetrates the sole 8. The opening 100 connects the hollow portion and the outside of the head 2. The position of the opening 100 is not limited. The opening 100 may be provided in the crown 6. The opening 100 may be provided in a side portion (skirt portion) of the head. The opening 100 may be provided in a region extending from the crown 6 to the sole 8.
As well shown in
As well shown in
As well shown in
As well shown in
The first member M1 includes a first rib Rb1. The first rib Rb1 includes a base portion Rb11 and an opening extension portion Rb12. The base portion Rb11 is projected upward from the inner surface of the first member M1. Of the first rib Rb1, a portion located on the upper side of the inner surface of the first member M1 is the base portion Rb11. Of the first rib Rb1, a portion located on the upper side of the opening 100 is the opening extension portion Rb12. The opening extension portion Rb12 extends from the base portion Rb11. In the head 2, the opening extension portion Rb12 is located on the upper side of a second rib Rb2.
As well shown in
In a toe-side portion of the first rib Rb1, the first rib Rb1 extends from the body portion 110, through the support portion 102, to the upper side of the opening 100. Similarly, in a heel-side portion of the first rib Rb1, the first rib Rb1 extends from the body portion 110, through the support portion 102, to the upper side of the opening 100. The first rib Rb1 continuously extends from the body portion 110 on the one side of the opening 100 to the body portion 110 on the other side of the opening 100.
In the present disclosure, the “upper side” means an upper side in the vertical direction in a state where a head alone is stationarily placed on a horizontal plane.
The second member M2 covers the opening 100. It is sufficient that the second member M2 covers at least a part of the opening 100. In the present embodiment, the second member M2 covers the whole opening 100. The second member M2 constitutes a part of the sole 8. The position of the second member M2 is not limited. The second member M2 may be provided on the crown 6. The second member M2 may be provided on the side portion (skirt portion) of the head. The second member M2 may be provided on a region extending from the crown 6 to the sole 8.
The second member M2 includes the second rib Rb2. The second rib Rb2 is provided on the inner surface of the second member M2. The second rib Rb2 extends along the first rib Rb1. In the head 2, the second rib Rb2 is projected toward the hollow portion. The second rib Rb2 is projected upward.
As described above, the peripheral edge portion 250 of the second member M2 is disposed on the stepped-down portion 104 of the support portion 102. The second member M2 is adhered to the support portion 102 of the first member M1 by an adhesive.
As described above, the head 2 includes the composite rib Rb. The composite rib Rb is formed by combining the first rib Rb1 and the second rib Rb2.
The first rib Rb1 includes a receiving recess 120. As shown in
Because of the engagement with the first rib Rb1, the second rib Rb2 is restrained by the first rib Rb1. As a result, the rigidity of the second member M2 is enhanced, whereby the rigidity of the head 2 is enhanced (rigidity enhancing effect). A high hitting sound can be obtained by the rigidity enhancing effect.
More preferably, the first rib Rb1 is adhered to the second rib Rb2 by an adhesive. Abutting portions between the first rib Rb1 and the second rib Rb2 are adhered to each other by the adhesive. The rigidity enhancing effect can be further increased by using the adhesion in addition to the engagement.
As shown in
In the composite rib Rb of
Also in the present embodiment, the first rib Rb1 is engaged with the second rib Rb2. The protruding portion 212 is inserted to the receiving recess 120. An upper surface 214 of the protruding portion 212 abuts the first rib Rb1 (opening extension portion Rb12). Moreover, an upper surface 216 of the base portion 210 abuts the first rib Rb1. A side surface (front side surface) 218 of the second rib Rb2 (protruding portion 212) abuts the first rib Rb1 (opening extension portion Rb12). A side surface (back side surface) 220 of the second rib Rb2 (protruding portion 212) abuts the first rib Rb1 (opening extension portion Rb12). The second rib Rb2 is supported by the first rib Rb1 with these abutments.
