The present invention relates to a golf club head.
The heads of wood golf clubs have conventionally undergone many improvements, and in particular, in the case of drivers, various proposals have been made in order to extend the flight-distance. For example, there are heads that employ a face portion that has a so-called cup face construction as disclosed in Patent Literature 1. Specifically, the head is configured by a head body having an opening formed therein and a face portion that blocks the opening of the head body, and a peripheral portion that extends so as to surround the periphery of the opening is formed on the periphery of the face portion. Providing the face portion with such an peripheral portion increases the amount of bending of the face portion when hitting a ball, thus making it possible to obtain the effects of improving restitution performance and extending the flight-distance.
Patent Literature 1: JP 2008-36050A
Extending the flight-distance of a driver requires an improvement in the grabbing of the ball, and consideration has been given to moving the center of gravity of the head to the heel side in order to achieve this. However, if this is done, a new problem arises in that the restitution of the face portion on the toe side decreases. The present invention has been achieved in order to solve the above problems, and an object thereof is to provide a golf club head that can suppress a reduction in restitution performance on the toe side even if the center of gravity of the head is moved to the heel side.
A golf club head according to the present invention includes: a golf club head body that has a crown portion, a sole portion, and a side portion, and has an opening surrounded by the crown portion, the sole portion, and the side portion; and a face portion that blocks the opening of the golf club head body, wherein the face portion is shaped as cup that has a base portion shaped as a flat plate and a peripheral portion that extends from a periphery of the base portion, and with respect to a face-back direction, the width of the peripheral portion on a toe side in a plan view is longer than the width of the peripheral portion on a heel side in a plan view.
In the above golf club, the width of the peripheral portion on the toe side in a plan view may be longer than the width of the peripheral portion on the heel side in a plan view by 3 mm or more.
In the above golf clubs, the width of the peripheral portion on the toe side in a plan view may be 6 to 12 mm.
According to the present invention, the width on the toe side in a plan view is made longer in a peripheral portion provided on a face portion, thus making it possible to increase the amount of bending of the face portion on the toe side when hitting a ball. As a result, it is possible to improve the restitution performance of the face portion on the toe side. For this reason, it is possible to prevent a reduction in the restitution performance on the toe side in a driver even if the center of gravity of the head is moved to the heel side in order to improve the grabbing of the ball, for example.
An embodiment of a golf club head according to the present invention will be described below with reference to the drawings.
1. Overview of golf club head
As shown in
The face portion 1 has a face surface, which is the surface for hitting a ball, and the crown portion 2 is adjacent to the face portion 1 and constitutes the upper surface of the head. The sole portion 3 constitutes the bottom surface of the head, and is adjacent to the face portion 1 and the side portion 4. Also, the side portion 4 is the portion between the crown portion 2 and the sole portion 3, and extends from the toe side of the face portion 1, across the back side of the head, to the heel side of the face portion 1. Furthermore, the hosel portion 5 is the portion provided adjacent to the heel side of the crown portion 2, and has an insertion hole 51 for the insertion of the shaft (not shown) of the golf club. A central axis Z of the insertion hole 51 coincides with the axis of the shaft. Although the head described here is a wood head such as a driver (#1) or fairway wood head, it is not limited to being a wood head, and may be a so-called utility head, hybrid head, or the like.
The following describes the aforementioned reference state. First, as shown in
In the present embodiment, the boundary between the crown portion 2 and the side portion 4 can be defined as follows. Specifically, if a ridge line is formed between the crown portion 2 and the side portion 4, that ridge line serves as the boundary. On the other hand, if a clear ridge line is not formed, the boundary is the outline that is seen when the head is placed in the reference state and viewed from directly above the center of gravity of the head. Similarly, in the case of the boundary between the face portion 1, the crown portion 2, and the sole portion 3 as well, if a ridge line is formed, that ridge line serves as the boundary. However, if a clear ridge line is not formed, the periphery (boundary) of the face portion 1 is defined by positions Pe where, in cross-sections E1, E2, E3, and so on that include a straight line N connecting a head center of gravity G and a sweet spot SS as shown in
The volume of this golf club head is, for example, preferably 300 cm3 or more, more preferably 400 cm3 or more, and particularly preferably 420 cm3 or more. Having such a volume is advantageous for the head in terms of increasing comfort when the club is held and also increasing the sweet spot area and the moment of inertia. Note that although an upper limit is not particularly defined for the head volume, practically it is, for example, preferably 500 cm3 or less, or preferably 470 cm3 or less when complying with R&A or USGA rules and regulations.
Also, the head can be formed from a titanium alloy having a specific gravity of approximately 4.4 to 4.5 (Ti—6Al—4V), for example. Besides a titanium alloy, the head can be formed from one or two or more materials selected from among stainless steel, maraging steel, an aluminum alloy, a magnesium alloy, an amorphous alloy, and the like. This golf club head can be created with various methods, and can be manufactured by casting using a known lost-wax precision casting method, for example.
Note that the head of the present embodiment is constituted by assembling the face portion 1 to a head body having the crown portion 2, the sole portion 3, and the side portion 4. The head body has an opening surrounded by the crown portion 2, the sole portion 3, and the side portion 4, and the face portion 1 is attached so as to block this opening. The structure of this face portion 1 will be described in detail below.
2. Structure of Face Portion
The following describes the face portion 1 with reference to
As shown in
Also, the peripheral portion 12 of the face portion 1 does not have the same length in all regions. For example, as shown in
The following describes the width of the peripheral portion 12 on the toe side and the heel side. As shown in
Since the width of the peripheral portion 12 is longer on the toe side and shorter on the heel side as described above, the peripheral portion 12 is formed such that its width gradually changes from the toe side to the heel side.
