The present disclosure concerns embodiments of a golf club head, and in particular, a head for a golf putter.
Numerous golf putters have been designed to help players achieve greater accuracy when putting a golf ball. Generally speaking, most golf putters are variations of either a blade-type putter head or a mallet-type putter head. The mallet-type putter head has a relatively large head that typically is semi-circular or trapezoidal in shape as viewed from above, while the blade-type putter head has a relatively narrow or blade-like head.
Accuracy of a putt depends on several factors, including where the strike face impacts the ball, the location of the center of gravity of the putter head, and the rotational moment of inertia about a vertical axis extending through the center of gravity of the putter head. Moment of inertia is a measure of the club's ability to resist twisting from an off-center hit when the ball does not impact the sweet spot of the putter head. The greater the moment of inertia, the less likely the club will twist in the player's hand and cause a misdirected shot. Redistributing mass away from the striking face toward the rear of a putter head tends to increase the moment of inertia about the impact location. Moreover, decreasing the distance between the center of gravity and the bottom of the putter head can increase the launch angle of the ball, as well as promote earlier forward rotation of the ball for greater directional stability and speed control.
Due to their relatively large footprints, mallet-type putters can achieve higher moments of inertia than blade-type putters. While numerous modifications have been made to mallet-type golf putters to optimize the moment of inertia and the location of the center of gravity, there is a continuing need to improve the functionality, look, and feel of such putters.
According to one aspect, a putter head comprises a body having an open, frame-like structure having an improved mass distribution that allows the center of gravity to be moved rearwardly from the putter head front face and downwardly toward the putter head bottom surface. The improved mass distribution also results in an increased moment of inertia about the center of gravity that better resists twisting of the club from an off-center hit.
The body can be made of any of various suitable materials, such as stainless steel. In particular embodiments, the body includes a front portion, a rear portion, toe and heel portions extending between and interconnecting respective ends of the front and rear portions, and a central portion interconnecting the front and rear portions along the longitudinal axis of the body. A first main opening of the body is bounded by the toe portion, the central portion, and part of the front portion. A second main opening of the body is bounded by the heel portion, the central portion, and part of the front portion. The heel and toe portions desirably are formed with respective elongated openings extending substantially the entire lengths of the heel and toe portions.
The front portion can comprise a vertically disposed front plate extending laterally between the heel and toe portions and a crown portion extending rearwardly from the upper end of the front plate. The central portion can comprise a vertically disposed rear plate spaced rearwardly from the front plate and extending downwardly from the crown portion. The central portion can also include an enlarged aft-mass portion and a vertically disposed, longitudinally extending plate interconnecting the rear plate and the aft-mass portion. The aft-mass portion desirably is formed with one or more cavities adapted to house respective one or more removable weights. The rear portion of the body can be formed with openings in communication with the cavities for inserting and removing the weights therefrom.
In certain embodiments, the putter head has a moment of inertia about the putter head center of gravity of greater than 400 kg-mm2, and a center of gravity located greater than 30 mm from the front face and less than 13 mm from the bottom surface of the putter head. It is believed that these properties have never before been achieved in a golf putter head having an overall size and weight that conforms to USGA rules. Although variable, the putter head desirably has an overall weight that ranges from about 320 grams to about 355 grams.
In an exemplary embodiment, the putter head has a moment of inertia of about 404 kg-mm2, a center of gravity located about 33.6 mm from the front face and about 12.5 mm from the bottom surface, and a weight of about 345 grams.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used herein, the singular forms “a,” “an,” and “the” refer to one or more than one, unless the context clearly dictates otherwise.
As used herein, the term “includes” means “comprises.”
Referring to the figures, there is shown a putter head 10, according to one embodiment, which is used to putt a ball (not shown) toward a hole (not shown). The putter head 10 generally comprises a main body 12 and an upwardly extending hosel 14 coupled to the body. The hosel 14 allows the putter head 10 to be connected to a golf club shaft (not shown) in a conventional manner. Other known techniques or mechanisms can be used to connect the shaft to the body 12.
The body 12 in the illustrated configuration comprises an open, frame-like structure having a front, or face, portion 16, a heel portion 18, a toe portion 20, a rear portion 22, and a central portion or truss member, 24. The heel and toe portions 18, 20 (also referred to herein as side portions) are connected to respective ends of the face portion 16 and converge in the rearward direction (toward the rear portion 22). As shown, the heel and toe portions 18, 20 are slightly curved so as to smoothly merge into the rear portion 22. The central portion 24 extends from the face portion 16 to the rear portion 22 and is centered on a longitudinal axis of symmetry A (
The face portion 16 has a front face 26 that is formed with a recess 28 (
As shown in
As best shown in
The central portion 24 includes an enlarged aft-mass portion 60 connected to the rear portion 22. The aft-mass portion 60 is formed with two cavities 74 (one of which is shown in
In alternative embodiments, the putter head 10 can be adapted to receive a single weight 44 (which can be housed in a cavity centered on the longitudinal axis A) or more than two weights. In still alternative embodiments, the weights 44 can be secured to the putter head 10 using other techniques or mechanisms and/or the weights 44 can be secured at other locations on the putter head. In another embodiment, the putter head 10 does not include any removable weights 44. Suitable materials for the weights 44 include, for example, brass, steel, tungsten, nickel, bronze and alloys thereof.