Because of the engagement with the first rib Rb1, the second rib Rb2 is restrained by the first rib Rb1. As a result, the rigidity of the second member M2 is enhanced, whereby the rigidity of the head 2 is enhanced (rigidity enhancing effect).
In the embodiment of
Also in the present embodiment, the first rib Rb1 is engaged with the second rib Rb2. The opening extension portion Rb12 is inserted to the receiving recess 230. A bottom surface 130 of the opening extension portion Rb12 abuts the second rib Rb2. Moreover, a side surface (front side surface) 132 of the first rib Rb1 (opening extension portion Rb12) abuts the second rib Rb2. A side surface (back side surface) 134 of the first rib Rb1 abuts the second rib Rb2. The second rib Rb2 is supported by the first rib Rb1.
Because of the engagement with the first rib Rb1, the second rib Rb2 is restrained by the first rib Rb1. As a result, the rigidity of the second member M2 is enhanced, whereby the rigidity of the head 2 is enhanced (rigidity enhancing effect).
The head 302 includes a hitting face 304, a crown 306, a sole 308, and a hosel 310. The hosel 310 includes a hosel hole 312. A shaft having a sleeve fixed to a tip end portion of the shaft is detachably fixed to the hosel hole 312. The head 302 includes a hollow portion.
The head 302 includes a composite rib Rb. The composite rib Rb is provided on the inner surface of the sole 308. The position of the composite rib Rb is not limited. For example, the composite rib Rb may be provided on the inner surface of the crown 306.
The head 302 is formed by joining a plurality of members. As shown in
The second member M2 is joined to the first member M1. The joining method is an adhesion by an adhesive.
The first member M1 is a body of the head 302. The first member M1 constitutes the whole crown 306. The first member M1 constitutes the whole hitting face 304. The first member M1 constitutes the whole hosel 310. The first member M1 constitutes a part of the sole 308.
The first member M1 includes an opening 400. The opening 400 is provided in the sole 308. The opening 400 penetrates the sole 308. The opening 400 connects the hollow portion and the outside of the head 302.
As well shown in
As well shown in
As well shown in
As well shown in
The first member M1 includes a first rib Rb1. The first rib Rb1 is divided in a longitudinal direction thereof. The first rib Rb1 is distributed to two locations. Unlike the embodiment of
As well shown in
Arrangement of the first section Rt1 and the second section Rh1 is not limited. For example, the first section Rt1 may be disposed on the face side of the opening 400, and the second section Rh1 may be disposed on the back side of the opening 400.
The first section Rt1 includes a base portion Rt11 and an opening extension portion Rt12. The base portion Rt11 is projected upward from the inner surface of the first member M1. The base portion Rt11 includes a portion located on the upper side of the body portion 410 and a portion located on the upper side of the support portion 402. The opening extension portion Rt12 is a portion extending on the upper side of the opening 400. The opening extension portion Rt12 extends from the base portion Rt11.
The second section Rh1 includes a base portion Rh11 and an opening extension portion Rh12. The base portion Rh11 is projected upward from the inner surface of the first member M1. The base portion Rh11 includes a portion located on the upper side of the body portion 410 and a portion located on the upper side of the support portion 402. The opening extension portion Rh12 is a portion extending on the upper side of the opening 400. The opening extension portion Rh12 extends from the base portion Rh11.
As well shown in
The second member M2 covers the opening 400. The second member M2 constitutes a part of the sole 308.
The second member M2 includes a second rib Rb2. The second rib Rb2 is provided on the inner surface of the second member M2. In the head 302, the second rib Rb2 is projected toward the hollow portion. The second rib Rb2 is projected upward.
The peripheral edge portion 550 of the second member M2 is joined to the stepped-down portion 404 of the support portion 402. The second member M2 is adhered to the support portion 402 of the first member M1 by an adhesive.
As described above, the head 302 includes the composite rib Rb. The composite rib Rb is formed by combining the first rib Rb1 with the second rib Rb2.
