Additional related applications concerning golf clubs include U.S. patent application Ser. Nos. 13/839,727, 13/956,046, 14/260,328, 14/330,205, 14/259,475, 14/488,354, 14/734,181, 14/472,415, 14/253,159, 14/449,252, 14/658,267, 14/456,927, 14/227,008, 14/074,481, and 14/575,745, all of which are incorporated by reference herein in their entireties.
The present application concerns golf club heads, and more particularly, golf club heads having increased striking face flexibility and unique relationships between golf club head variables to ensure club head attributes work together to achieve desired performance.
Golf club manufacturers often must choose to improve one performance characteristic at the expense of another. In fact, the incorporation of new technologies that improve performance may necessitate changes to other aspects of a golf club head so that the features work together rather than reduce the associated benefits. Further, it is often difficult to identify the tradeoffs and changes that must be made to ensure aspects of the club head work together to achieve the desired performance. The disclosed embodiments tackle these issues.
This application discloses, among other innovations, golf club heads that provide improved sound, durability, ball speed, forgiveness, and playability. The club head may include a flexible channel to improve the performance of the club head, and a channel tuning system to reduce undesirable club head characteristics introduced, or heightened, via the flexible channel. The channel tuning system includes a sole engaging channel tuning element in contact with the sole and the channel. The club head may also include an aerodynamic configuration, as well as a body tuning system. The foregoing and other features and advantages of the golf club head will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The following describes embodiments of golf club heads for metalwood type golf clubs, including drivers, fairway woods, rescue clubs, hybrid clubs, and the like. Several of the golf club heads incorporate features that provide the golf club heads and/or golf clubs with increased moments of inertia and low centers of gravity, centers of gravity located in preferable locations, improved club head and face geometries, increased sole and lower face flexibility, desirable club head tuning, higher coefficients or restitution (“COR”) and characteristic times (“CT”), and/or decreased backspin rates relative to other golf club heads that have come before.
The following makes reference to the accompanying drawings which form a part hereof, wherein like numerals designate like parts throughout. The drawings illustrate specific embodiments, but other embodiments may be formed and structural changes may be made without departing from the intended scope of this disclosure. Directions and references (e.g., up, down, top, bottom, left, right, rearward, forward, heelward, toeward, etc.) may be used to facilitate discussion of the drawings but are not intended to be limiting. For example, certain terms may be used such as “up,” “down,”, “upper,” “lower,” “horizontal,” “vertical,” “left,” “right,” and the like. These terms are used, where applicable, to provide some clarity of description when dealing with relative relationships, particularly with respect to the illustrated embodiments. Such terms are not, however, intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” surface can become a “lower” surface simply by turning the object over. Nevertheless, it is still the same object.
Accordingly, the following detailed description shall not to be construed in a limiting sense and the scope of property rights sought shall be defined by the appended claims and their equivalents.
Normal Address Position
Club heads and many of their physical characteristics disclosed herein will be described using “normal address position” as the club head reference position, unless otherwise indicated.
As used herein, “normal address position” means the club head position wherein a vector normal to the club face 18 substantially lies in a first vertical plane (i.e., a vertical plane is perpendicular to the ground plane 17), the centerline axis 21 of the club shaft substantially lies in a second vertical plane, and the first vertical plane and the second vertical plane substantially perpendicularly intersect.
Club Head
A golf club head, such as the golf club head 2, includes a hollow body 10 defining a crown portion 12, a sole portion 14 and a skirt portion 16. A striking face, or face portion, 18 attaches to the body 10. The body 10 can include a hosel 20, which defines a hosel bore 24 adapted to receive a golf club shaft. The body 10 further includes a heel portion 26, a toe portion 28, a front portion 30, and a rear portion 32.
The club head 2 also has a volume, typically measured in cubic-centimeters (cm3), equal to the volumetric displacement of the club head 2, assuming any apertures are sealed by a substantially planar surface. (See United States Golf Association “Procedure for Measuring the Club Head Size of Wood Clubs,” Revision 1.0, Nov. 21, 2003). In some implementations, the golf club head 2 has a volume between approximately 120 cm3 and approximately 460 cm3, and a total mass between approximately 185 g and approximately 245 g. Additional specific implementations having additional specific values for volume and mass are described elsewhere herein.
As used herein, “crown” means an upper portion of the club head above a peripheral outline 34 of the club head as viewed from a top-down direction and rearward of the topmost portion of the striking face 18, as seen in
As used herein, “striking surface” means a front or external surface of the striking face 18 configured to impact a golf ball (not shown). In several embodiments, the striking face or face portion 18 can be a striking plate attached to the body 10 using conventional attachment techniques, such as welding, as will be described in more detail below. In some embodiments, the striking surface 22 can have a bulge and roll curvature. As illustrated by
The body 10 can be made from a metal alloy (e.g., an alloy of titanium, an alloy of steel, an alloy of aluminum, and/or an alloy of magnesium), a composite material, such as a graphitic composite, a ceramic material, or any combination thereof (e.g., a metallic sole and skirt with a composite, magnesium, or aluminum crown). The crown 12, sole 14, and skirt 16 can be integrally formed using techniques such as molding, cold forming, casting, and/or forging and the striking face 18 can be attached to the crown, sole and skirt by known means. For example, in some embodiments, the body 10 can be formed from a cup-face structure, with a wall or walls extending rearward from the edges of the inner striking face surface and the remainder of the body formed as a separate piece that is joined to the walls of the cup-face by welding, cementing, adhesively bonding, or other technique known to those skilled in the art.
Referring to
In some embodiments, the striking face 18 is made of a composite material such as described in U.S. patent application Ser. No. 14/154,513, which is incorporated herein by reference. In other embodiments, the striking face 18 is made from a metal alloy (e.g., an alloy of titanium, steel, aluminum, and/or magnesium), ceramic material, or a combination of composite, metal alloy, and/or ceramic materials. Examples of titanium alloys include 3-2.5, 6-4, SP700, 15-3-3-3, 10-2-3, or other alpha/near alpha, alpha-beta, and beta/near beta titanium alloys. Examples of steel alloys include 304, 410, 450, or 455 stainless steel.
In still other embodiments, the striking face 18 is formed of a maraging steel, a maraging stainless steel, or a precipitation-hardened (PH) steel or stainless steel. In general, maraging steels have high strength, toughness, and malleability. Being low in carbon, they derive their strength from precipitation of inter-metallic substances other than carbon. The principle alloying element is nickel (15% to nearly 30%). Other alloying elements producing inter-metallic precipitates in these steels include cobalt, molybdenum, and titanium. In some embodiments, a non-stainless maraging steel contains about 17-19% nickel, 8-12% cobalt, 3-5% molybdenum, and 0.2-1.6% titanium. Maraging stainless steels have less nickel than maraging steels, but include significant amounts of chromium to prevent rust.
An example of a non-stainless maraging steel suitable for use in forming a striking face 18 includes NiMark® Alloy 300, having a composition that includes the following components: nickel (18.00 to 19.00%), cobalt (8.00 to 9.50%), molybdenum (4.70 to 5.10%), titanium (0.50 to 0.80%), manganese (maximum of about 0.10%), silicon (maximum of about 0.10%), aluminum (about 0.05 to 0.15%), calcium (maximum of about 0.05%), zirconium (maximum of about 0.03%), carbon (maximum of about 0.03%), phosphorus (maximum of about 0.010%), sulfur (maximum of about 0.010%), boron (maximum of about 0.003%), and iron (balance). Another example of a non-stainless maraging steel suitable for use in forming a striking face 18 includes NiMark® Alloy 250, having a composition that includes the following components: nickel (18.00 to 19.00%), cobalt (7.00 to 8.00%), molybdenum (4.70 to 5.00%), titanium (0.30 to 0.50%), manganese (maximum of about 0.10%), silicon (maximum of about 0.10%), aluminum (about 0.05 to 0.15%), calcium (maximum of about 0.05%), zirconium (maximum of about 0.03%), carbon (maximum of about 0.03%), phosphorus (maximum of about 0.010%), sulfur (maximum of about 0.010%), boron (maximum of about 0.003%), and iron (balance). Other maraging steels having comparable compositions and material properties may also be suitable for use.
In several specific embodiments, a golf club head includes a body 10 that is formed from a metal (e.g., steel), a metal alloy (e.g., an alloy of titanium, an alloy of aluminum, and/or an alloy of magnesium), a composite material, such as a graphitic composite, a ceramic material, or any combination thereof, as described above. In some of these embodiments, a striking face 18 is attached to the body 10, and is formed from a non-stainless steel, such as one of the maraging steels described above. In one specific example, a golf club head includes a body 10 that is formed from a stainless steel (e.g., Custom 450® Stainless) and a striking face 18 that is formed from a non-stainless maraging steel (e.g., NiMark® Alloy 300).
In several alternative embodiments, a golf club head includes a body 10 that is formed from a non-stainless steel, such as one of the maraging steels described above. In some of these embodiments, a striking face 18 is attached to the body 10, and is also formed from a non-stainless steel, such as one of the maraging steels described above. In one specific example, a golf club head includes a body 10 and a striking face 18 that are each formed from a non-stainless maraging steel (e.g., NiMark® Alloy 300 or NiMark® Alloy 250).
When at normal address position as seen in
A club shaft is received within the hosel bore 24 and is aligned with the centerline axis 21. In some embodiments, a connection assembly is provided that allows the shaft to be easily disconnected from the club head 2. In still other embodiments, the connection assembly provides the ability for the user to selectively adjust the loft-angle 15 and/or lie-angle 19 of the golf club. For example, in some embodiments, a sleeve is mounted on a lower end portion of the shaft and is configured to be inserted into the hosel bore 24. The sleeve has an upper portion defining an upper opening that receives the lower end portion of the shaft, and a lower portion having a plurality of longitudinally extending, angularly spaced external splines located below the shaft and adapted to mate with complimentary splines in the hosel opening 24. The lower portion of the sleeve defines a longitudinally extending, internally threaded opening adapted to receive a screw for securing the shaft assembly to the club head 2 when the sleeve is inserted into the hosel opening 24. Further detail concerning the shaft connection assembly is provided in U.S. patent application Ser. No. 14/074,481, which is incorporated herein by reference, and some embodiments are described later herein.
Golf Club Head Coordinates
Referring to
The head origin coordinate system defined with respect to the head origin 60 includes three axes: a z-axis 65 extending through the head origin 60 in a generally vertical direction relative to the ground 17 when the club head 2 is at normal address position; an x-axis 70 extending through the head origin 60 in a toe-to-heel direction generally parallel to the face 18, e.g., generally tangential to the face 18 at the ideal impact location 23, and generally perpendicular to the z-axis 65; and a y-axis 75 extending through the head origin 60 in a front-to-back direction and generally perpendicular to the x-axis 70 and to the z-axis 65. The x-axis 70 and the y-axis 75 both extend in generally horizontal directions relative to the ground 17 when the club head 2 is at normal address position. The x-axis 70 extends in a positive direction from the origin 60 to the heel 26 of the club head 2. The y-axis 75 extends in a positive direction from the origin 60 towards the rear portion 32 of the club head 2. The z-axis 65 extends in a positive direction from the origin 60 towards the crown 12. An alternative, above ground, club head coordinate system places the origin 60 at the intersection of the z-axis 65 and the ground plane 17, providing positive z-axis coordinates for every club head feature. As used herein, “Zup” means the CG z-axis location determined according to the above ground coordinate system. Zup generally refers to the height of the CG 50 above the ground plane 17.
In several embodiments, the golf club head can have a CG with an x-axis coordinate between approximately −2.0 mm and approximately 6.0 mm, such as between approximately −2.0 mm and approximately 3.0 mm, a y-axis coordinate between approximately 15 mm and approximately 40 mm, such as between approximately 20 mm and approximately 30 mm, or between approximately 23 mm and approximately 28 mm, and a z-axis coordinate between approximately 0.0 mm and approximately −12.0 mm, such as between approximately −1.0 mm and approximately −9.0 mm, or between approximately −1.0 mm and approximately −5.0 mm. In certain embodiments, a z-axis coordinate between about 0.0 mm and about −12.0 mm provides a Zup value of between approximately 10 mm and approximately 30 mm. Additional specific implementations having additional specific values for the CG x-axis coordinate, CG y-axis coordinate, CG z-axis coordinate, and Zup are described elsewhere herein.
Another alternative coordinate system uses the club head center-of-gravity (CG) 50 as the origin when the club head 2 is at normal address position. Each center-of-gravity axis passes through the CG 50. For example, the CG x-axis 90 passes through the center-of-gravity 50 substantially parallel to the ground plane 17 and generally parallel to the origin x-axis 70 when the club head is at normal address position. Similarly, the CG y-axis 95 passes through the center-of-gravity 50 substantially parallel to the ground plane 17 and generally parallel to the origin y-axis 75, and the CG z-axis 85 passes through the center-of-gravity 50 substantially perpendicular to the ground plane 17 and generally parallel to the origin z-axis 65 when the club head is at normal address position.
