1. Field of the Invention
The present invention relates to a golf club head and, more particularly, to score lines on the face.
2. Description of the Related Art
Generally, on the face of a golf club head, a plurality of straight grooves are formed parallel to each other in the toe-and-heel direction (e.g., Japanese Patent Laid-Open No. 10-248974). These grooves are called score lines, marking lines, face lines, or the like (to be referred to as score lines in this specification). These score lines have an effect of increasing the backspin amount of a shot.
Generally, compared to a shot from fairway, grass gets in between the face and a golf ball and the backspin amount of a shot decreases in the case of a shot from the rough. Therefore, it is desired to suppress a significant decrease in the backspin amount of a shot in the case of a shot from the rough.
It is an object of the present invention to provide a golf club head which suppresses a significant decrease in the backspin amount of a shot in the case of a shot from the rough.
According to the present invention, there is provided a golf club head comprising a plurality of score lines on a face, and a stair-shaped portion comprising a plurality of steps arranged on a side wall of said score line from a face side end in a depth direction of said score line.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
The golf club head 1 has a plurality of score lines 20 formed on its face (hitting surface) 10. The respective score lines 20 are straight grooves extending in the toe-and-heel direction and parallel to each other. In this embodiment, the respective score lines 20 are arranged at an equal interval (equal pitch) but they may be arranged at different intervals.
The score line 20 has a pair of side walls 21 and a bottom wall 22. The cross-sectional shape of the score line 20 is symmetric with regard to its center line CL. In this embodiment, the cross-sectional shape of the score line 20 is almost trapezoidal, but it may be a V-shape or U-shape. A depth D is the length from the face 10 to the bottom wall 22.
The side wall 21 has the stair-shaped portion 211 including a plurality of steps arranged from the end of the side wall 21 on the face 10 side in the depth direction of the score line 20. The number of steps of the stair-shaped portion 211 is seven in this embodiment, but the number of steps can be two or more.
Since the stair-shaped portion 211 is formed, a plurality of edges Po is formed in the periphery of the boundary portion of the score line 20 and face 10. Upon hitting a golf ball, since these edges Po touch the golf ball, its backspin amount can be increased. Particularly, in the case of a shot from the rough, even when grass gets in between the face 10 and a golf ball, the presence of a plurality of the edges Po improves the frictional force with respect to the golf ball. Accordingly, it is possible to suppress a significant decrease in the backspin amount.
In this embodiment, a plurality of the edges Po is positioned on a straight line L1. However, it is possible to employ an arrangement in which the edges Po are not positioned on a common straight line. An angle θb is the angle between the straight line L1 and face 10. An angle θa is the angle between the face 10 and a portion of the side wall 21 without the stair-shaped portion 211.
In this embodiment, a surface Sf of each step of the stair-shaped portion 211 is parallel to the face 10, but it may not be parallel to the face 10. However, the stair-shaped portion 211 is processed more easily when the surface Sf is set to be parallel to the face 10.
The larger a step difference Sh of each step of the stair-shaped portion 211, the larger an amount by which a golf ball is caught by each step upon hitting, and the backspin amount increases. However, when the step difference Sh exceeds a certain size, an amount by which a golf ball is caught does not change any longer. On the contrary, it may take time to form the steps depending on the processing method. Accordingly, the step difference Sh is preferably 30 μm or less. In this embodiment, the step difference Sh is the same in all steps, but it may differ in the respective steps.
An area Ds indicates the area of the stair-shaped portion 211 in the depth direction of the score line 20, which is the length from the face 10 to the deepest step of the stair-shaped portion 211. The area Ds is preferably ½ or less of a depth D of the score line 20, and more preferably ⅓ or less. Even if the area Ds is larger than ½ of the depth D, the number of the edges Po that touch a golf ball upon hitting does not largely change and a change in the backspin amount is small. On the contrary, since the number of steps of the stair-shaped portion 211 increases, it may take time to process the steps depending on the processing method. When the area Ds is set to ⅓ or less of the depth D, it is possible to reduce time required for processing the stair-shaped portion 211 while maintaining the effect of increasing the backspin amount.
The relationship between the rules about score lines of a golf club head for competitions and this embodiment will be described next. As a rule about score lines of a golf club head for competitions, it is determined that each edge of a score line must be positioned within a virtual circle with a radius of 0.011 inches concentric with a virtual circle with a radius of 0.010 inches which internally touches the side surface of the score line and the face (to be referred to as a two-circle rule, hereinafter). In order to make the golf club head of the present invention as a golf club head for competitions, score lines are designed to satisfy the two-circle rule.
A virtual circle C2 is an edge with a radius of 0.011 inches which is concentric with the virtual circle C1. In the example in
In the case of a conventional golf club head without the stair-shaped portion 211, in order to satisfy the two-circle rule, it is necessary to decrease the angle between each side wall of the score lines and the face at the edge of the score line. In this case, the backspin amount decreases. In this embodiment, since the stair-shaped portion 211 is formed, it is possible to increase the backspin amount while conforming to the two-circle rule.