The second rib Rb2 includes a receiving recess 520. As shown in
As well shown in
Thus, also in the present embodiment, the first rib Rb1 is engaged with the second rib Rb2. The first rib Rb1 is made continuous with the second rib Rb2. The first rib Rb1 abuts the second rib Rb2. The first rib Rb1 supports the second rib Rb2. The composite rib Rb is formed by the first section Rt1, the second section Rh1, and the second rib Rb2.
The second rib Rb2 is restrained by the first rib Rb1. As a result, the rigidity of the second member M2 is enhanced, whereby the rigidity of the head 302 is enhanced (rigidity enhancing effect). A high hitting sound can be obtained by the rigidity enhancing effect.
In the present embodiment, the first receiving recess 522 is provided at one side end of the second rib Rb2, and the one side end is engaged with the first section Rt1. Moreover, the second receiving recess 524 is provided at the other side end of the second rib Rb2, and the other side end is also engaged with the second section Rh1. The one side end and the other side end of the second rib Rb2 are engaged with the first rib Rb1.
More preferably, the first section Rt1 is adhered to the first receiving recess 522 by an adhesive. More preferably, the second section Rh1 is adhered to the second receiving recess 524 by an adhesive. The rigidity enhancing effect can be further increased by using the adhesion in addition to the engagement.
The opening extension portion Rt12 of the first section Rt1 is inserted to the first receiving recess 522. The opening extension portion Rt12 includes an insertion portion 408 inserted to the first receiving recess 522. The opening extension portion Rh12 of the second section Rh1 is inserted to the second receiving recess 524. When the opening 400 is covered by the second member M2, the first rib Rb1 (the first section Rt1, the second section Rh1) is inserted to the receiving recesses 520 (the first receiving recess 522, the second receiving recess 524), concomitantly. The first rib Rb1 can be easily engaged with the second rib Rb2.
With reference to
With reference to
The second rib Rb2 is restrained by the first rib Rb1. As a result, the rigidity of the second member M2 is enhanced, whereby the rigidity of the head 302 is enhanced (rigidity enhancing effect).
Contrary to the embodiment of
In the embodiment of
Contrary to the embodiment of
In the embodiment of
In the embodiment of
Also in the embodiments of
An end face 454 of the first rib Rb1 abuts an end face 564 of the second rib Rb2.
The first rib Rb1 includes a projection 450 projected toward the sole side. The second rib Rb2 includes a recess 560 receiving the projection 450. The projection 450 is engaged with the recess 560 to achieve the engagement between the first rib Rb1 and the second rib Rb2.
The second rib Rb2 includes a projection 562 projected toward the crown side. The first rib Rb1 includes a recess 452 receiving the projection 562. The projection 562 is engaged with the recess 452 to achieve the engagement between the first rib Rb1 and the second rib Rb2.
When the second member M2 is disposed on the opening 400 of the first member M1, the projection 450 is received by the recess 560, concomitantly. When the second member M2 is disposed on the opening 400 of the first member M1, the projection 562 is received by the recess 452, concomitantly. Therefore, the second member M2 is easily attached to the opening 400.
Also in the embodiment of
As shown in the cross-sectional view of the first member M1 in
In the head 602, two engaging projections 460 are provided. A first engaging projection 462 is provided on the lower side of the first section Rt1. The first engaging projection 462 is provided on the lower side of the base portion Rt11. A second engaging projection 464 is provided on the lower side of the second section Rh1. The second engaging projection 464 is provided on the lower side of the base portion Rh11.
Although not shown in
Except for the presence of the engaging projections 460 and the holes 570, the head 602 is the same as the head 302.
The engagement between the first rib Rb1 and the second rib Rb2 is further securely maintained by the engagement between the engaging projections 460 and the holes 570. Moreover, joining strength between the peripheral edge portion 550 of the second member M2 and the support portion 402 of the first member M1 is enhanced by using such a physical engagement in addition to the adhesion by an adhesive.