Mass Moments of Inertia
Referring to
For example, a moment of inertia about the golf club head CG z-axis 85 can be calculated by the following equation
Izz=∫(x2+y2)dm
where x is the distance from a golf club head CG yz-plane to an infinitesimal mass, dm, and y is the distance from the golf club head CG xz-plane to the infinitesimal mass, dm. The golf club head CG yz-plane is a plane defined by the golf club head CG y-axis 95 and the golf club head CG z-axis 85.
The moment of inertia about the CG z-axis (Izz) is an indication of the ability of a golf club head to resist twisting about the CG z-axis. Greater moments of inertia about the CG z-axis (Izz) provide the golf club head 2 with greater forgiveness on toe-ward or heel-ward off-center impacts with a golf ball. In other words, a golf ball hit by a golf club head 2 on a location of the striking face 18 between the toe 28 and the ideal impact location 23 tends to cause the golf club head to twist rearwardly and the golf ball to draw (e.g., to have a curving trajectory from right-to-left for a right-handed swing). Similarly, a golf ball hit by a golf club head 2 on a location of the striking face 18 between the heel 26 and the ideal impact location 23 causes the golf club head 2 to twist forwardly and the golf ball to slice (e.g., to have a curving trajectory from left-to-right for a right-handed swing). Increasing the moment of inertia about the CG z-axis (Izz) reduces forward or rearward twisting of the golf club head, reducing the negative effects of heel or toe mis-hits.
A moment of inertia about the golf club head CG x-axis 90 can be calculated by the following equation
Ixx=∫(y2+z2)dm
where y is the distance from a golf club head CG xz-plane to an infinitesimal mass, dm, and z is the distance from a golf club head CG xy-plane to the infinitesimal mass, dm. The golf club head CG xz-plane is a plane defined by the golf club head CG x-axis 90 and the golf club head CG z-axis 85. The CG xy-plane is a plane defined by the golf club head CG x-axis 90 and the golf club head CG y-axis 95.
As the moment of inertia about the CG z-axis (Izz) is an indication of the ability of a golf club head to resist twisting about the CG z-axis, the moment of inertia about the CG x-axis (Ixx) is an indication of the ability of the golf club head to resist twisting about the CG x-axis. Greater moments of inertia about the CG x-axis (Ixx) improve the forgiveness of the golf club head 2 on high and low off-center impacts with a golf ball. In other words, a golf ball hit by a golf club head 2 on a location of the striking surface 18 above the ideal impact location 23 causes the golf club head 2 to twist upwardly and the golf ball to have a higher trajectory than desired. Similarly, a golf ball hit by a golf club head 2 on a location of the striking face 18 below the ideal impact location 23 causes the golf club head 2 to twist downwardly and the golf ball to have a lower trajectory than desired. Increasing the moment of inertia about the CG x-axis (Ixx) reduces upward and downward twisting of the golf club head 2, reducing the negative effects of high and low mis-hits.
Discretionary Mass
Desired club head mass moments of inertia, club head center-of-gravity locations, and other mass properties of a golf club head can be attained by distributing club head mass to particular locations. Discretionary mass generally refers to the mass of material that can be removed from various structures providing mass that can be distributed elsewhere for tuning one or more mass moments of inertia and/or locating the club head center-of-gravity.
Club head walls provide one source of discretionary mass. In other words, a reduction in wall thickness reduces the wall mass and provides mass that can be distributed elsewhere. For example, in some implementations, one or more walls of the club head can have a thickness (constant or average) less than approximately 0.7 mm, such as between about 0.55 mm and about 0.65 mm. In some embodiments, the crown 12 can have a thickness (constant or average) of approximately 0.60 mm or approximately 0.65 mm throughout more than about 70% of the crown, with the remaining portion of the crown 12 having a thickness (constant or average) of approximately 0.76 mm or approximately 0.80 mm. See for example
Thin walls, particularly a thin crown 12, provide significant discretionary mass compared to conventional club heads. For example, a club head 2 made from an alloy of steel can achieve about 4 grams of discretionary mass for each 0.1 mm reduction in average crown thickness. Similarly, a club head 2 made from an alloy of titanium can achieve about 2.5 grams of discretionary mass for each 0.1 mm reduction in average crown thickness. Discretionary mass achieved using a thin crown 12, e.g., less than about 0.65 mm, can be used to tune one or more mass moments of inertia and/or center-of-gravity location.
To achieve a thin wall on the club head body 10, such as a thin crown 12, a club head body 10 can be formed from an alloy of steel or an alloy of titanium. Thin wall investment casting, such as gravity casting in air for alloys of steel and centrifugal casting in a vacuum chamber for alloys of titanium, provides one method of manufacturing a club head body with one or more thin walls.
Weights and Weight Ports
Various approaches can be used for positioning discretionary mass within a golf club head 2. For example, many club heads 2 have integral sole weight pads cast into the head 2 at predetermined locations that can be used to lower, to move forward, to move rearward, or otherwise to adjust the location of the club head's center-of-gravity. Also, epoxy can be added to the interior of the club head 2 through the club head's hosel opening to obtain a desired weight distribution. Alternatively, weights formed of high-density materials can be attached to the sole, skirt, and other parts of a club head. With such methods of distributing the discretionary mass, installation is critical because the club head endures significant loads during impact with a golf ball that can dislodge the weight. Accordingly, such weights are usually permanently attached to the club head and are limited to a fixed total mass, which of course, permanently fixes the club head's center-of-gravity and moments of inertia.
Alternatively, as seen in
Inclusion of one or more weights in the weight port(s) 40 provides a customizable club head mass distribution, and corresponding mass moments of inertia and center-of-gravity 50 locations. Adjusting the location of the weight port(s) 40 and the mass of the weights and/or weight assemblies provides various possible locations of center-of-gravity 50 and various possible mass moments of inertia using the same club head 2.
As discussed in more detail below, in some embodiments, a playable fairway wood club head can have a low, rearward center-of-gravity. Placing one or more weight ports 40 and weights rearward in the sole helps desirably locate the center-of-gravity. In the foregoing embodiments, a center of gravity of the weight is preferably located rearward of a midline of the golf club head along the y-axis 75, such as, for example, within about 40 mm of the rear portion 32 of the club head, or within about 30 mm of the rear portion 32 of the club head, or within about 20 mm of the rear portion of the club head. In other embodiments a playable fairway wood club head can have a center-of-gravity that is located to provide a preferable center-of-gravity projection on the striking surface 22 of the club head. In those embodiments, one or more weight ports 40 and weights are placed in the sole portion 14 forward of a midline of the golf club head along the y-axis 75. For example, in some embodiments, a center of gravity of one or more weights placed in the sole portion 14 of the club head is located within about 30 mm of the nearest portion of the forward edge of the sole, such as within about 20 mm of the nearest portion of the forward edge of the sole, or within about 15 mm of the nearest portion of the forward edge of the sole, or within about 10 mm of the nearest portion of the forward edge of the sole. Although other methods (e.g., using internal weights attached using epoxy or hot-melt glue) of adjusting the center-of-gravity can be used, use of a weight port and/or integrally molding a discretionary weight into the body 10 of the club head reduces undesirable effects on the audible tone emitted during impact with a golf ball.
Club Head Height and Length
In addition to redistributing mass within a particular club head envelope as discussed immediately above, the club head center-of-gravity location 50 can also be tuned by modifying the club head external envelope. Referring now to
In some fairway wood embodiments, the golf club head 2 has a height Hch less than approximately 55 mm. In some embodiments, the club head 2 has a height Hch less than about 50 mm. For example, some implementations of the golf club head 2 have a height Hch less than about 45 mm. In other implementations, the golf club head 2 has a height Hch less than about 42 mm. Still other implementations of the golf club head 2 have a height Hch less than about 40 mm. Further, some examples of the golf club head 2 have a depth Dch greater than approximately 75 mm. In some embodiments, the club head 2 has a depth Dch greater than about 85 mm. For example, some implementations of the golf club head 2 have a depth Dch greater than about 95 mm. In other implementations, as discussed in more detail below, the golf club head 2 can have a depth Dch greater than about 100 mm.
Forgiveness of Club Heads
Golf club head “forgiveness” generally describes the ability of a club head to deliver a desirable golf ball trajectory despite a mis-hit (e.g., a ball struck at a location on the striking face 18 other than the ideal impact location 23). As described above, large mass moments of inertia contribute to the overall forgiveness of a golf club head. In addition, a low center-of-gravity improves forgiveness for golf club heads used to strike a ball from the turf by giving a higher launch angle and a lower spin trajectory. Providing a rearward center-of-gravity reduces the likelihood of a slice or fade for many golfers. Accordingly, forgiveness of club heads, such as the club head 2, can be improved using the techniques described above to achieve high moments of inertia and low center-of-gravity compared to conventional fairway wood golf club heads.
For example, a club head 2 with a crown thickness less than about 0.65 mm throughout at least about 70% of the crown can provide significant discretionary mass. A 0.60 mm thick crown can provide as much as about 8 grams of discretionary mass compared to a 0.80 mm thick crown. The large discretionary mass can be distributed to improve the mass moments of inertia and desirably locate the club head center-of-gravity. Generally, discretionary mass should be located sole-ward rather than crown-ward to maintain a low center-of-gravity, forward rather than rearward to maintain a forwardly positioned center of gravity, and rearward rather than forward to maintain a rearwardly positioned center-of-gravity. In addition, discretionary mass should be located far from the center-of-gravity and near the perimeter of the club head to maintain high mass moments of inertia.
For example, in some of the embodiments described herein, a comparatively forgiving golf club head 2 for a fairway wood can combine an overall club head height (Hch) of less than about 46 mm and an above ground center-of-gravity location, Zup, less than about 19 mm. Some examples of the club head 2 provide an above ground center-of-gravity location, Zup, less than about 16 mm. In additional fairway wood embodiments, a thin crown 12 as described above provides sufficient discretionary mass to allow the club head 2 to have a volume less than about 240 cm3and/or a front to back depth (DCH) greater than about 85 mm. Without a thin crown 12, a similarly sized golf club head would either be overweight or would have an undesirably located center-of-gravity because less discretionary mass would be available to tune the CG location. In addition, in some embodiments of a comparatively forgiving golf club head 2, discretionary mass can be distributed to provide a mass moment of inertia about the CG z-axis 85, Izz, greater than about 300 kg-mm2. In some instances, the mass moment of inertia about the CG z-axis 85, Izz, can be greater than about 320 kg-mm2, such as greater than about 340 kg-mm2 or greater than about 360 kg-mm2. Distribution of the discretionary mass can also provide a mass moment of inertia about the CG x-axis 90, Ixx, greater than about 150 kg-mm2. In some instances, the mass moment of inertia about the CG x-axis 85, Ixx, can be greater than about 170 kg-mm2, such as greater than about 190 kg-mm2.
Alternatively, some examples of a forgiving club head 2 combine an above ground center-of-gravity location, Zup, less than about 19 mm and a high moment of inertia about the CG z-axis 85, Izz. In such club heads, the moment of inertia about the CG z-axis 85, Izz, specified in units of kg-mm2, together with the above ground center-of-gravity location, Zup, specified in units of millimeters (mm), can satisfy the relationship
Izz≥13·Zup+105.
Alternatively, some forgiving fairway wood club heads have a moment of inertia about the CG z-axis 85, Izz, and a moment of inertia about the CG x-axis 90, Ixx, specified in units of kg-mm2, together with an above ground center-of-gravity location, Zup, specified in units of millimeters, that satisfy the relationship
Ixx+Izz≥20·Zup+165.
As another alternative, a forgiving fairway wood club head can have a moment of inertia about the CG x-axis, Ixx, specified in units of kg-mm2, and, an above ground center-of-gravity location, Zup, specified in units of millimeters, that together satisfy the relationship
Ixx≥7·Zup+60.
Coefficient of Restitution, Characteristic Time, and Center of Gravity Projection
Another parameter that contributes to the forgiveness and successful playability and desirable performance of a golf club 2 is the coefficient of restitution (COR) and Characteristic Time (CT) of the golf club head 2. Upon impact with a golf ball, the club head's face 18 deflects and rebounds, thereby imparting energy to the struck golf ball. The club head's coefficient of restitution (COR) is the ratio of the velocity of separation to the velocity of approach. A thin face plate generally will deflect more than a thick face plate. Thus, a properly constructed club with a thin, flexible face plate can impart a higher initial velocity to a golf ball, which is generally desirable, than a club with a thick, rigid face plate. In order to maximize the moment of inertia (MOI) about the center of gravity (CG) and achieve a high COR, it typically is desirable to incorporate thin walls and a thin face plate into the design of the club head. Thin walls afford the designers additional leeway in distributing club head mass to achieve desired mass distribution, and a thinner face plate may provide for a relatively higher COR.