As best shown in
The central portion 24 in the illustrated configuration also includes a generally horizontally disposed bottom plate 58 (also referred to herein as a sole plate) and a vertically disposed, longitudinally extending plate 62 interconnecting the aft-mass portion 60 to the rear plate 54 along the longitudinal axis A of the putter head 10. The putter head 10 can include one or more alignment markings or aids for lining up a putt. In the illustrated embodiment, for example, an alignment groove 64 is formed in the upper surface of the vertical plate 62 and the aft-mass portion 60 along the longitudinal axis A of the putter head 10. Other types of visual alignment aids, such as triangles, arrow heads, circles, and/or combinations thereof can be provided at convenient locations on the surface of the putter head 10.
As shown in
Although variable, the putter head 10 may weigh from about 280 grams to about 510 grams (including weights 44), and desirably weighs from about 275 grams to about 400 grams (including weights 44), and more desirably from about 320 grams to about 355 grams (including weights 44). Although variable, each weight 44 desirably weighs from about 1 gram to about 14 grams. In certain embodiments, each weight 44 weighs from about 2 grams to about 6 grams.
The frame-like structure of the putter head 10 enables an improved mass distribution that allows the center of gravity, CG, to be moved rearward from the front face 26 and downward toward the bottom surface 66. That is, the CG can be moved farther from the front face 26 and closer to the bottom surface 66 without increasing the overall weight of the putter head 10. Moving the CG rearward and downward increases the launch angle of the golf ball, and promotes forward rotation of the ball for greater directional stability and speed control. The improved mass distribution also results in an increased heel-to-toe moment of inertia (MOI), Izz, about a vertical axis extending through the center of gravity, thereby increasing the resistance of the putter head 10 to twisting when the putter head strikes a golf ball. Thus, when the putter head 10 strikes a golf ball at a location that is off-center from the center of gravity, the putter head is less likely to twist in the player's hand, thereby increasing the likelihood that the ball will follow its intended course. The mass of weights 44 can be selected to further move the CG rearward from the front face 26 and to further increase the MOI.
In certain embodiments, the putter head 10 has a MOI greater than 400 kilogram millimeters squared (kg-mm2), and a CG located greater than 30 mm from the front face 26 (indicated by the distance CGy in
The location of the center of gravity and the moment of inertia relative to the overall mass of the putter head (m) can be expressed by the ratios CGy/m, CGz/m, and MOI/m. In an exemplary embodiment, the putter head 10 has a weight of about 324 grams (excluding weights), a MOI of about 404 kg-mm2, and a CG located at a distance CGy from the front face 26 of about 33.6 mm and a distance CGz from the ground plane P of about 12.5 mm. Such a putter head can achieve a ratio CGy/m of about 0.104 mm/g, a ratio CGz/m of about 0.039 mm/g, and a ratio MOI/m of about 1.25 kg-mm2/g.
The main body 12 and the insert 30 may be formed from any of various suitable materials, including metal/metal alloys, polymers, composites, ceramics, or various combinations thereof. Generally, an insert 30 formed from a metallic material provides the putter head 10 with a more solid feel during impact with a golf ball, whereas an insert 30 formed from a polymeric material, such as plastic, provides a softer feel than a metallic insert. The insert 30 may be manufactured of the same material as the main body 12 or it may be manufactured of a different material.
Some examples of metals and metal alloys that can be used to form the insert 30 or the main body 12 include, without limitation, carbon steels (e.g., 1020 or 8620 carbon steel), stainless steels (e.g., 304 or 410 stainless steel), PH (precipitation-hardenable) alloys (e.g., 17-4, C450, or C455 alloys), titanium alloys (e.g., 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys), aluminum/aluminum alloys (e.g., 3000 series alloys, 5000 series alloys, 6000 series alloys, such as 6061-T6, and 7000 series alloys, such as 7075), magnesium alloys, copper alloys, and nickel alloys.
Some examples of composites that can be used to form the insert 30 or the main body 12 include, without limitation, glass fiber reinforced polymers (GFRP), carbon fiber reinforced polymers (CFRP), metal matrix composites (MMC), ceramic matrix composites (CMC), and natural composites (e.g., wood composites).
Some examples of polymers that can be used to form the insert 30 or the main body 12 include, without limitation, thermoplastic materials (e.g., polyethylene, polypropylene, polystyrene, acrylic, PVC, ABS, polycarbonate, polyurethane, polyphenylene oxide (PPO), polyphenylene sulfide (PPS), nylon, and engineered thermoplastics), thermosetting materials (e.g., polyurethane, epoxy, and polyester), copolymers, and elastomers (e.g., natural or synthetic rubber, EPDM, and Teflon®).