As described above, the rigidity enhancing effect is exhibited by the engagement between the first rib Rb1 and the second rib Rb2.
In the head 2 of the first embodiment, the first rib Rb1 intersects the opening 100 (see
When the first rib Rb1 intersects the opening 100, the first rib Rb1 itself can effectively suppress deterioration in rigidity of the first member M1 due to the presence of the opening 100. This effect is combined with the rigidity enhancing effect brought by the engagement between ribs, whereby the rigidity of the head 2 can be enhanced.
In the head 302 according to the second embodiment, the first rib Rb1 is distributed to one side and another side of the opening 400 (see
In the head 302, although the first rib Rb1 does not intersect the opening 400, the composite rib Rb intersects the opening 400. That is, also in the head 302, the composite rib Rb continuously extends from one side of the opening 400 to the other side of the opening 400. The composite rib Rb can effectively reinforce the rigidity of the first member M1 to prevent deterioration of the rigidity due to the presence of the opening 400.
In a hollow head, the outer shell of the head is vibrated to produce a big hitting sound. For example, vibration of the sole produces a vibration mode in such a manner that the center portion of the sole is the antinode of the vibration.
The vibration can cause the second rib Rb2 to be deformed or displaced in such a manner that the side surfaces thereof are inclined. Similarly, the vibration can cause the first rib Rb1 to be deformed or displaced in such a manner that the side surfaces thereof are inclined. These deformations or displacements are suppressed because at least one side surface of the first rib Rb1 and the second rib Rb2 abuts on the other rib. As a result, the above-mentioned vibration is suppressed, whereby the hitting sound can be improved.
The vibration can cause the second rib Rb2 to be deformed or displaced in such a manner that the end face thereof is inclined. Similarly, the vibration can cause the first rib Rb1 to be deformed or displaced such that the end face thereof is inclined. These deformations or displacements are suppressed because at least one end face of the first rib Rb1 and the second rib Rb2 abuts on the other rib. As a result, the above-mentioned vibration is suppressed, whereby the hitting sound can be improved.
In both the first embodiment (
A double-pointed arrow HR in the enlarged portion of
When a rib height in the base portion Rb11 of the first rib Rb1 is excessively large, the opening extension portion Rb12 extending from the base portion Rb11 might become likely to vibrate. In this respect, the maximum value of the rib height in the base portion Rb11 of the first rib Rb1 is preferably less than or equal to 12 mm, more preferably less than or equal to 10 mm, and still more preferably less than or equal to 8 mm. When the rib height in the base portion Rb11 of the first rib Rb1 is excessively small, the degree of freedom in design of the opening extension portion Rb12 extending from the base portion Rb11 is reduced. In this respect, the maximum value of the rib height in the base portion Rb11 of the first rib Rb1 is preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm, and still more preferably greater than or equal to 4 mm. Note that the “maximum value” is set for considering that the rib height of the first rib Rb1 can vary.
When a rib width in the base portion Rb11 of the first rib Rb1 is excessively large, weights of the first rib Rb1 and the composite rib Rb become excessively large, whereby the degree of freedom in design of the head can be reduced. In this respect, the maximum value of the rib width in the base portion Rb11 of the first rib Rb1 is preferably less than or equal to 5 mm, more preferably less than or equal to 4 mm, and still more preferably less than or equal to 3 mm. When the rib width in the base portion Rb11 of the first rib Rb1 is excessively small, the effect of the restraint laid on the second rib Rb2 can be reduced. In this respect, the maximum value of the rib width in the base portion Rb11 of the first rib Rb1 is preferably greater than or equal to 1 mm, more preferably greater than or equal to 1.2 mm, and still more preferably greater than or equal to 1.5 mm. Note that the “maximum value” is set for considering that the rib width of the first rib Rb1 can vary.