Thus, selective use of thin walls is important to a club's performance. However, overly thin walls can adversely affect the club head's durability. Problems also arise from stresses distributed across the club head upon impact with the golf ball, particularly at junctions of club head components, such as the junction of the face plate with other club head components (e.g., the sole, skirt, and crown). One prior solution has been to provide a reinforced periphery about the face plate, such as by welding, in order to withstand the repeated impacts. Another approach to combat stresses at impact is to use one or more ribs extending substantially from the crown to the sole vertically, and in some instances extending from the toe to the heel horizontally, across an inner surface of the face plate. These approaches tend to adversely affect club performance characteristics, e.g., diminishing the size of the sweet spot, and/or inhibiting design flexibility in both mass distribution and the face structure of the club head. Thus, these club heads fail to provide optimal MOI, CG, and/or COR parameters, and as a result, fail to provide much forgiveness for off-center hits for all but the most expert golfers.
In addition to the thickness of the face plate and the walls of the golf club head, the location of the center of gravity also has a significant effect on the COR of a golf club head. For example, a given golf club head having a given CG will have a projected center of gravity or “balance point” or “CG projection” that is determined by an imaginary line passing through the CG and oriented normal to the striking face 18. The location where the imaginary line intersects the striking face 18 is the CG projection, which is typically expressed as a distance above or below the center of the striking face 18. When the CG projection is well above the center of the face, impact efficiency, which is measured by COR, is not maximized. It has been discovered that a fairway wood with a relatively lower CG projection or a CG projection located at or near the ideal impact location on the striking surface of the club face, as described more fully below, improves the impact efficiency of the golf club head as well as initial ball speed. One important ball launch parameter, namely ball spin, is also improved.
The CG projection above centerface of a golf club head can be measured directly, or it can be calculated from several measurable properties of the club head.
Fairway wood shots typically involve impacts that occur below the center of the face, so ball speed and launch parameters are often less than ideal. This results because most fairway wood shots are from the ground and not from a tee, and most golfers have a tendency to hit their fairway wood ground shots low on the face of the club head. Maximum ball speed is typically achieved when the ball is struck at the location on the striking face where the COR is greatest.
For traditionally designed fairway woods, the location where the COR is greatest is the same as the location of the CG projection on the striking surface. This location, however, is generally higher on the striking surface than the below center location of typical ball impacts during play. In contrast to these conventional golf clubs, it has been discovered that greater shot distance is achieved by configuring the club head to have a CG projection that is located near to the center of the striking surface of the golf club head. In some embodiments, the golf club head 2 has a CG projection that is less than about 2.0 mm from the center of the striking surface of the golf club head, i.e. −2.0 mm<CG projection<2.0 mm. For example, some implementations of the golf club head 2 have a CG projection that is less than about 1.0 mm from the center of the striking face of the golf club head (i.e., −1.0 mm<CG projection<1.0 mm), such as about 0.7 mm or less from the center of the striking surface of the golf club head (i.e., −0.7 mm≤CG projection≤0.7 mm), or such as about 0.5 mm or less from the center of the striking surface of the golf club head (i.e., −0.5 mm≤CG projection≤0.5 mm). In other embodiments, the golf club head 2 has a CG projection that is less than about 2.0 mm (i.e., the CG projection is below about 2.0 mm above the center of the striking face), such as less than about 1.0 mm (i.e., the CG projection is below about 1.0 mm above the center of the striking face), or less than about 0.0 mm (i.e., the CG projection is below the center of the striking face), or less than about −1.0 mm (i.e., the CG projection is below about 1.0 mm below the center of the striking face). In each of these embodiments, the CG projection is located above the bottom of the striking face.
In still other embodiments, an optimal location of the CG projection is related to the loft 15 of the golf club head. For example, in some embodiments, the golf club head 2 has a CG projection of about 3 mm or less above the center of the striking face for club heads where the loft angle is at least 15.8 degrees. Similarly, greater shot distance is achieved if the CG projection is about 1.4 mm or less above the center of the striking face for club heads where the loft angle is less than 15.8 degrees. In still other embodiments, the golf club head 2 has a CG projection that is below about 3 mm above the center of the striking face for club heads where the loft angle 15 is more than about 16.2 degrees, and has a CG projection that is below about 2.0 mm above the center of the striking face for club heads where the loft angle 15 is 16.2 degrees or less. In still other embodiments, the golf club head 2 has a CG projection that is below about 3 mm above the center of the striking face for golf club heads where the loft angle 15 is more than about 16.2 degrees, and has a CG projection that is below about 1.0 mm above the center of the striking face for club heads where the loft angle 15 is 16.2 degrees or less. In still other embodiments, the golf club head 2 has a CG projection that is below about 3 mm above the center of the striking face for golf club heads where the loft angle 15 is more than about 16.2 degrees, and has a CG projection that is below about 1.0 mm above the center of the striking face for club heads where the loft angle 15 is between about 14.5 degrees and about 16.2 degrees. In all of the foregoing embodiments, the CG projection is located above the bottom of the striking face. Further, greater initial ball speeds and lower backspin rates are achieved with the lower CG projections.
A golf club head Characteristic Time (CT) can be described as a numerical characterization of the flexibility of a golf club head striking face. The CT may also vary at points distant from the center of the striking face, but may not vary greater than approximately 20% of the CT as measured at the center of the striking face. The CT values for the golf club heads described in the present application were calculated based on the method outlined in the USGA “Procedure for Measuring the Flexibility of a Golf Clubhead,” Revision 2.0, Mar. 25, 2005, which is incorporated by reference herein in its entirety. Specifically, the method described in the sections entitled “3. Summary of Method,” “5. Testing Apparatus Set-up and Preparation,” “6. Club Preparation and Mounting,” and “7. Club Testing” are exemplary sections that are relevant. Specifically, the characteristic time is the time for the velocity to rise from 5% of a maximum velocity to 95% of the maximum velocity under the test set forth by the USGA as described above.
Increased Striking Face Flexibility and Select Tuning
It is known that the coefficient of restitution (COR) of a golf club may be increased by increasing the height Hs, of the striking face 18 and/or by decreasing the thickness of the striking face 18 of a golf club head 2. However, in the case of a fairway wood, hybrid, or rescue golf club, and to a lesser degree even with a driver, increasing the face height may be considered undesirable because doing so will potentially cause an undesirable change to the mass properties of the golf club (e.g., center of gravity location) and to the golf club's appearance.
One skilled in the art will appreciate that the leading edge is the forwardmost portion of the club head 2 in a particular vertical section that extends in a face-to-rear direction through the width of the striking face Wss, and the leading edge varies across the width of the striking face Wss. Further, as seen in
While preferential face flexibility and durability may be enhanced as the size of the channel 212 increases, along with the unique relationships disclosed herein, thereby reducing the stresses in the channel 212, increasing the size of the channel 212, particularly the channel depth Dg and channel width Wg, may produce less than desirable sound and vibration upon impact with a golf ball. Additional embodiments further improve the performance via a center-of-gravity CG that is low and forward in conjunction with the channel 212, as well as aerodynamic embodiments having a particularly bulbous crown 12 which may include irregular contours and very thin areas, any of which may further heighten these less than desirable characteristics. Such undesirable attributes associated with the channel 212, particularly a large channel 212, and/or a low and forward CG position, and/or a bulbous aerodynamic crown, may be mitigated with the introduction of a channel tuning system 1100, such as the embodiments seen in
Referring again go
As seen in
In another embodiment tuning of the club head 2 is further improved when, in at least one front-to-rear vertical section passing through the longitudinal channel tuning element 1200, a portion of the longitudinal tuning element top edge elevation 1260 is greater than the internal channel structure elevation 224, as seen in
In a further embodiment, in at least one front-to-rear vertical section passing through the longitudinal channel tuning element 1200, a portion of the longitudinal tuning element top edge elevation 1260 is at least 10% greater than the internal channel structure elevation 224, while in an even further embodiment a portion of the longitudinal tuning element top edge elevation 1260 is than the internal channel structure elevation 224 by a distance that is greater than the maximum channel wall thickness 221. While the prior embodiments are directed to characteristics in at least one front-to-rear vertical section passing through the longitudinal channel tuning element 1200, in further embodiments the relationships are true through at least 25% of the channel length (Lg), and in even further embodiments through at least 50% of the channel length (Lg), and at least 75% in yet another embodiment. Another embodiment, seen in
In another embodiment at least a portion of the longitudinal channel tuning element 1200 is positioned along the top edge of the channel 212, as seen in
A further embodiment has a longitudinal tuning element height 1240, seen in
As with the length 1230 and height 1240, the longitudinal tuning element width 1250, seen in
Like the length 1230, height 1240, width 1250, longitudinal tuning element top edge elevation 1260, seen in
As previously mentioned, the channel tuning system 1100 may further includes a sole engaging channel tuning element 1300 in contact with the sole 14 and the channel 212, seen best in
With continued reference to
Likewise, the channel engaging portion length 1372, seen in
The orientation and location of the sole engaging channel tuning element 1300 also influences the tuning goals. The sole engaging channel tuning element 1300 is preferably oriented in a direction that is plus, or minus, 45 degrees from a vertical face-to-rear plane passing through the ideal impact location 23, as can be easily visualized in
Preferably, the overall frequency of the golf club head 2, i.e., the average of the first mode frequencies of the crown, sole and skirt portions of the golf club head, generated upon impact with a golf ball is greater than 3,000 Hz. Frequencies above 3,000 Hz provide a user of the golf club with an enhanced feel and satisfactory auditory feedback, while in some embodiments frequencies above 3,200 Hz are obtained and preferred. However, a golf club head 2 having relatively thin walls, a channel 212, and/or a thin bulbous crown 12, can reduce the first mode vibration frequencies to undesirable levels. The addition of the channel tuning system 1100 described herein can significantly increase the first mode vibration frequencies, thus allowing the first mode frequencies to approach a more desirable level and improving the feel of the golf club 2 to a user.
For example, golf club head 2 designs were modeled using commercially available computer aided modeling and meshing software, such as Pro/Engineer by Parametric Technology Corporation for modeling and Hypermesh by Altair Engineering for meshing. The golf club head 2 designs were analyzed using finite element analysis (FEA) software, such as the finite element analysis features available with many commercially available computer aided design and modeling software programs, or stand-alone FEA software, such as the ABAQUS software suite by ABAQUS, Inc.
The golf club head 2 design was made of titanium and shaped similar to the club head 2 shown in the figures, except that several iterations were run in which the golf club head 2 had different combinations of the channel tuning system 1100 present or absent. The predicted first or normal mode frequency of the golf club head 2, i.e., the frequency at which the head will oscillate when the golf club head 2 impacts a golf ball, was obtained using FEA software for the various embodiments. A first mode frequency for the club head 2 without any form of a channel tuning system 1100 is below the preferred lower limit of 3000 Hz.
Table 1 below, and reference to
Another advantage of the channel tuning system 1100 is that it is located in the forward half of the club head 2, further promoting a low forward location of the club head 2 center-of-gravity.
Yet a further embodiment incorporates a body tuning system 1400 having a body tuning element 1500, seen best in
In one body tuning system 1400 embodiment the body tuning element 1500 includes a body tuning element toe end 1510, a body tuning element heel end 1520, a body tuning element length 1530, a body tuning element height 1540, and a body tuning element width 1550, seen best in
Beneficial tuning is achieved in a further embodiment without adding undue rigidity to the club head 2 and limiting beneficial flexing of the club head 2 when at least a portion of the body tuning element height 1540 is at least 15% of the maximum channel depth Dg, and in a further embodiment at least a portion of the body tuning element height 1540 is no more than 75% of the maximum channel depth Dg, while in an even further embodiment at least a portion of the body tuning element height 1540 is 25-50% of the maximum channel depth Dg. While the prior embodiments are directed to characteristics in at least one front-to-rear vertical section passing through the body tuning element 1500, in further embodiments the relationships are true through at least 25% of the body tuning element length 1530, and in even further embodiments through at least 50% of the body tuning element length 1530, and at least 75% in yet another embodiment.