Some examples of ceramics that can be used to form the insert 30 or the main body 12 include, without limitation, oxides (e.g., titanium oxide, aluminum oxide, magnesium oxide, and silicon oxide), carbides (e.g., titanium carbide, tungsten carbide, silicon carbide, and boron carbide), and nitrides (e.g., silicon nitride).
The main body 12 can be formed as a unitary, monolithic structure (i.e., a single structure without any welds or fasteners connecting different parts of the body) or from multiple structures that are separately formed and subsequently joined to each other using known manufacturing techniques. Such techniques can include investment casting, milling, forging, metal injection molding, and the like.
The insert 30 can be formed using conventional manufacturing techniques, such as, for example, die casting, injection molding, extrusion, forging, saw cutting, EDM (electrical discharge machining), etc. Any of the foregoing manufacturing techniques also can be used if the projections (not shown) are formed directly in the front face 26 of the main body 12, rather than in an insert. The insert 30 and/or the main body 12 can be subjected to various surface treatments, such as, for example, anodizing, nitriding, PVD (physical vapor deposition) or CVD (chemical vapor deposition) to improve corrosion resistance, abrasion resistance, hardness, or other characteristics of the components.
A putter head 10 was cast from 304 stainless steel. The putter head had an overall length L (
Of course, these specific dimensions (as well as other dimensions provided in the present specification) are given to illustrate the invention and not to limit it. The dimensions provided herein can be modified as needed in different applications or situations.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
The present application is a continuation of U.S. application Ser. No. 11/510,049, filed Aug. 24, 2006, now U.S. Pat. No. 7,396,295 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1222770 | Kaye | Apr 1917 | A |
1705997 | Quynn | Mar 1929 | A |
D207228 | Solheim | Mar 1967 | S |
3841640 | Gaulocher | Oct 1974 | A |
D235668 | Swash | Jul 1975 | S |
5533728 | Pehoski et al. | Jul 1996 | A |
5643109 | Rose et al. | Jul 1997 | A |
5685784 | Butler | Nov 1997 | A |
5820481 | Raudman | Oct 1998 | A |
D437017 | Ford | Jan 2001 | S |
6350208 | Ford | Feb 2002 | B1 |
6471600 | Tang et al. | Oct 2002 | B2 |
6506125 | Helmstetter et al. | Jan 2003 | B2 |
6692378 | Shmoldas et al. | Feb 2004 | B2 |
6716110 | Ballow | Apr 2004 | B1 |
6796911 | Grace | Sep 2004 | B2 |
D503445 | Vartan Toroussian | Mar 2005 | S |
6896625 | Grace | May 2005 | B2 |
6929559 | Grace | Aug 2005 | B1 |
6929564 | Olsavsky et al. | Aug 2005 | B2 |
6974394 | Tang et al. | Dec 2005 | B1 |
6988956 | Cover et al. | Jan 2006 | B2 |
6988959 | Pollman | Jan 2006 | B2 |
D521582 | Souza et al. | May 2006 | S |
7048646 | Yamanaka et al. | May 2006 | B2 |
7052411 | Solheim et al. | May 2006 | B2 |
D523102 | Stites et al. | Jun 2006 | S |
7147569 | Tang et al. | Dec 2006 | B2 |
7156752 | Bennett | Jan 2007 | B1 |
7160203 | Bonneau | Jan 2007 | B2 |
7163463 | Mills | Jan 2007 | B2 |
7166036 | Byrne et al. | Jan 2007 | B2 |
D538364 | Frame et al. | Mar 2007 | S |
7244189 | Stobbe | Jul 2007 | B1 |
7244191 | Tang et al. | Jul 2007 | B2 |
D552197 | Wells et al. | Oct 2007 | S |
7344451 | Tang et al. | Mar 2008 | B2 |
20020034986 | Helmstetter et al. | Mar 2002 | A1 |
20020123393 | Tang et al. | Sep 2002 | A1 |
20030228925 | Rohrer | Dec 2003 | A1 |
20040132542 | Olsavsky et al. | Jul 2004 | A1 |
20050137027 | Thomas | Jun 2005 | A1 |
20050159241 | Hou | Jul 2005 | A1 |
20050159242 | Solheim et al. | Jul 2005 | A1 |
20050227777 | Cover et al. | Oct 2005 | A1 |
20050282657 | Solheim et al. | Dec 2005 | A1 |
20060014590 | Tao | Jan 2006 | A1 |
20060068934 | Tang et al. | Mar 2006 | A1 |
20060068935 | Tang et al. | Mar 2006 | A1 |
20060094522 | Tang et al. | May 2006 | A1 |
20060166755 | Brown | Jul 2006 | A1 |
20060189408 | Grace | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080200282 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11510049 | Aug 2006 | US |
Child | 12150084 | US |