When the rib height HR of the second rib Rb2 is excessively large, weights of the second rib Rb2 and the composite rib Rb become excessively large, whereby the degree of freedom in design of the head can be reduced. In this respect, the maximum value of the height HR of the second rib Rb2 is preferably less than or equal to 12 mm, more preferably less than or equal to 10 mm, and still more preferably less than or equal to 8 mm. When the height HR of the second rib Rb2 is excessively small, the degree of freedom in the engagement structure with the first rib Rb1 can be reduced. In this respect, the maximum value of the height HR of the second rib Rb2 is preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm, and still more preferably greater than or equal to 4 mm. Note that the “maximum value” is set for considering that the height HR of the second rib Rb2 can vary.
When the width BR of the second rib Rb2 is excessively large, weights of the second rib Rb2 and the composite rib Rb become excessively large, whereby the degree of freedom in design of the head is reduced. In this respect, the maximum value of the width BR of the second rib Rb2 is preferably less than or equal to 5 mm, and more preferably less than or equal to 4 mm, and still more preferably less than or equal to 3 mm. When the rib width BR of the second rib Rb2 is excessively small, the effect of enhancing the rigidity of the second member M2 can be reduced. In this respect, the maximum value of the width BR of the second rib Rb2 is preferably greater than or equal to 1 mm, more preferably greater than or equal to 1.2 mm, and still more preferably greater than or equal to 1.5 mm. Note that the “maximum value” is set for considering that the width BR of the second rib Rb2 can vary.
When the height FR of the composite rib Rb is excessively large, the weight of the composite rib Rb becomes excessively large, whereby the degree of freedom in design of the head can be reduced. In this respect, the maximum value of the height FR of the composite rib Rb is preferably less than or equal to 15 mm, more preferably less than or equal to 12 mm, and still more preferably less than or equal to 10 mm. When the height FR of the composite rib Rb is excessively small, the rigidity enhancing effect can be reduced. Moreover, when the height FR is excessively small, the degree of freedom in the engagement structure between the first rib Rb1 and the second rib Rb2 can be reduced. In these respects, the maximum value of the height FR of the composite rib Rb is preferably greater than or equal to 3 mm, more preferably greater than or equal to 4 mm, and still more preferably greater than or equal to 5 mm. Note that the “maximum value” is set for considering that the height FR of the composite rib Rb can vary.
When the width WR of the composite rib Rb is excessively large, the weight of the composite rib Rb becomes excessively large, whereby the degree of freedom in design of the head can be reduced. In this respect, the maximum value of the width WR of the composite rib Rb is preferably less than or equal to 8 mm, and more preferably less than or equal to 7 mm, and still more preferably less than or equal to 6 mm. When the width WR of the composite rib Rb is excessively small, the rigidity enhancing effect can be reduced. Moreover, when the width WR is excessively small, the degree of freedom in the engagement structure between the first rib Rb1 and the second rib Rb2 can be reduced. In these respects, the maximum value of the width WR of the composite rib Rb is preferably greater than or equal to 2 mm, more preferably greater than or equal to 2.5 mm, and still more preferably greater than or equal to 3 mm. Note that the “maximum value” is set for considering that the width WR of the composite rib Rb can vary.
It is preferable that the second member M2 is formed by a material having a Young's modulus of smaller than that of the material of the first member M1. The rigidity of the second member M2 having a smaller Young's modulus can be effectively enhanced by engaging the second rib Rb2 with the first rib Rb1 of the first member M1 having a greater Young's modulus.
Examples of the material of the second member M2 include a metal and a resin. The resin includes a fiber reinforced resin. In view of the degree of freedom in design of the head, a material that is lightweight and excellent in strength is preferable. In this respect, the fiber reinforced resin is preferable, and a carbon fiber reinforced resin is more preferable. Examples of the metal include iron, stainless steel, a titanium alloy, an aluminum alloy, and a magnesium alloy.