The delicate balance of beneficial tuning, and avoidance of undue rigidity, is further achieved in embodiments having a body tuning element length 1530, as seen in
As previously noted, the body tuning system 1400 is particularly beneficial in embodiments having irregular contours of the crown 12, such as the embodiments seen best in
As with the longitudinal channel tuning element 1200 and the sole engaging channel tuning element 1300 being in contact with the channel 212 either integrally or via a number of joining methods, portions of the body tuning system 1400 are in contact with the sole 14 and/or crown 12, which in one embodiment means that they are integrally cast with the sole 14 and/or crown 12, while in another embodiment they are attached to the sole 14 and/or crown 12 via available joining methods including welding, brazing, and adhesive attachment.
The body tuning element 1500 is preferably oriented in a direction that is plus, or minus, 45 degrees from a vertical heel-to-toe plane parallel to a vertical heel-to-toe plane containing the centerline axis 21, however in a further embodiment the body tuning element 1500 is preferably oriented in a direction that is plus, or minus, 20 degrees from a vertical heel-to-toe plane parallel to a vertical heel-to-toe plane containing the centerline axis 21, and in an even further embodiment the body tuning element 1500 is preferably oriented in a direction that is substantially parallel to a vertical heel-to-toe plane containing the centerline axis 21. The body tuning element 1500 may traverse a portion of the club head 2 a linear fashion, a zig-zag or sawtooth type fashion, or a curved fashion.
Another embodiment incorporates the aerodynamic benefits of a uniquely shaped crown 12 as disclosed in U.S. patent application Ser. Nos. 14/260,328, 14/330,205, 14/259,475, and 14/88,354, all of which are incorporated by reference in their entirety herein. One such embodiment has a club head depth Dch, seen in
While such bulbous crown embodiments are aerodynamically beneficial, it is desirable to control the center-of-gravity of the club head 2 so that it does not increase significantly due to the bulbous crown 12. One manner of controlling the height of the CG is to incorporate a crown structure such as that disclosed in U.S. patent application Ser. No. 14/734,181, which is incorporated by reference in its entirety herein. Therefore, in one embodiment majority of the crown 12 has a thickness of 0.7 mm or less, while in a further embodiment majority of the crown 12 has a thickness of 0.65 mm or less. In another embodiment at least a portion of the crown 12 has a thickness of 0.5 mm or less, while in yet a further embodiment at least a portion of the crown 12 has a thickness of 0.4 mm or less; in another embodiment such crown 12 embodiments having thin portions may also have a portion with a thickness of at least 0.7 mm. For instance, the crown 12 may have a front crown portion 901, as seen in
Now looking at just the portion of the crown 12 located at an elevation above the maximum face top edge elevation, Hte, in one embodiment majority of this portion of the crown 12 has a thickness of 0.7 mm or less, while in a further embodiment majority of this portion of the crown 12 has a thickness of 0.6 mm or less, while in yet another embodiment majority of this portion of the crown 12 has a thickness of 0.5 mm or less. The foregoing thicknesses refer to the components of the golf club head 2 after all manufacturing steps have been taken, including construction (e.g., casting, stamping, welding, brazing, etc.), finishing (e.g., polishing, etc.), and any other steps. Another manner of controlling the height of the CG, while still incorporating an aerodynamically bulbous crown, is to incorporate at least one recessed area into the crown, as seen in
Such bulbous crown embodiments, and the associated thin-crown embodiments and recessed area crown embodiments, are designed to reduce the impact of the bulbous crown on the CG location, often introduce new less desirable characteristics to the club head 2, similar to those discussed with the introduction of the channel 212. Fortunately embodiments incorporating a body tuning system 1400 may reduce the less desirable characteristics. For instance, one embodiment incorporates a body tuning element crown portion 1580 that is partially above the maximum top edge elevation, Hte, of the face 18, as seen in
In yet a further embodiment the body tuning system 1400 further includes a body tuning element connecting element 1600 having a connecting element sole end 1610 engaging the body tuning element sole portion 1570, and a connecting element crown end 1620 engaging the body tuning element crown portion 1580, as seen in
The location of the body tuning element connecting element 1600 is largely dictated by the location of the body tuning element sole portion 1570 and the body tuning element crown portion 1580, and therefore all the relationships disclosed regarding their location with respect to the channel 212 also apply to the location of the body tuning element connecting element 1600. Further, one particular embodiment provides preferred performance when the body tuning element connecting element 1600 is located on the toe side of the club head 2, or between the ideal impact location 23 and the toe 28. In another embodiment the body tuning element connecting element 1600 is located on the toe side of the club head 2 and in the rear half of the club head 2, using the club head depth Dch seen in
Likewise, the orientation and construction of the body tuning element connecting element 1600 influences the benefits associated with it. In one embodiment the body tuning element connecting element 1600 is oriented at an angle that is plus, or minus, 10 degrees from vertical; while in a further embodiment the orientation is plus, or minus, 5 degrees from vertical; and in an even further embodiment the orientation is substantially vertical. The cross-sectional shape of the body tuning element connecting element 1600 in a plane perpendicular to a longitudinal axis of the body tuning element connecting element 1600 is round in one embodiment. Further, in one embodiment the body tuning element connecting element 1600 is solid, while in an alternative embodiment the body tuning element connecting element 1600 is hollow. Regardless, the minimum cross-sectional dimension of the body tuning element connecting element 1600 is at least as great as the minimum body tuning element width 1550, while in a further embodiment it is at least as great as the maximum body tuning element width 1500, while in yet another embodiment it is at least twice the maximum body tuning element width 1500, and in still a further embodiment it is 2-5 times the maximum body tuning element width 1500. In hollow body tuning element connecting element 1600 embodiments the minimum wall thickness of the body tuning element connecting element 1600 is at least as great as the minimum body tuning element width 1550. A further embodiment includes a bridge 1700, seen in
The benefits of the channel tuning system 1100 and/or body tuning system 1400 are heightened as the size of the channel 212 increases. For example in one embodiment the disclosed embodiments are used in conjunction with a channel 212 having a volume that is at least 3% of the club head 2 volume, while in a further embodiment the channel 212 has a volume that is 4-10% of the club head 2 volume, and in an even further embodiment the channel 212 has a volume that is at least 5% of the club head 2 volume. In one particular embodiment the channel 212 has a volume that is at least 15 cubic centimeters (cc), while a further embodiment has a channel 212 volume that is 15-40 cc, and an even further embodiment has a channel 212 volume of at least 20 cc. One skilled in the art will know how to determine such volumes by submerging at least a portion of the club head in a liquid, and then doing the same with the channel 212 covered, or by filling the channel 212 with clay or other malleable material to achieve a smooth exterior profile of the club head and then removing and measuring the volume of the malleable material.
Further, the benefits of the channel tuning system 1100 and/or body tuning system 1400 are heightened as the channel width Wg, channel depth Dg, and/or channel length Lg increase. As previously disclosed, beneficial flexing of the club head 2, and reduced stress in the channel 212, may be achieved as the size of the channel 212 increases, however there is a point at which the negatives outweigh the positives, yet the channel tuning system 1100 and/or body tuning system 1400, as well as the upper channel wall radius of curvature 222R, beneficially shift, or control, when the negatives outweigh the positives. In one embodiment any of the disclosed embodiments are used in conjunction with a channel 212 that has a portion with a channel depth Dg that is at least 20% of the Zup value, while a further embodiment has a portion with the channel depth Dg being at least 30% of the Zup value, and an even further embodiment has a portion with the channel depth Dg being 30-70% of the Zup value. In another embodiment any of the disclosed embodiments are used in conjunction with a channel 212 that has a portion with a channel depth Dg that is at least 8 mm, while a further embodiment has a portion with the channel depth Dg being at least 10 mm, while an even further embodiment has a portion with the channel depth Dg being at least 12 mm, and yet another embodiment has a portion with the channel depth Dg being 10-15 mm. One embodiment has a Zup value that is less than 30 mm. The length Lg of the channel 212 may be defined relative to the width of the striking face Wss. For example, in some embodiments, the length Lg of the channel 212 is from about 70% to about 140%, or about 80% to about 140%, or about 100% of the width of the striking face Wss.
Further, the configuration of the crown 12, including the shape, and in some embodiments the amount of the bulbous crown 12 at an elevation above the maximum face top edge elevation, Hte, of the face 18, as well as the crown thickness, influence the overall rigidity, or alternatively the flexibility, of the club head 2, which must compliment the benefits associated with the channel 212, and vice versa, rather than fight the benefits associated with the channel 212 and/or crown thickness, and in some embodiments the relationships further serve to achieve the desired tuning characteristics of the club head 2. As such, in one bulbous crown embodiment the difference between the maximum club head height, Hch, or apex height, and the maximum face top edge elevation, Hte, of the face 18, is at least 50% of the maximum channel depth, Dg, while in a further embodiment the difference is at least 70% of the maximum channel depth, Dg, in yet another embodiment the difference is 70-125% of the maximum channel depth, Dg, and in still a further embodiment the difference is 80-110% of the maximum channel depth, Dg. In another bulbous crown embodiment the difference between the maximum club head height, Hch, or apex height, and the maximum face top edge elevation, Hte, of the face 18, is at least 25% of the maximum channel width, Wg, while in a further embodiment the difference is at least 50% of the maximum channel width, Wg, in yet another embodiment the difference is 60-120% of the maximum channel width, Wg, and in still a further embodiment the difference is 70-110% of the maximum channel width, Wg. A further bulbous crown embodiment has an apex ratio of at least 1.13 and the maximum channel depth, Dg, is at least 10% of the difference between the maximum club head height, Hch, or apex height, and the maximum face top edge elevation, Hte, of the face 18; while in a further embodiment the apex ratio is at least 1.15 and the maximum channel depth, Dg, is at least 20% of the difference between the maximum club head height, Hch, or apex height, and the maximum face top edge elevation, Hte, of the face 18; and in yet another embodiment the apex ratio is at least 1.15 and the maximum channel depth, Dg, is 60-120% of the difference between the maximum club head height, Hch, or apex height, and the maximum face top edge elevation, Hte, of the face 18.
In a further embodiment wherein a majority of the portion of the crown 12 located at an elevation above the maximum face top edge elevation, Hte, has a crown thickness of 0.7 mm or less; while in another embodiment majority of the portion of the crown 12 located at an elevation above the maximum face top edge elevation, Hte, has a crown thickness that is less than a maximum channel wall thickness 221; and in yet an even further embodiment majority of the portion of the crown 12 located at an elevation above the maximum face top edge elevation, Hte, has a crown thickness that is less than a minimum channel wall thickness 221. In another embodiment majority of the portion of the crown 12 located at an elevation above the maximum face top edge elevation, Hte, has a crown thickness that is 25-75% of a minimum channel wall thickness 221.
Now turning to the channel width Wg, in one embodiment any of the disclosed embodiments are used in conjunction with a channel 212 that has a portion with a channel width Wg that is at least 20% of the Zup value, while a further embodiment has a portion with the channel width Wg being at least 30% of the Zup value, and an even further embodiment has a portion with the channel width Wg being 25-60% of the Zup value. In one driver embodiment the Zup value is 20-36 mm, while in a further embodiment the Zup value is 24-32 mm, while in an even further embodiment the Zup value is 26-30 mm. In one fairway wood embodiment the Zup value is 8-20 mm, while in a further embodiment the Zup value is 10-18 mm, while in an even further embodiment the Zup value is 12-16 mm.
Another embodiment further improves the stress distribution in the channel 212 when any of the disclosed embodiments are used in conjunction with a channel 212 that has a portion with an upper channel wall radius of curvature 222R, seen in
The channel 212 may further include an aperture as disclosed in U.S. patent application Ser. No. 14/472,415, which is incorporated herein by reference. Further, the crown 12 may include a post apex attachment promoting region as disclosed in U.S. patent application Ser. No. 14/259,475, which is incorporated herein by reference, a drop contour area as disclosed in U.S. patent application Ser. No. 14/488,354, which is incorporated herein by reference, a trip step as disclosed in U.S. patent application Ser. No. 14/330,205, which is incorporated herein by reference, and/or unique crown curvature as disclosed in U.S. patent application Ser. No. 14/260,328, which is incorporated herein by reference
Another embodiment introduces a thickened channel central region 225, seen best in
The rear channel wall 218 and front channel wall 220 define a channel angle β therebetween. In some embodiments, the channel angle β can be between about 10° to about 30°, such as about 13° to about 28°, or about 13° to about 22°. In some embodiments, the rear channel wall 218 extends substantially perpendicular to the ground plane when the club head 2 is in the normal address position, i.e., substantially parallel to the z-axis 65. In still other embodiments, the front channel wall 220 defines a surface that is substantially parallel to the striking face 18, i.e., the front channel wall 220 is inclined relative to a vector normal to the ground plane (when the club head 2 is in the normal address position) by an angle that is within about ±5° of the loft angle 15, such as within about ±3° of the loft angle 15, or within about ±1° of the loft angle 15.
