The present disclosure may be subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the present disclosure and its related documents, as they appear in the Patent and Trademark Office patent files or records, but otherwise reserves all applicable copyrights.
The present disclosure generally relates to golf equipment, and more particularly, to golf club heads and methods to manufacturing golf club heads.
Various materials (e.g., steel-based materials, titanium-based materials, tungsten-based materials, etc.) may be used to manufacture golf club heads. By using multiple materials to manufacture golf club heads, the position of the center of gravity (CG) and/or the moment of inertia (MOI) of the golf club heads may be optimized to produce certain trajectory and spin rate of a golf ball.
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the present disclosure. Additionally, elements in the drawing figures may not be depicted to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present disclosure.
In general, golf club heads, golf clubs, and methods to manufacture golf club heads and golf clubs are described herein. The following U.S. Patents and Patent Applications, which are collectively referred to herein as “the incorporated by reference applications,” are incorporated by reference herein in their entirety: U.S. Pat. Nos. 8,961,336; 9,199,140; 9,199,143; 9,352,197; 9,399,158; 9,468,821; 9,533,201; 9,550,096; 9,610,481; 9,630,070; 9,669,270; 9,675,853; 9,782,643; 9,795,842; 9,814,952; 9,821,201; 9,833,667; 9,861,867; 9,981,160; 10,213,659; 10,413,787; and U.S. patent application Ser. No. 15/209,364, filed Jul. 13, 2016; U.S. patent application Ser. No. 15/462,281, filed Mar. 17, 2017; U.S. patent application Ser. No. 15/785,001, filed Oct. 16, 2017; U.S. patent application Ser. No. 15/876,877, filed Jan. 22, 2018; U.S. patent application Ser. No. 15/934,579, filed Mar. 23, 2018; U.S. patent application Ser. No. 16/039,496, filed Jul. 19, 2018; U.S. patent application Ser. No. 16/179,406, filed Nov. 2, 2018; U.S. patent application Ser. No. 16/205,583, filed Nov. 30, 2018; U.S. patent application Ser. No. 16/422,661, filed May 24, 2019; and U.S. patent application Ser. No. 16/590,105, filed Oct. 1, 2019. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In the example of
The bottom portion 140 may include a plurality of port regions, which are shown for example as a first port region 210 with a first set of ports 211 (generally shown as ports 212, 214, and 216) near the toe portion 150, a second port region 220 with a second set of ports 221 (generally shown as ports 222, 224, and 226) near the front portion 170, and a third port region 230 with a third set of ports 231 (generally shown as ports 232, 234, and 236) near the heel portion 160. Although
Certain regions of the interior of the body portion 110 may include a polymer material, which may also be referred to herein as the filler material, similar to any of the polymer materials described herein or described in any of the incorporated by reference applications. The filler material may dampen vibration, dampen noise, lower the center of gravity and/or provide a better feel and sound for the golf club head 100 when striking a golf ball (not shown). The golf club head 100, may have one or more interior regions and/or cavities that may include a filler material similar to any of the golf club heads described herein or described in any of the incorporated by reference applications. In one example, as shown in
As illustrated in
The first interior cavity portion 410 may include an enlarged cavity portion 412 between the top portion 130 and the bottom portion 140. As shown in the illustrated example of
In one example, the first interior cavity portion 410 may be unfilled (i.e., empty space). Alternatively, the first interior cavity portion 410 may be partially (i.e., less than 100% filled) or entirely filled with a filler material (i.e., a cavity filling portion) to absorb shock, isolate vibration, dampen noised, and/or provide structural support for the face portion. For example, at least 50% of the first interior cavity portion 410 may be filled with a TPE material to absorb shock, isolate vibration, and/or dampen noise when the golf club head 100 strikes a golf ball via the face portion 175. In one example, the first interior cavity portion 410 may be partially or entirely filled with a filler material through a port (e.g. port 224) located in the bottom portion 140. In one example, as shown in
When the face portion 175 of the golf club head 100 strikes a golf ball, the face portion 175 and the filler material may deform and/or compress. The kinetic energy of the impact may be transferred to the face portion 175 and/or the filler material. For example, some of the kinetic energy may be transformed into heat by the filler material or work done in deforming and/or compressing the filler material. Further, some of the kinetic energy may be transferred back to the golf ball to launch the golf ball at a certain velocity. A filler material with a relatively higher COR may transfer relatively more kinetic energy to the golf ball and dissipate relatively less kinetic energy. Accordingly, a filler material with a relatively high COR may generate relatively higher golf ball speeds because a relatively greater part of the kinetic energy of the impact may be transferred back to the golf ball to launch the golf ball from the golf club head 100. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
With the support of the cavity wall portion 320 to form the first interior cavity portion 410 and filling at least a portion of the first interior cavity portion 410 with a filler material, the face portion 175 may be relatively thin without degrading the structural integrity, sound, and/or feel of the golf club head 100. In one example, the face portion 175 may have a thickness of less than or equal to 0.075 inch (e.g., a distance between a front surface 174 and the back surface 176). In another example, the face portion 175 may have a thickness of less than or equal to 0.2 inch. In another example, the face portion 175 may have a thickness of less than or equal to 0.06 inch. In yet another example, the face portion 175 may have a thickness of less than or equal to 0.05 inch. Further, the face portion 175 may have a thickness of less than or equal to 0.03 inch. In yet another example, a thickness of the face portion 175 may be greater than or equal to 0.03 inch and less than or equal to 0.2 inch. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In the illustrated example of
While each of the examples herein may describe a certain type of golf club head, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of golf club heads. Referring to