As another rule for score lines of a golf club head for competitions, it is determined that a width W and cross section area A of a score line and a distance S of adjacent score lines need to satisfy the cross section area A(inch2)/(W(inch)+S(inch))≦(to be referred to as an area rule, hereinafter). The metric system expresses the cross section area A(mm2)/(W(mm)+S(mm))≦0.0762.
In order to make the golf club head of the present invention as a golf club head for competitions, score lines are designed to satisfy the area rule as well.
The method of forming the score lines 20 will be described next. As the method of forming the score lines 20, cutting, forging, casting, or the like is available. The score lines 20 may be formed such that grooves without the stair-shaped portions 211 are formed by a first process and then the stair-shaped portions 211 are formed by a second process. In this case, the first process may be different from the second process. For example, the first process may be a forging process and the second process may be a cutting process. In any case, since the stair-shaped portion 211 includes fine steps, it is preferably formed by a cutting process.
After setting the plane coordinates of the face 10 in the NC milling machine, the spindle 4 is rotatably driven. The face 10 (golf club head 1′) or cutting tool 5 is moved relatively in the formation direction of the score lines 20 to cut the face 10 so that grooves without the stair-shaped portions 211 are formed by the first process. Then, the cutting tool 5 is changed as needed and the stair-shaped portions 211 are processed.
Since the stair-shaped portion 211 includes fine depressions and projections, the surface hardness of the face 10 may decrease and the face 10 may be easily worn out. For this reason, it is desirable to perform treatment for increasing the surface hardness of the face 10 after forming the stair-shaped portion 211. This treatment may be performed for the entire face 10, or may be performed only for the vicinities of the stair-shaped portions 211. As such surface treatment, cementing, nitriding, soft nitriding, PVD (Physical Vepor Deposition), ion plating, DLC (Diamond Like Carbon) treatment, plating, or the like is available. Particularly, surface treatment such as cementing or nitriding is preferable which reforms a surface without forming another metal layer on it.
Golf club heads of an example of the present invention and two comparative examples were fabricated, and a test for the backspin amount was performed using golf clubs respectively mounted with those golf club heads.
In the golf club head of the example, the stair-shaped portions were formed as shown in
The score line 120 of Comparative Example 1 has a pair of side walls 121 and a bottom wall 122. The cross-sectional shape of the score line 120 is symmetric with regard to its virtual center line CL. The side walls 121 are formed to be flat, and each of edges 121a of the score line 120 is rounded to have a radius of 0.05 mm. A depth D is the length from a face 110 to the bottom wall 122, and an angle θa is the angle between the face 110 and side wall 121.
The score line 320 of Comparative Example 2 has a pair of side walls 321 and a bottom wall 322. The cross-sectional shape of the score line 320 is symmetric with regard to its center line CL. In each of the side walls 321, a flat portion 3211 with an angle of inclination different from that of the side wall 321 is formed in an area Ds′ ranging from the face 310 in the depth direction of the score line 320. A depth D is the length from the face 310 to the bottom wall 322. An angle θa is the angle between the face 310 and a portion of the side wall 321 other than the flat portion 3211. An angle θb′ is the angle between the face 310 and the flat portion 3211.
In
“Width W” indicates the width of the score line measured based on the 30 degrees measurement rule described above with reference to
“Pitch P” indicates the arrangement interval of the score lines and is represented by P=W+S using the width of the score line and the distance S between the adjacent score lines measured based on the 30 degrees measurement rule described above with reference to
As is obvious from
In
A test for the backspin amount was performed by hitting a plurality of golf balls with each of the golf clubs from the fairway and rough, and the backspin amount was actually measured. Of “test results” in
Percentage of decrease (%)=BSr/BSf×100−100
“Percentage of decrease” is an index indicating a degree of decrease in the backspin amount of a shot from the rough with respect to a shot from the fairway. The smaller the absolute value, the smaller a decrease in the backspin amount in the case of a shot from the rough.
From the test results, it is obvious that a decrease in the backspin amount in the case of a shot from the rough is small in the golf club head of the example. Particularly, since Comparative Example 2 and Example 2 are different only in presence/absence of a stair-shaped portion, it is obvious that the stair-shaped portion has an effect of suppressing a significant decrease in the backspin amount of a shot in the case of a shot from the rough.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions. This application claims the benefit of Japanese Patent Application No. 2008-226310, filed Sep. 3, 2008, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-226310 | Sep 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5029864 | Keener | Jul 1991 | A |
5618239 | Rife | Apr 1997 | A |
5755626 | Shira | May 1998 | A |
5785610 | Birmingham | Jul 1998 | A |
6183379 | Kim et al. | Feb 2001 | B1 |
7014568 | Pelz | Mar 2006 | B2 |
7056226 | Kennedy | Jun 2006 | B2 |
7568983 | Gilbert | Aug 2009 | B2 |
20020049095 | Galloway et al. | Apr 2002 | A1 |
20080171613 | Gilbert et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
10-248974 | Sep 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20100056295 A1 | Mar 2010 | US |