In the embodiment shown, the heel channel wall 214, toe channel wall 216, rear channel wall 218, and front channel wall 220 each have a thickness 221 of from about 0.7 mm to about 1.5 mm, e.g., from about 0.8 mm to about 1.3 mm, or from about 0.9 mm to about 1.1 mm.
As seen in
In some embodiments, the slot 212 has a substantially constant width Wg, and the slot 212 is defined by a radius of curvature for each of the forward edge and rearward edge of the slot 212. In some embodiments, the radius of curvature of the forward edge of the slot 212 is substantially the same as the radius of curvature of the forward edge of the sole 14. In other embodiments, the radius of curvature of each of the forward and rearward edges of the slot 212 is from about 15 mm to about 90 mm, such as from about 20 mm to about 70 mm, such as from about 30 mm to about 60 mm. In still other embodiments, the slot width Wg changes at different locations along the length of the slot 212.
Connection Assembly
Now referencing
For example,
The shaft sleeve 3056 has a lower portion 3058 including splines that mate with mating splines of the hosel insert 2000, an intermediate portion 3060 and an upper head portion 3062. The intermediate portion 3060 and the head portion 3062 define an internal bore 3064 for receiving the tip end portion of the shaft. In the illustrated embodiment, the intermediate portion 3060 of the shaft sleeve has a cylindrical external surface that is concentric with the inner cylindrical surface of the hosel opening 3054. In this manner, the lower and intermediate portions 3058, 3060 of the shaft sleeve and the hosel opening 3054 define a longitudinal axis B. The bore 3064 in the shaft sleeve defines a longitudinal axis A to support the shaft along axis A, which is offset from axis B by a predetermined angle 3066 determined by the bore 3064. As described in more detail in U.S. patent application Ser. No. 14/074,481, inserting the shaft sleeve 3056 at different angular positions relative to the hosel insert 2000 is effective to adjust the shaft loft and/or the lie angle.
In the embodiment shown, because the intermediate portion 3060 is concentric with the hosel opening 3054, the outer surface of the intermediate portion 3060 can contact the adjacent surface of the hosel opening, as depicted in
Further embodiments incorporate a club head 2 having a shaft connection assembly like that described above in relation to
The club head 2 is removably attached to the shaft by the sleeve 3056 (which is mounted to the lower end portion of the shaft) by inserting the sleeve 3056 into the hosel bore 24 and the hosel insert 2000 (which is mounted inside the hosel bore 24), and inserting a screw 4000 upwardly through the recessed port 3070 and through an opening in the sole and tightening the screw into a threaded opening of the sleeve, thereby securing the club head to the sleeve 3056. A screw capturing device, such as in the form of an o-ring or washer 3036, can be placed on the shaft of the screw 4000 to retain the screw in place within the club head when the screw is loosened to permit removal of the shaft from the club head.
The recessed port 3070 extends from the bottom portion of the golf club head into the interior of the outer shell toward the top portion of the club head (400), as seen in
As shown in
In the embodiment shown in
Also shown in
In alternative embodiments, the recessed portion 3070 has a shape that is other than rectangular, such as round, triangular, square, or some other regular geometric or irregular shape. In each of these embodiments, a port width Wp may be measured from the port fore-wall 3074 to a rearward-most point of the recessed port. For example, in an embodiment that includes a round recessed port (or a recessed port having a rounded aft-wall), the port width W.sub.p may be measured from the port fore-wall 3074 to a rearward-most point located on the rounded aft-wall. In several embodiments, a ratio Wp/Wg of the port width Wp to an average width of the channel Wg may be from about 1.1 to about 20, such as about 1.2 to about 15, such as about 1.5 to about 10, such as about 2 to about 8.
Turning to the cross-sectional views shown in
In the embodiment shown in
Whereas the invention has been described in connection with representative embodiments, it will be understood that it is not limited to those embodiments. On the contrary, it is intended to encompass all alternatives, modifications, combinations, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/939,648, filed Nov. 12, 2015, which is a continuation-in-part of U.S. patent application Ser. No. 14/871,789, filed Sep. 30, 2015, now U.S. Pat. No. 9,700,763, issued Jul. 11, 2017, which is a continuation of U.S. patent application Ser. No. 14/701,476, filed Apr. 30, 2015, now U.S. Pat. No. 9,211,447, issued Dec. 15, 2015, which is a continuation of U.S. patent application Ser. No. 14/495,795, filed Sep. 24, 2014, now U.S. Pat. No. 9,186,560, issued Nov. 17, 2015, which is a continuation of U.S. patent application Ser. No. 13/828,675, filed Mar. 14, 2013, now U.S. Pat. No. 8,888,607, issued Nov. 18, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/469,031, filed May 10, 2012, now U.S. Pat. No. 9,220,953, issued Dec. 29, 2015, which is a continuation-in-part of U.S. patent application Ser. No. 13/338,197, filed Dec. 27, 2011, now U.S. Pat. No. 8,900,069, issued Dec. 2, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/427,772, filed Dec. 28, 2010, all of which applications are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
411000 | Anderson | Sep 1889 | A |
1133129 | Govan | Mar 1915 | A |
1135621 | Roberts et al. | Apr 1915 | A |
1320163 | Fitz Maurice | Oct 1919 | A |
1518316 | Ellingham | Dec 1924 | A |
1526438 | Scott | Feb 1925 | A |
1538312 | Beat | May 1925 | A |
1592463 | Marker | Jul 1926 | A |
1658581 | Tobia | Feb 1928 | A |
1697846 | Anderson | Jan 1929 | A |
1704119 | Buhrke | Mar 1929 | A |
1705997 | Quynn | Mar 1929 | A |
1854548 | Hunt | Apr 1932 | A |
1970409 | Wiedemann | Aug 1934 | A |
D107007 | Cashmore | Nov 1937 | S |
2214356 | Wettlaufer | Sep 1940 | A |
2225930 | Sexton | Dec 1940 | A |
2257575 | Reach | Sep 1941 | A |
2328583 | Reach | Sep 1943 | A |
2360364 | Reach | Oct 1944 | A |
2375249 | Richer | May 1945 | A |
2460435 | Schaffer | Feb 1949 | A |
2652256 | Thomas | Sep 1953 | A |
2681523 | Sellers | Jun 1954 | A |
2691525 | Callaghan | Oct 1954 | A |
3064980 | Steiner | Nov 1962 | A |
3084940 | Cissel | Apr 1963 | A |
3466047 | Rodia et al. | Sep 1969 | A |
3486755 | Hodge | Dec 1969 | A |
3556533 | Hollis | Jan 1971 | A |
3589731 | Chancellor | Jun 1971 | A |
3606327 | Gorman | Sep 1971 | A |
3610630 | Glover | Oct 1971 | A |
3652094 | Glover | Mar 1972 | A |
3672419 | Fischer | Jun 1972 | A |
3680868 | Jacob | Aug 1972 | A |
3692306 | Glover | Sep 1972 | A |
3743297 | Dennis | Jul 1973 | A |
3810631 | Braly | May 1974 | A |
3860244 | Cosby | Jan 1975 | A |
3897066 | Belmont | Jul 1975 | A |
3976299 | Lawrence et al. | Aug 1976 | A |
3979122 | Belmont | Sep 1976 | A |
3979123 | Belmont | Sep 1976 | A |
3997170 | Goldberg | Dec 1976 | A |
4008896 | Gordos | Feb 1977 | A |
4043563 | Churchward | Aug 1977 | A |
4052075 | Daly | Oct 1977 | A |
4076254 | Nygren | Feb 1978 | A |
4085934 | Churchward | Apr 1978 | A |
4121832 | Ebbing | Oct 1978 | A |
4150702 | Holmes | Apr 1979 | A |
4189976 | Becker | Feb 1980 | A |
4214754 | Zebelean | Jul 1980 | A |
4262562 | MacNeill | Apr 1981 | A |
D259698 | MacNeill | Jun 1981 | S |
4322083 | Imai | Mar 1982 | A |
4340229 | Stuff, Jr. | Jul 1982 | A |
4398965 | Campau | Aug 1983 | A |
4411430 | Dian | Oct 1983 | A |
4423874 | Stuff, Jr. | Jan 1984 | A |
4438931 | Motomiya | Mar 1984 | A |
4471961 | Masghati et al. | Sep 1984 | A |
4489945 | Kobayashi | Dec 1984 | A |
4530505 | Stuff | Jul 1985 | A |
D284346 | Masters | Jun 1986 | S |
4602787 | Sugioka et al. | Jul 1986 | A |
4607846 | Perkins | Aug 1986 | A |
4712798 | Preato | Dec 1987 | A |
4730830 | Tilley | Mar 1988 | A |
4736093 | Braly | Apr 1988 | A |
4754974 | Kobayashi | Jul 1988 | A |
4754977 | Sahm | Jul 1988 | A |
4762322 | Molitor et al. | Aug 1988 | A |
4795159 | Nagamoto | Jan 1989 | A |
4803023 | Enomoto et al. | Feb 1989 | A |
4809983 | Langert | Mar 1989 | A |
4867457 | Lowe | Sep 1989 | A |
4867458 | Sumikawa et al. | Sep 1989 | A |
4869507 | Sahm | Sep 1989 | A |
4890840 | Kobayashi | Jan 1990 | A |
4895371 | Bushner | Jan 1990 | A |
4915558 | Muller | Apr 1990 | A |
4962932 | Anderson | Oct 1990 | A |
4994515 | Washiyama et al. | Feb 1991 | A |
5006023 | Kaplan | Apr 1991 | A |
5020950 | Ladouceur | Jun 1991 | A |
5028049 | McKeighen | Jul 1991 | A |
5039267 | Wollar | Aug 1991 | A |
5042806 | Helmstetter | Aug 1991 | A |
5050879 | Sun et al. | Sep 1991 | A |
5058895 | Igarashi | Oct 1991 | A |
5067715 | Schmidt et al. | Nov 1991 | A |
5076585 | Bouquet | Dec 1991 | A |
5078400 | Desbiolles et al. | Jan 1992 | A |
5121922 | Harsh, Sr. | Jun 1992 | A |
5122020 | Bedi | Jun 1992 | A |
5193810 | Antonious | Mar 1993 | A |
5213328 | Long et al. | May 1993 | A |
5219408 | Sun | Jun 1993 | A |
5221086 | Antonious | Jun 1993 | A |
5232224 | Zeider | Aug 1993 | A |
5244210 | Au | Sep 1993 | A |