The material of the second rib Rb2 may be the same as the material of a main portion of the second member M2, or may be different from the material of the main portion of the second member M2. The main portion of the second member M2 means, of second member M2, a portion excluding the second rib Rb2. In light of fixing strength of the second rib Rb2 to the main portion, the material of the second rib Rb2 is preferably the same as the material of the main portion of the second member M2.
Examples of the material of the first member M1 include a metal and a resin. In light of hitting sound, the metal is preferable. Examples of the metal include iron, stainless steel, a titanium alloy, an aluminum alloy, and a magnesium alloy. In light of formability and strength, the stainless steel and the titanium alloy are preferable.
The material of the first rib Rb1 may be the same as the material of the body portion of the first member M1, or may be different from the material of the body portion of the first member M1. In light of fixing strength of the first rib Rb1 to the body portion, the material of the first rib Rb1 is preferably the same as the material of the body portion of the first member M1.
Values of Young's moduli for commonly used materials are known. Magnitude relationship between the Young's modulus of the first member M1 and the Young's modulus of the second member M2 can be determined based on the known values. When the Young's modulus of a certain material is unknown, or magnitude relationship between the two Young's moduli is unclear, those Young's moduli can be determined by the following measurement method.
Yg=[(L13×F)/(4×W×T3×H1)]×10−3
The Young's modulus of a material that cannot be measured by the above method can be measured by a flexural resonance method. In the flexural resonance method, a test piece having dimensions of 10 mm×60 mm×2 mm is used, and the Young's modulus can be measured at 20° C.
When the material has anisotropy, the test piece is prepared such that the Young's modulus is the maximum.
The second member M2 is preferably adhered to the first member M1 by an adhesive. When an adhesive is used, hitting sound is likely to lower. Therefore, in this case, the effect of improvement in hitting sound brought by the rigidity enhancing effect is enhanced.
As to the above-described embodiments, the following clauses are disclosed.
A golf club head including a hollow portion, wherein
the golf club head further includes a first member having an opening, and a second member attached to the first member and covering the opening,
the first member includes a first rib projected toward the hollow portion,
the second member includes a second rib projected toward the hollow portion, and
the first rib is engaged with the second rib.
The golf club head according to clause 1, wherein
a Young's modulus of a material of the second member is smaller than a Young's modulus of a material of the first member.
The golf club head according to clause 1 or 2, wherein
the second member is adhered to the first member using an adhesive.
The golf club head according to any one of clauses 1 to 3, wherein
one of the first rib and the second rib includes a receiving recess, and
the other of the first rib and the second rib includes an insertion portion inserted to the receiving recess.
The golf club head according to any one of clauses 1 to 4, wherein
at least one of the first rib and the second rib includes an end face, and
the end face abuts the other of the first rib and the second rib.
The golf club head according to any one of clauses 1 to 5, wherein
at least one of the first rib and the second rib includes a side surface, and
the side surface abuts the other of the first rib and the second rib.
The golf club head according to any one of clauses 1 to 6, wherein
the first rib includes an opening extension portion extending on an upper side of the opening, and
the opening extension portion is engaged with the second rib.
The golf club head according to any one of clauses 1 to 7, wherein
the first member includes a support portion formed on a circumference of the opening and forming a stepped-down portion on an outer surface of the first member, and a body portion constituting a circumference of the support portion,
the second member includes a peripheral edge portion that is joined to the support portion, and
the first rib extends from the body portion, through the support portion, to an upper side of the opening.
The golf club head according to any one of clauses 1 to 8, wherein
the first rib includes a first section disposed on one side of the opening, and a second section disposed on another side of the opening,
the second rib has one side end that is engaged with the first section, and
the second rib has the other side end that is engaged with the second section.
The golf club head according to any one of clauses 1 to 8, wherein
the first rib continuously extends from one side of the opening to another side of the opening.
The above description is merely illustrative example, and various modifications can be made.
Number | Date | Country | Kind |
---|---|---|---|
2018-26888 | Feb 2018 | JP | national |