3. Center of Gravity of Head
In the golf club head of the present embodiment, the center of gravity of the head is moved to the heel side in order to improve the grabbing of the ball. The center of gravity can be moved by, for example, providing a weight on the heel side of the sole portion 3. Alternatively, the center of gravity can also be moved by increasing the thickness on the heel side and reducing the thickness on the toe side in at least one of the sole portion 3, the side portion 4, and the face portion 1. This makes it possible to move the center of gravity of the head 1 to 5 mm to the heel side.
4. Features
According to the golf club head of the present embodiment, the width of the peripheral portion 12 provided on the face portion 1 is increased on the toe side in a plan view, thus making it possible to increase the amount of bending of the face portion 1 on the toe side when hitting a ball. As a result, it is possible to improve the restitution performance of the face portion 1 on the toe side. For this reason, it is possible to prevent a reduction in the restitution performance on the toe side in a driver even if the center of gravity of the head is moved to the heel side in order to improve the grabbing of the ball, for example.
5. Variations
Although an embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be carried out without departing from the gist of the invention. The following are examples of modifications that can be made.
Although the configuration of the face portion 1, and particularly the structure of the peripheral portion 12 of the face portion 1 is described in the above embodiment, there are no particular limitations on the structure of the body portion 11 of the face portion 1. For example, the thickness at the center of the body portion 11 may be increased in order to raise the mechanical strength with respect to impact, but there are no particular limitations on the thickness, including the other regions.
Also, there are no particular limitations on the configuration of the portions other than the face portion 1 as well. In other words, the crown portion 2, the sole portion 3, and the side portion 4 may have any configuration as long as they are configured such that the face portion 1 can be attached. For example, although the thickness of the crown portion 2 is constant in the above embodiment, a thin portion may be formed in a portion of the crown portion 2. This makes it possible to reduce the weight of the crown portion 2. Also, the amount of weight corresponding to the reduction in thickness for weight reduction can be distributed to other portions of the head. This enables improving the degree of freedom in head design. For example, if the above-described weight is distributed to the sole portion 3 of the club head, the center of gravity can be lowered, consequently making it possible to raise the launch angle. Alternatively, if the weight is distributed to the side portion 4, the moment of inertia about the vertical axis passing through the center of gravity of the head can be increased, thus making it possible to improve directionality when hitting a ball.
The following describes a working example of the present invention. Note that the present invention is not limited to the following working example.
(1) Preparation of Working Example and Comparative Examples
Here, golf club heads (drivers (#1)) according to one type of working example and two types of comparative examples having different face portion structures were created as shown in Table 1. Regarding the mode of the rear surface of the body portion of the face portion, the mode shown in
Note that in Table 1 below, the center of gravity position X is the length from the point farthest on the toe side in the boundary between the body portion and the peripheral portion to the center of gravity in the horizontal direction (toe-heel direction), and the center of gravity distance refers to the distance along a perpendicular line from an extension line of the central line of the shaft to the center of gravity of the head. Generally, the shorter this center of gravity distance is, the more likely the ball is to be grabbed.
The following two tests were carried out on the working example and the first and second comparative examples.
(1) Test Regarding Gripping of Ball
A test was carried out in which ten right-handed players each actually hit five balls, and the flight-distance (carry) and impact point shift were measured and averaged. The impact point shift indicates the amount of shift from the center of the face portion (center in the up-down direction) to the toe side or the heel side along the toe-heel direction. The distance from the center to the impact point was measured with a positive (+) value if the shift was toward the heel side and a negative (−) value if the shift was toward the toe side. The results are shown in Table 2 below.
According to the above results, in the working example and the first comparative example, the center of gravity was shifted to the heel side, and the impact point shift was slightly shifted to the toe side. On the other hand, it can be seen that there was a large shift to the heel side in the second comparative example. It can therefore be seen that grab was improved in the working example and the first comparative example since the ball was grabbed on the toe side. On the other hand, it can be seen that grab was poor in the second comparative example since the ball was grabbed on the heel side. These results appear in the flight-distance, and a comparison of the first comparative example and the second comparative example shows that based on ball grip, the flight-distance has been extended in the first comparative example. Also, the flight-distance in the working example has been extended even more than in the first comparative example due to the contribution of not only the center of gravity position, but also the fact that the width D1 of the peripheral portion is longer.
(2) Restitution Performance Test
The coefficient of restitution was obtained for the working example and the first comparative example in accordance with the U.S.G.A. Procedure for Measuring the Velocity Ratio of a Club Head for Conformance to Rule 4-1e, Revision 2 (Feb. 8, 1999). Measurement was performed at measurement positions on a straight line extending in the toe-heel direction shown in
Number | Date | Country | Kind |
---|---|---|---|
2013-165643 | Aug 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5755627 | Yamazaki | May 1998 | A |
5967904 | Nagai | Oct 1999 | A |
6669576 | Rice | Dec 2003 | B1 |
7530901 | Imamoto | May 2009 | B2 |
7575525 | Matsunaga | Aug 2009 | B2 |
7819758 | Matsunaga | Oct 2010 | B2 |
8216089 | Matsunaga | Jul 2012 | B2 |
20020028715 | Galloway | Mar 2002 | A1 |
20020094884 | Hocknell | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
2005-6698 | Jan 2005 | JP |
2008-36050 | Feb 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20150045145 A1 | Feb 2015 | US |