5251901 | Solheim et al. | Oct 1993 | A |
5253869 | Dingle et al. | Oct 1993 | A |
D343558 | Latraverse et al. | Jan 1994 | S |
5297794 | Lu | Mar 1994 | A |
5301941 | Allen | Apr 1994 | A |
5306008 | Kinoshita | Apr 1994 | A |
5316305 | McCabe | May 1994 | A |
5320005 | Hsiao | Jun 1994 | A |
5328176 | Lo | Jul 1994 | A |
5330187 | Schmidt et al. | Jul 1994 | A |
5346216 | Aizawa | Sep 1994 | A |
5346217 | Tsuchiya et al. | Sep 1994 | A |
5385348 | Wargo | Jan 1995 | A |
5395113 | Antonious | Mar 1995 | A |
5410798 | Lo | May 1995 | A |
5419556 | Take | May 1995 | A |
5421577 | Kobayashi | Jun 1995 | A |
5429365 | McKeighen | Jul 1995 | A |
5439222 | Kranenberg | Aug 1995 | A |
5441274 | Clay | Aug 1995 | A |
5447309 | Vincent | Sep 1995 | A |
5449260 | Whittle | Sep 1995 | A |
5451056 | Manning | Sep 1995 | A |
5467983 | Chen | Nov 1995 | A |
D365615 | Shimatani | Dec 1995 | S |
5472201 | Aizawa et al. | Dec 1995 | A |
5472203 | Schmidt et al. | Dec 1995 | A |
5480152 | Schmidt et al. | Jan 1996 | A |
5511786 | Antonious | Apr 1996 | A |
5518243 | Redman | May 1996 | A |
5533730 | Ruvang | Jul 1996 | A |
5538245 | Moore | Jul 1996 | A |
5564705 | Kobayashi et al. | Oct 1996 | A |
5571053 | Lane | Nov 1996 | A |
5573467 | Chou et al. | Nov 1996 | A |
5582553 | Ashcraft et al. | Dec 1996 | A |
5603668 | Antonious | Feb 1997 | A |
5613917 | Kobayashi et al. | Mar 1997 | A |
5616088 | Aizawa et al. | Apr 1997 | A |
5620379 | Borys | Apr 1997 | A |
5624331 | Lo et al. | Apr 1997 | A |
5629475 | Chastonay | May 1997 | A |
5632694 | Lee | May 1997 | A |
5658206 | Antonious | Aug 1997 | A |
5669827 | Nagamoto | Sep 1997 | A |
5681228 | Mikame et al. | Oct 1997 | A |
5683309 | Reimers | Nov 1997 | A |
5688189 | Bland | Nov 1997 | A |
5709613 | Sheraw | Jan 1998 | A |
5718641 | Lin | Feb 1998 | A |
5720674 | Galy | Feb 1998 | A |
D392526 | Nicely | Mar 1998 | S |
5735754 | Antonious | Apr 1998 | A |
5746664 | Reynolds, Jr. | May 1998 | A |
5749795 | Schmidt | May 1998 | A |
5755627 | Yamazaki et al. | May 1998 | A |
5762567 | Antonious | Jun 1998 | A |
5766095 | Antonious | Jun 1998 | A |
5769737 | Holladay et al. | Jun 1998 | A |
5776010 | Helmstetter et al. | Jul 1998 | A |
5776011 | Su et al. | Jul 1998 | A |
5788587 | Tseng | Aug 1998 | A |
5798587 | Lee | Aug 1998 | A |
5803829 | Hayashi | Sep 1998 | A |
RE35955 | Lu | Nov 1998 | E |
5851160 | Rugge et al. | Dec 1998 | A |
5873791 | Allen | Feb 1999 | A |
5888148 | Allen | Mar 1999 | A |
D409463 | McMullin | May 1999 | S |
5908356 | Nagamoto | Jun 1999 | A |
5911638 | Parente et al. | Jun 1999 | A |
5913735 | Kenmi | Jun 1999 | A |
5916042 | Reimers | Jun 1999 | A |
5924938 | Hines | Jul 1999 | A |
D412547 | Fong | Aug 1999 | S |
5935019 | Yamamoto | Aug 1999 | A |
5935020 | Stites et al. | Aug 1999 | A |
5941782 | Cook | Aug 1999 | A |
5947840 | Ryan | Sep 1999 | A |
5967905 | Nakahara et al. | Oct 1999 | A |
5971867 | Galy | Oct 1999 | A |
5976033 | Takeda | Nov 1999 | A |
5997415 | Wood | Dec 1999 | A |
6015354 | Ahn et al. | Jan 2000 | A |
6017177 | Lanham | Jan 2000 | A |
6019686 | Gray | Feb 2000 | A |
6023891 | Robertson et al. | Feb 2000 | A |
6032677 | Blechman et al. | Mar 2000 | A |
6033318 | Drajan, Jr. et al. | Mar 2000 | A |
6033321 | Yamamoto | Mar 2000 | A |
6042486 | Gallagher | Mar 2000 | A |
6056649 | Imai | May 2000 | A |
6062988 | Yamamoto | May 2000 | A |
6074308 | Domas | Jun 2000 | A |
6077171 | Yoneyama | Jun 2000 | A |
6086485 | Hamada | Jul 2000 | A |
6089994 | Sun | Jul 2000 | A |
6120384 | Drake | Sep 2000 | A |
6123627 | Antonious | Sep 2000 | A |
6139445 | Werner et al. | Oct 2000 | A |
6149533 | Finn | Nov 2000 | A |
6162132 | Yoneyama | Dec 2000 | A |
6162133 | Peterson | Dec 2000 | A |
6171204 | Starry | Jan 2001 | B1 |
6186905 | Kosmatka | Feb 2001 | B1 |
6190267 | Marlowe et al. | Feb 2001 | B1 |
6193614 | Sasamoto et al. | Feb 2001 | B1 |
6203448 | Yamamoto | Mar 2001 | B1 |
6206789 | Takeda | Mar 2001 | B1 |
6206790 | Kubica et al. | Mar 2001 | B1 |
6210290 | Erickson et al. | Apr 2001 | B1 |
6217461 | Galy | Apr 2001 | B1 |
6238303 | Fite | May 2001 | B1 |
6244974 | Hanberry, Jr. | Jun 2001 | B1 |
6248025 | Murphy et al. | Jun 2001 | B1 |
6254494 | Hasebe et al. | Jul 2001 | B1 |
6264414 | Hartmann et al. | Jul 2001 | B1 |
6270422 | Fisher | Aug 2001 | B1 |
6277032 | Smith | Aug 2001 | B1 |
6290609 | Takeda | Sep 2001 | B1 |
6296579 | Robinson | Oct 2001 | B1 |
6299546 | Wang | Oct 2001 | B1 |
6299547 | Kosmatka | Oct 2001 | B1 |
6306048 | McCabe et al. | Oct 2001 | B1 |
6319149 | Lee | Nov 2001 | B1 |
6319150 | Werner et al. | Nov 2001 | B1 |
6334817 | Ezawa et al. | Jan 2002 | B1 |
6338683 | Kosmatka | Jan 2002 | B1 |
6340337 | Hasebe et al. | Jan 2002 | B2 |
6344000 | Hamada | Feb 2002 | B1 |
6344001 | Hamada et al. | Feb 2002 | B1 |
6344002 | Kajita | Feb 2002 | B1 |
6348012 | Erickson et al. | Feb 2002 | B1 |
6348013 | Kosmatka | Feb 2002 | B1 |
6348014 | Chiu | Feb 2002 | B1 |
6354961 | Allen | Mar 2002 | B1 |
6364788 | Helmstetter et al. | Apr 2002 | B1 |
6379264 | Forzano | Apr 2002 | B1 |
6379265 | Hirakawa et al. | Apr 2002 | B1 |
6383090 | O'Doherty et al. | May 2002 | B1 |
6386987 | Lejeune, Jr. | May 2002 | B1 |
6386990 | Reyes et al. | May 2002 | B1 |
6390933 | Galloway et al. | May 2002 | B1 |
6409612 | Evans et al. | Jun 2002 | B1 |
6422951 | Burrows | Jul 2002 | B1 |
6425832 | Cackett et al. | Jul 2002 | B2 |
6434811 | Helmstetter et al. | Aug 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6440009 | Guibaud et al. | Aug 2002 | B1 |
6440010 | Deshmukh | Aug 2002 | B1 |
6443851 | Liberatore | Sep 2002 | B1 |
6447405 | Chen | Sep 2002 | B1 |
6458044 | Vincent et al. | Oct 2002 | B1 |
6461249 | Liberatore | Oct 2002 | B2 |
6471604 | Hocknell et al. | Oct 2002 | B2 |
6475101 | Burrows | Nov 2002 | B2 |
6475102 | Helmstetter et al. | Nov 2002 | B2 |
6478692 | Kosmatka | Nov 2002 | B2 |
6491592 | Cackett et al. | Dec 2002 | B2 |
6508978 | Deshmukh | Jan 2003 | B1 |
6514154 | Finn | Feb 2003 | B1 |
6524197 | Boone | Feb 2003 | B2 |
6524198 | Takeda | Feb 2003 | B2 |
6527649 | Neher et al. | Mar 2003 | B1 |
6530847 | Antonious | Mar 2003 | B1 |
6530848 | Gillig | Mar 2003 | B2 |
6533679 | McCabe et al. | Mar 2003 | B1 |
6547676 | Cackett et al. | Apr 2003 | B2 |
6558273 | Kobayashi et al. | May 2003 | B2 |
6565448 | Cameron et al. | May 2003 | B2 |
6565452 | Helmstetter et al. | May 2003 | B2 |
6569029 | Hamburger | May 2003 | B1 |
6569040 | Bradstock | May 2003 | B2 |
6572489 | Miyamoto et al. | Jun 2003 | B2 |
6575845 | Galloway et al. | Jun 2003 | B2 |
6575854 | Yang et al. | Jun 2003 | B1 |
6582323 | Soracco et al. | Jun 2003 | B2 |
6592468 | Vincent et al. | Jul 2003 | B2 |
6602149 | Jacobson | Aug 2003 | B1 |
6604568 | Bliss et al. | Aug 2003 | B2 |
6605007 | Bissonnette et al. | Aug 2003 | B1 |
6607452 | Helmstetter et al. | Aug 2003 | B2 |
6612938 | Murphy et al. | Sep 2003 | B2 |
6616547 | Vincent et al. | Sep 2003 | B2 |
6638180 | Tsurumaki | Oct 2003 | B2 |
6638183 | Takeda | Oct 2003 | B2 |
D482089 | Burrows | Nov 2003 | S |
D482090 | Burrows | Nov 2003 | S |
D482420 | Burrows | Nov 2003 | S |
6641487 | Hamburger | Nov 2003 | B1 |
6641490 | Ellemor | Nov 2003 | B2 |
6648772 | Vincent et al. | Nov 2003 | B2 |
6648773 | Evans | Nov 2003 | B1 |
6652387 | Liberatore | Nov 2003 | B2 |
D484208 | Burrows | Dec 2003 | S |
6663506 | Nishimoto et al. | Dec 2003 | B2 |
6669571 | Cameron et al. | Dec 2003 | B1 |
6669578 | Evans | Dec 2003 | B1 |
6669580 | Cackett et al. | Dec 2003 | B1 |
6676536 | Jacobson | Jan 2004 | B1 |
6679786 | McCabe | Jan 2004 | B2 |
6695712 | Iwata et al. | Feb 2004 | B1 |
6716111 | Liberatore | Apr 2004 | B2 |
6716114 | Nishio | Apr 2004 | B2 |
6719510 | Cobzaru | Apr 2004 | B2 |
6719641 | Dabbs et al. | Apr 2004 | B2 |
6739982 | Murphy et al. | May 2004 | B2 |
6739983 | Helmstetter et al. | May 2004 | B2 |
6743118 | Soracco | Jun 2004 | B1 |
6749523 | Forzano | Jun 2004 | B1 |
6757572 | Forest | Jun 2004 | B1 |
6758763 | Murphy et al. | Jul 2004 | B2 |
6773360 | Willett et al. | Aug 2004 | B2 |
6773361 | Lee | Aug 2004 | B1 |
6776726 | Sano | Aug 2004 | B2 |
6800038 | Willett et al. | Oct 2004 | B2 |
6805643 | Lin | Oct 2004 | B1 |
6808460 | Namiki | Oct 2004 | B2 |
6824475 | Burnett et al. | Nov 2004 | B2 |
6835145 | Tsurumaki | Dec 2004 | B2 |
D501036 | Burrows | Jan 2005 | S |
6855068 | Antonious | Feb 2005 | B2 |
6860818 | Mahaffey et al. | Mar 2005 | B2 |
6860823 | Lee | Mar 2005 | B2 |
6860824 | Evans | Mar 2005 | B2 |
6875124 | Gilbert et al. | Apr 2005 | B2 |
6875129 | Erickson et al. | Apr 2005 | B2 |
6881158 | Yang et al. | Apr 2005 | B2 |
6881159 | Galloway et al. | Apr 2005 | B2 |
6887165 | Tsurumaki | May 2005 | B2 |
6890267 | Mahaffey et al. | May 2005 | B2 |
6904663 | Willett et al. | Jun 2005 | B2 |
6923734 | Meyer | Aug 2005 | B2 |
6926619 | Helmstetter et al. | Aug 2005 | B2 |
6960142 | Bissonnette et al. | Nov 2005 | B2 |
6964617 | Williams | Nov 2005 | B2 |
6969326 | De Shiell | Nov 2005 | B2 |
6974393 | Caldwell et al. | Dec 2005 | B2 |
6988960 | Mahaffey et al. | Jan 2006 | B2 |
6991558 | Beach et al. | Jan 2006 | B2 |
D515165 | Zimmerman et al. | Feb 2006 | S |
6997820 | Willett et al. | Feb 2006 | B2 |
7004852 | Billings | Feb 2006 | B2 |
7025692 | Erickson et al. | Apr 2006 | B2 |
7029403 | Rice et al. | Apr 2006 | B2 |
7077762 | Kouno et al. | Jul 2006 | B2 |
7086964 | Chen et al. | Aug 2006 | B2 |
7134971 | Franklin et al. | Nov 2006 | B2 |
7137905 | Kohno | Nov 2006 | B2 |
7137906 | Tsunoda et al. | Nov 2006 | B2 |
7140974 | Chao et al. | Nov 2006 | B2 |
7147572 | Kohno | Dec 2006 | B2 |
7147573 | DiMarco | Dec 2006 | B2 |
7153220 | Lo | Dec 2006 | B2 |
7163468 | Gibbs et al. | Jan 2007 | B2 |
7166038 | Williams et al. | Jan 2007 | B2 |
7166040 | Hoffman et al. | Jan 2007 | B2 |
7166041 | Evans | Jan 2007 | B2 |
7169060 | Stevens et al. | Jan 2007 | B2 |
7179034 | Ladouceur | Feb 2007 | B2 |
7186190 | Beach et al. | Mar 2007 | B1 |
7189169 | Billings | Mar 2007 | B2 |
7198575 | Beach et al. | Apr 2007 | B2 |
7201669 | Stites et al. | Apr 2007 | B2 |
7223180 | Willett et al. | May 2007 | B2 |
7252600 | Murphy et al. | Aug 2007 | B2 |
7255654 | Murphy et al. | Aug 2007 | B2 |
7267620 | Chao et al. | Sep 2007 | B2 |
7273423 | Imamoto | Sep 2007 | B2 |
7278926 | Frame | Oct 2007 | B2 |
7278927 | Gibbs et al. | Oct 2007 | B2 |
7294064 | Tsurumaki et al. | Nov 2007 | B2 |
7294065 | Liang et al. | Nov 2007 | B2 |
7351161 | Beach | Apr 2008 | B2 |
7377860 | Breier et al. | May 2008 | B2 |
7396293 | Soracco | Jul 2008 | B2 |
7407447 | Beach et al. | Aug 2008 | B2 |
7419441 | Hoffman et al. | Sep 2008 | B2 |
7445563 | Werner | Nov 2008 | B1 |
7448963 | Beach et al. | Nov 2008 | B2 |
D588223 | Kuan | Mar 2009 | S |
7500924 | Yokota | Mar 2009 | B2 |
7520820 | Dimarco | Apr 2009 | B2 |
7530901 | Imamoto et al. | May 2009 | B2 |
7530903 | Imamoto et al. | May 2009 | B2 |
7530904 | Beach et al. | May 2009 | B2 |
7540811 | Beach et al. | Jun 2009 | B2 |
7563175 | Nishitani et al. | Jul 2009 | B2 |
7568985 | Beach et al. | Aug 2009 | B2 |
7572193 | Yokota | Aug 2009 | B2 |
7578753 | Beach et al. | Aug 2009 | B2 |
7582024 | Shear | Sep 2009 | B2 |
7585233 | Horacek | Sep 2009 | B2 |
7591737 | Gibbs et al. | Sep 2009 | B2 |
7591738 | Beach et al. | Sep 2009 | B2 |
7621823 | Beach et al. | Nov 2009 | B2 |
7628707 | Beach et al. | Dec 2009 | B2 |
7632193 | Thielen | Dec 2009 | B2 |
7632194 | Beach et al. | Dec 2009 | B2 |
7632196 | Reed et al. | Dec 2009 | B2 |
7641569 | Best et al. | Jan 2010 | B2 |
D612440 | Oldknow | Mar 2010 | S |
7670235 | Lo | Mar 2010 | B2 |
7674189 | Beach et al. | Mar 2010 | B2 |
7682264 | Hsu et al. | Mar 2010 | B2 |
7717803 | DiMarco | May 2010 | B2 |
7744484 | Chao | Jun 2010 | B1 |
7749101 | Imamoto et al. | Jul 2010 | B2 |
7753806 | Beach et al. | Jul 2010 | B2 |
7758451 | Liang et al. | Jul 2010 | B2 |
7771291 | Willett et al. | Aug 2010 | B1 |
7798914 | Noble | Sep 2010 | B2 |
7824277 | Bennett et al. | Nov 2010 | B2 |
7857711 | Shear | Dec 2010 | B2 |
7857713 | Yokota | Dec 2010 | B2 |
7867105 | Moon | Jan 2011 | B2 |
7887431 | Beach et al. | Feb 2011 | B2 |
7887434 | Beach et al. | Feb 2011 | B2 |
7896753 | Boyd et al. | Mar 2011 | B2 |
7914393 | Hirsch | Mar 2011 | B2 |
7946931 | Oyama | May 2011 | B2 |
7988565 | Abe | Aug 2011 | B2 |
8012038 | Beach et al. | Sep 2011 | B1 |
8012039 | Greaney et al. | Sep 2011 | B2 |
8016694 | Llewellyn et al. | Sep 2011 | B2 |
8025587 | Beach et al. | Sep 2011 | B2 |
8083609 | Burnett et al. | Dec 2011 | B2 |
8088021 | Albertsen et al. | Jan 2012 | B2 |
8105175 | Breier et al. | Jan 2012 | B2 |
8118689 | Beach et al. | Feb 2012 | B2 |
8147350 | Beach et al. | Apr 2012 | B2 |
8157672 | Greaney et al. | Apr 2012 | B2 |
8167737 | Oyama | May 2012 | B2 |
8177661 | Beach et al. | May 2012 | B2 |
8182364 | Cole et al. | May 2012 | B2 |
8197358 | Watson | Jun 2012 | B1 |
8206244 | Honea et al. | Jun 2012 | B2 |
8235831 | Beach et al. | Aug 2012 | B2 |
8235841 | Stites et al. | Aug 2012 | B2 |
8235844 | Albertsen et al. | Aug 2012 | B2 |
8241143 | Albertsen et al. | Aug 2012 | B2 |
8241144 | Albertsen et al. | Aug 2012 | B2 |
8257195 | Erickson | Sep 2012 | B1 |
8257196 | Abbott et al. | Sep 2012 | B1 |
8262498 | Beach et al. | Sep 2012 | B2 |
8277337 | Shimazaki | Oct 2012 | B2 |
8292756 | Greaney et al. | Oct 2012 | B2 |
8303431 | Beach et al. | Nov 2012 | B2 |
8328659 | Shear | Dec 2012 | B2 |
8337319 | Sargent et al. | Dec 2012 | B2 |
8353786 | Beach et al. | Jan 2013 | B2 |
D675692 | Oldknow et al. | Feb 2013 | S |
D678964 | Oldknow et al. | Mar 2013 | S |
D678965 | Oldknow et al. | Mar 2013 | S |
D678968 | Oldknow et al. | Mar 2013 | S |
D678969 | Oldknow et al. | Mar 2013 | S |
D678970 | Oldknow et al. | Mar 2013 | S |
D678971 | Oldknow et al. | Mar 2013 | S |
D678972 | Oldknow et al. | Mar 2013 | S |
D678973 | Oldknow et al. | Mar 2013 | S |
8398503 | Beach et al. | Mar 2013 | B2 |
8403771 | Rice et al. | Mar 2013 | B1 |
D679354 | Oldknow et al. | Apr 2013 | S |
8430763 | Beach et al. | Apr 2013 | B2 |
8435134 | Tang et al. | May 2013 | B2 |
8496541 | Beach et al. | Jul 2013 | B2 |
8496544 | Curtis et al. | Jul 2013 | B2 |
8517855 | Beach et al. | Aug 2013 | B2 |
8517860 | Albertsen et al. | Aug 2013 | B2 |
8529368 | Rice et al. | Sep 2013 | B2 |
8562453 | Sato | Oct 2013 | B2 |
8579728 | Morales et al. | Nov 2013 | B2 |
8591351 | Albertsen et al. | Nov 2013 | B2 |
8602907 | Beach et al. | Dec 2013 | B2 |
8616999 | Greaney et al. | Dec 2013 | B2 |
D697152 | Harbert et al. | Jan 2014 | S |
8622847 | Beach et al. | Jan 2014 | B2 |
8628433 | Stites et al. | Jan 2014 | B2 |
8632419 | Tang et al. | Jan 2014 | B2 |
8641555 | Stites et al. | Feb 2014 | B2 |
8663029 | Beach et al. | Mar 2014 | B2 |
8678949 | Shimazaki | Mar 2014 | B2 |
8690704 | Thomas | Apr 2014 | B2 |
8695487 | Sakane et al. | Apr 2014 | B2 |
8696487 | Beach et al. | Apr 2014 | B2 |
8696491 | Myers | Apr 2014 | B1 |
8702531 | Boyd et al. | Apr 2014 | B2 |
8721471 | Albertsen et al. | May 2014 | B2 |
8727900 | Beach et al. | May 2014 | B2 |
D707768 | Oldknow et al. | Jun 2014 | S |
D707769 | Oldknow et al. | Jun 2014 | S |
D707773 | Oldknow et al. | Jun 2014 | S |
8753222 | Beach et al. | Jun 2014 | B2 |
8753226 | Rice et al. | Jun 2014 | B2 |
8758153 | Sargent et al. | Jun 2014 | B2 |
D708281 | Oldknow et al. | Jul 2014 | S |
8790195 | Myers et al. | Jul 2014 | B1 |
8821312 | Burnett et al. | Sep 2014 | B2 |
8827831 | Burnett et al. | Sep 2014 | B2 |
8834289 | de la Cruz et al. | Sep 2014 | B2 |
8834290 | Bezilla et al. | Sep 2014 | B2 |
8834293 | Thomas | Sep 2014 | B2 |
8845450 | Beach et al. | Sep 2014 | B2 |
8845454 | Boyd et al. | Sep 2014 | B2 |
D714893 | Atwell | Oct 2014 | S |
8876622 | Beach et al. | Nov 2014 | B2 |
8876627 | Beach et al. | Nov 2014 | B2 |
8888607 | Beach et al. | Nov 2014 | B2 |
8900069 | Beach et al. | Dec 2014 | B2 |
D722122 | Greensmith | Feb 2015 | S |
8956240 | Beach et al. | Feb 2015 | B2 |
8956244 | Westrum | Feb 2015 | B1 |
8986133 | Bennett et al. | Mar 2015 | B2 |
9033821 | Beach et al. | May 2015 | B2 |
9101811 | Goudarzi | Aug 2015 | B1 |
9180348 | Beach | Nov 2015 | B2 |
9180349 | Seluga et al. | Nov 2015 | B1 |
9186560 | Harbert | Nov 2015 | B2 |
9205312 | Zimmerman et al. | Dec 2015 | B2 |
9211447 | Harbert | Dec 2015 | B2 |
9220953 | Beach | Dec 2015 | B2 |
9295885 | Matsunaga et al. | Mar 2016 | B2 |
9403069 | Boyd et al. | Aug 2016 | B2 |
9486677 | Seluga | Nov 2016 | B1 |
9498688 | Galvan | Nov 2016 | B2 |
9597558 | Seluga | Mar 2017 | B1 |
9597561 | Seluga | Mar 2017 | B1 |
9623291 | Greensmith | Apr 2017 | B2 |
9636552 | Cleghorn | May 2017 | B2 |
9662545 | Beach et al. | May 2017 | B2 |
9687701 | Seluga | Jun 2017 | B1 |
9687702 | Seluga | Jun 2017 | B1 |
9694257 | Seluga | Jul 2017 | B1 |
9700763 | Harbert | Jul 2017 | B2 |
9700769 | Beach et al. | Jul 2017 | B2 |
9707457 | Mata | Jul 2017 | B2 |
9717962 | Seluga | Aug 2017 | B1 |
9776058 | Seluga | Oct 2017 | B2 |
9795840 | Greensmith | Oct 2017 | B2 |
9814954 | Westrum | Nov 2017 | B2 |
9855476 | Seluga | Jan 2018 | B2 |
9901794 | Beno | Feb 2018 | B2 |
9908017 | Seluga | Mar 2018 | B2 |
9914030 | Cleghorn | Mar 2018 | B2 |
9931549 | Seluga | Apr 2018 | B1 |
10076688 | Harbert et al. | Sep 2018 | B1 |
10183202 | Harbert et al. | Jan 2019 | B1 |
20010049310 | Cheng et al. | Dec 2001 | A1 |
20020022535 | Takeda | Feb 2002 | A1 |
20020025861 | Ezawa | Feb 2002 | A1 |
20020032075 | Vatsvog | Mar 2002 | A1 |
20020055396 | Nishimoto et al. | May 2002 | A1 |
20020072434 | Yabu | Jun 2002 | A1 |
20020123394 | Tsurumaki | Sep 2002 | A1 |
20020137576 | Dammen | Sep 2002 | A1 |
20020160854 | Beach et al. | Oct 2002 | A1 |
20020169036 | Boone | Nov 2002 | A1 |
20020183134 | Allen et al. | Dec 2002 | A1 |
20030013545 | Vincent et al. | Jan 2003 | A1 |
20030032500 | Nakahara et al. | Feb 2003 | A1 |
20030036442 | Chao et al. | Feb 2003 | A1 |
20030130059 | Billings | Jul 2003 | A1 |
20040023729 | Nagai et al. | Feb 2004 | A1 |
20040087388 | Beach et al. | May 2004 | A1 |
20040121852 | Tsurumaki | Jun 2004 | A1 |
20040157678 | Kohno | Aug 2004 | A1 |
20040176180 | Yamaguchi et al. | Sep 2004 | A1 |
20040176183 | Tsurumaki | Sep 2004 | A1 |
20040180730 | Franklin et al. | Sep 2004 | A1 |
20040192463 | Tsurumaki et al. | Sep 2004 | A1 |
20040235584 | Chao et al. | Nov 2004 | A1 |
20040242343 | Chao | Dec 2004 | A1 |
20050049075 | Chen et al. | Mar 2005 | A1 |
20050070371 | Chen et al. | Mar 2005 | A1 |
20050096151 | Hou et al. | May 2005 | A1 |
20050101404 | Long et al. | May 2005 | A1 |
20050124435 | Gambetta et al. | Jun 2005 | A1 |
20050137024 | Stites et al. | Jun 2005 | A1 |
20050181884 | Beach et al. | Aug 2005 | A1 |
20050227781 | Huang et al. | Oct 2005 | A1 |
20050239575 | Chao et al. | Oct 2005 | A1 |
20050239576 | Stites et al. | Oct 2005 | A1 |
20050266933 | Galloway | Dec 2005 | A1 |
20060035722 | Beach et al. | Feb 2006 | A1 |
20060058112 | Haralason et al. | Mar 2006 | A1 |
20060073910 | Imamoto et al. | Apr 2006 | A1 |
20060084525 | Imamoto et al. | Apr 2006 | A1 |
20060122004 | Chen et al. | Jun 2006 | A1 |
20060154747 | Beach et al. | Jul 2006 | A1 |
20060172821 | Evans | Aug 2006 | A1 |
20060189407 | Soracco | Aug 2006 | A1 |
20060240908 | Adams et al. | Oct 2006 | A1 |
20070021234 | Tsurumaki et al. | Jan 2007 | A1 |
20070026961 | Hou | Feb 2007 | A1 |
20070049400 | Imamoto et al. | Mar 2007 | A1 |
20070049415 | Shear | Mar 2007 | A1 |
20070049417 | Shear | Mar 2007 | A1 |
20070105646 | Beach et al. | May 2007 | A1 |
20070105647 | Beach et al. | May 2007 | A1 |
20070105648 | Beach et al. | May 2007 | A1 |
20070105649 | Beach et al. | May 2007 | A1 |
20070105650 | Beach et al. | May 2007 | A1 |
20070105651 | Beach et al. | May 2007 | A1 |
20070105652 | Beach et al. | May 2007 | A1 |
20070105653 | Beach et al. | May 2007 | A1 |
20070105654 | Beach et al. | May 2007 | A1 |
20070105655 | Beach et al. | May 2007 | A1 |
20070117648 | Yokota | May 2007 | A1 |
20070117652 | Beach et al. | May 2007 | A1 |
20080020861 | Adams et al. | Jan 2008 | A1 |
20080146370 | Beach et al. | Jun 2008 | A1 |
20080161127 | Yamamoto | Jul 2008 | A1 |
20080261715 | Carter | Oct 2008 | A1 |
20080261717 | Hoffman et al. | Oct 2008 | A1 |
20080280698 | Hoffman et al. | Nov 2008 | A1 |
20090062029 | Stites et al. | Mar 2009 | A1 |
20090088269 | Beach et al. | Apr 2009 | A1 |
20090088271 | Beach et al. | Apr 2009 | A1 |
20090137338 | Kajita | May 2009 | A1 |
20090170632 | Beach et al. | Jul 2009 | A1 |
20090264214 | De La Cruz et al. | Oct 2009 | A1 |
20090286611 | Beach et al. | Nov 2009 | A1 |
20090286618 | Beach et al. | Nov 2009 | A1 |
20090318245 | Yim et al. | Dec 2009 | A1 |
20100016095 | Burnett et al. | Jan 2010 | A1 |
20100029404 | Shear | Feb 2010 | A1 |
20100029408 | Abe | Feb 2010 | A1 |
20100035701 | Kusumoto | Feb 2010 | A1 |
20100048316 | Honea et al. | Feb 2010 | A1 |
20100048321 | Beach et al. | Feb 2010 | A1 |
20100075774 | Ban | Mar 2010 | A1 |
20100113176 | Boyd et al. | May 2010 | A1 |
20100144461 | Ban | Jun 2010 | A1 |
20100167837 | Ban | Jul 2010 | A1 |
20100197423 | Thomas et al. | Aug 2010 | A1 |
20100197426 | De La Cruz et al. | Aug 2010 | A1 |
20100234127 | Snyder et al. | Sep 2010 | A1 |
20100331103 | Takahashi et al. | Dec 2010 | A1 |
20110021284 | Stites et al. | Jan 2011 | A1 |
20110098127 | Yamamoto | Apr 2011 | A1 |
20110151989 | Golden et al. | Jun 2011 | A1 |
20110151997 | Shear | Jun 2011 | A1 |
20110195798 | Sander et al. | Aug 2011 | A1 |
20110218053 | Tang et al. | Sep 2011 | A1 |
20110294599 | Albertsen et al. | Dec 2011 | A1 |
20120083362 | Albertsen et al. | Apr 2012 | A1 |
20120083363 | Albertsen et al. | Apr 2012 | A1 |
20120122601 | Beach et al. | May 2012 | A1 |
20120142447 | Boyd et al. | Jun 2012 | A1 |
20120142452 | Burnett et al. | Jun 2012 | A1 |
20120149491 | Beach et al. | Jun 2012 | A1 |
20120165110 | Cheng | Jun 2012 | A1 |
20120165111 | Cheng | Jun 2012 | A1 |
20120196701 | Stites et al. | Aug 2012 | A1 |
20120202615 | Beach et al. | Aug 2012 | A1 |
20120220387 | Beach et al. | Aug 2012 | A1 |
20120244960 | Tang et al. | Sep 2012 | A1 |
20120270676 | Burnett et al. | Oct 2012 | A1 |
20120277029 | Albertsen et al. | Nov 2012 | A1 |
20120277030 | Albertsen et al. | Nov 2012 | A1 |
20120289361 | Beach et al. | Nov 2012 | A1 |
20120302366 | Murphy | Nov 2012 | A1 |
20130065705 | Morales et al. | Mar 2013 | A1 |
20130102410 | Stites et al. | Apr 2013 | A1 |
20130165254 | Rice et al. | Jun 2013 | A1 |
20130210542 | Harbert et al. | Aug 2013 | A1 |
20130324284 | Stites et al. | Dec 2013 | A1 |
20140080629 | Sargent et al. | Mar 2014 | A1 |
20150011328 | Harbert et al. | Jan 2015 | A1 |
20150065265 | Motokawa et al. | Mar 2015 | A1 |
20150105177 | Beach et al. | Apr 2015 | A1 |
20150217167 | Frame et al. | Aug 2015 | A1 |
20150231453 | Harbert et al. | Aug 2015 | A1 |
20150297961 | Voshall | Oct 2015 | A1 |
20150306475 | Curtis et al. | Oct 2015 | A1 |
20160023060 | Harbert et al. | Jan 2016 | A1 |
20160250525 | Motokawa et al. | Sep 2016 | A1 |
20160271464 | Murphy et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2436182 | Jun 2001 | CN |
201353407 | Dec 2009 | CN |
9012884 | Sep 1990 | DE |
0470488 | Mar 1995 | EP |
0617987 | Nov 1997 | EP |
1001175 | May 2000 | EP |
2377586 | Oct 2011 | EP |
194823 | Dec 1921 | GB |
57-157374 | Oct 1982 | JP |
4180778 | Jun 1992 | JP |
05-317465 | Dec 1993 | JP |
06-126004 | May 1994 | JP |
6190088 | Jul 1994 | JP |
06-238022 | Aug 1994 | JP |
6-304271 | Nov 1994 | JP |
09-028844 | Feb 1997 | JP |
03035480 | Mar 1997 | JP |
09-308717 | Dec 1997 | JP |
09-327534 | Dec 1997 | JP |
10-234902 | Aug 1998 | JP |
10-277187 | Oct 1998 | JP |
11114102 | Oct 1998 | JP |
2000014841 | Jan 2000 | JP |
2000197718 | Jul 2000 | JP |
2001054595 | Feb 2001 | JP |
2001-129130 | May 2001 | JP |
2001170225 | Jun 2001 | JP |
2001204856 | Jul 2001 | JP |
2001346918 | Dec 2001 | JP |
2002003969 | Jan 2002 | JP |
2002017910 | Jan 2002 | JP |
2002052099 | Feb 2002 | JP |
2002248183 | Sep 2002 | JP |
2002253706 | Sep 2002 | JP |
2003038691 | Feb 2003 | JP |
2003093554 | Apr 2003 | JP |
2003126311 | May 2003 | JP |
2003226952 | Aug 2003 | JP |
2004174224 | Jun 2004 | JP |
2004183058 | Jul 2004 | JP |
2004222911 | Aug 2004 | JP |
2004-261451 | Sep 2004 | JP |
2004267438 | Sep 2004 | JP |
2004313762 | Nov 2004 | JP |
2004351054 | Dec 2004 | JP |
2004351173 | Dec 2004 | JP |
2005028170 | Feb 2005 | JP |
05-296582 | Oct 2005 | JP |
2005-296458 | Oct 2005 | JP |
05-323978 | Nov 2005 | JP |
2006231063 | Sep 2006 | JP |
2006-320493 | Nov 2006 | JP |
2008515560 | May 2008 | JP |
4128970 | Jul 2008 | JP |
2008200118 | Sep 2008 | JP |
2009000281 | Jan 2009 | JP |
2010279847 | Dec 2010 | JP |
2011024999 | Feb 2011 | JP |
WO8802642 | Apr 1988 | WO |
WO1999020358 | Apr 1999 | WO |
WO2001049376 | Jul 2001 | WO |
WO0166199 | Sep 2001 | WO |
WO02062501 | Aug 2002 | WO |
WO03061773 | Jul 2003 | WO |
WO2004043549 | May 2004 | WO |
WO2006044631 | Apr 2006 | WO |
WO2014070343 | May 2014 | WO |
Entry |
---|
Adams Golf Speedline F11 Ti 14.5 degree fairway wood (www.bombsquadgolf.com, posted Oct. 18, 2010). |
Callaway Golf, World's Straightest Driver: FT-i Driver downloaded from www.callawaygolf.com/ft%2Di/driver.aspx?lang=en on Apr. 5, 2007. |
Declaration of Tim Reed, VP of R&D, Adams Golf, Inc., dated Dec. 7, 2012. |
Jackson, Jeff, The Modern Guide to Golf Clubmaking, Ohio: Dynacraft Golf Products, Inc., copyright 1994, p. 237. |
Nike Golf, Sasquatch 460, downloaded from www.nike.com/nikegolf/index.htm on Apr. 5, 2007. |
Nike Golf, Sasquatch Sumo Squared Driver, downloaded from www.nike.com/nikegolf/index.htm on Apr. 5, 2007. |
Office action from the Japanese Patent Office in Patent Application No. 2008-264880, dated Nov. 21, 2012. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 12/781,727, dated Aug. 5, 2010. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/338,197, dated Jun. 5, 2014. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/401,690, dated May 23, 2012. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/401,690, dated Feb. 6, 2013. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/469,023, dated Jul. 31, 2012. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/469,031, dated Oct. 9, 2014. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/469,031, dated May 20, 2015. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/975,106, dated Feb. 24, 2014. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 13/828,675, dated Jun. 30, 2014. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 14/495,795, dated Jun. 15, 2015. |
Office action from the U.S. Patent and Trademark Office in U.S. Appl. No. 14/701,476, dated Jun. 15, 2015. |
Taylor Made Golf Company, Inc. Press Release, Burner Fairway Wood, www.tmag.com/media/pressreleases/2007/011807_burner_fairway_rescue.html, Jan. 26, 2007. |
Taylor Made Golf Company Inc., R7 460 Drivers, downloaded from www.taylormadegolf.com/product_detail.asp?pID=14section=overview on Apr. 5, 2007. |
Titleist 907D1, downloaded from www.tees2greens.com/forum/Uploads/Images/7ade3521-192b-4611-870b-395d.jpg on Feb. 1, 2007. |
Number | Date | Country | |
---|---|---|---|
20170304693 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61427772 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14939648 | Nov 2015 | US |
Child | 15645587 | US | |
Parent | 14701476 | Apr 2015 | US |
Child | 14871789 | US | |
Parent | 14495795 | Sep 2014 | US |
Child | 14701476 | US | |
Parent | 13828675 | Mar 2013 | US |
Child | 14495795 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14871789 | Sep 2015 | US |
Child | 14939648 | US | |
Parent | 13469031 | May 2012 | US |
Child | 13828675 | US | |
Parent | 13338197 | Dec 2011 | US |
Child | 13469031 | US |