The body portion 510 may include a toe portion 540, a heel portion 550, a front portion 560, a rear portion 570, a top portion 580 (e.g., a crown portion), and a bottom portion 590 (e.g., a sole portion). The front portion 560 may include a face portion 562 (e.g., a strike face). The face portion 562 may include a front surface 564 and a back surface 566. The front surface 564 may include a plurality of grooves, generally shown as 710 in
The first interior cavity portion 610 may be partially or entirely filled with a suitable filler material such as any of the filler materials described herein or described in any of the incorporated by reference applications to absorb shock, isolate vibration, dampen noise, and/or provide structural support. The elastic polymer material may be injected into the first interior cavity portion 610 via an injection molding process via a port on the face portion 562. With the support of the cavity wall portion 520 to form the first interior cavity portion 610 and filling at least a portion of the first interior cavity portion 610 with an elastic polymer material, the face portion 562 may be relatively thin without degrading the structural integrity, sound, and/or feel of the golf club head 500. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The cavity wall portion 520 may include multiple sections. Turning to
As illustrated in
Alternatively, the cavity wall portion 1120 may extend between the bottom portion 1190 and a top-and-front transition region (i.e., a transition region between the top portion 1180 and the front portion 1160) so that the cavity wall portion 1120 and the loft plane 1230 may not be parallel to each other. In another example, the cavity wall portion 1120 may extend between the top portion 1180 and a bottom-and-front transition region (i.e., a transition region between the bottom portion 1190 and the front portion 1160) so that the cavity wall portion 1120 and the loft plane 1230 may be not parallel to each other. Although
In the example of
The golf club head 1400 may be an iron-type golf club head (e.g., a 1-iron, a 2-iron, a 3-iron, a 4-iron, a 5-iron, a 6-iron, a 7-iron, an 8-iron, a 9-iron, etc.) or a wedge-type golf club head (e.g., a pitching wedge, a lob wedge, a sand wedge, an n-degree wedge such as 44 degrees (°), 48°, 52°, 56°, 60°, etc.). Although
The toe portion 1440 and the heel portion 1450 may be on opposite ends of the body portion 1410. The heel portion 1450 may include a hosel portion 1455 configured to receive a shaft (not shown) with a grip (not shown) on one end and the golf club head 1400 on the opposite end of the shaft to form a golf club.
The front portion 1460 may include a face portion 1462 (e.g., a strike face). The face portion 1462 may include a front surface 1464 and a back surface 1466. The front surface 1464 may include one or more grooves 1468 extending between the toe portion 1440 and the heel portion 1450. While the figures may depict a particular number of grooves, the apparatus, methods, and articles of manufacture described herein may include more or less grooves. The face portion 1462 may be used to impact a golf ball (not shown). The face portion 1462 may be an integral portion of the body portion 1410. Alternatively, the face portion 1462 may be a separate piece or an insert coupled to the body portion 1410 via various manufacturing methods and/or processes (e.g., a bonding process such as adhesive, a welding process such as laser welding, a brazing process, a soldering process, a fusing process, a mechanical locking or connecting method, any combination thereof, or other suitable types of manufacturing methods and/or processes). The face portion 1462 may be associated with a loft plane that defines the loft angle of the golf club head 1400. The loft angle may vary based on the type of golf club (e.g., a long iron, a middle iron, a short iron, a wedge, etc.). In one example, the loft angle may be between five degrees and seventy-five degrees. In another example, the loft angle may be between twenty degrees and sixty degrees. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
As illustrated in
Alternatively, the golf club head 1400 may not include (i) the first set of weight portions 1420, (ii) the second set of weight portions 1430, or (iii) both the first and second sets of weight portions 1420 and 1430. In particular, the back portion 1470 of the body portion 1410 may not include weight ports at or proximate to the top portion 1480 and/or the sole portion 1490. For example, the mass of the first set of weight portions 1420 (e.g., 3 grams) and/or the mass of the second set of weight portions 1430 (e.g., 16.8 grams) may be integral part(s) the body portion 1410 instead of separate weight portion(s). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The first and second sets of weight portions 1420 and 1430, respectively, may have similar or different physical properties (e.g., color, shape, size, density, mass, volume, etc.). As a result, the first and second sets of weight portions 1420 and 1430, respectively, may contribute to the ornamental design of the golf club head 1400. In the illustrated example as shown in
Referring to
As mentioned above, the first and second sets of weight portions 1420 and 1430, respectively, may be similar in some physical properties but different in other physical properties. As illustrated in
Referring back to
To provide optimal perimeter weighting for the golf club head 1400, the first set of weight portions 1420 (e.g., weight portions 1421, 1422, 1423, and 1424) may be configured to counter-balance the weight of the hosel 1455. For example, as shown in
The second set of weight portions 1430 (e.g., weight portions 1431, 1432, 1433, 1434, 1435, 1436, and 1437) may be configured to place the center of gravity of the golf club head 1400 at an optimal location and optimize the moment of inertia of the golf club head about a vertical axis that extends through the center of gravity of the golf club head 1400. Referring to
Turning to
As discussed herein, the center of gravity (CG) of the golf club head 1400 may be relatively farther back away from the face portion 1462 and relatively lower towards a ground plane (e.g., one shown as 2310 in
While the figures may depict weight ports with a particular cross-section shape, the apparatus, methods, and articles of manufacture described herein may include weight ports with other suitable cross-section shapes. In one example, the weight ports of the first and/or second sets of weight ports 2720 and 2730 may have U-like cross-section shape. In another example, the weight ports of the first and/or second set of weight ports 2720 and 2730 may have V-like cross-section shape. One or more of the weight ports associated with the first set of weight portions 1420 may have a different cross-section shape than one or more weight ports associated with the second set of weight portions 1430. For example, the weight port 2721 may have a U-like cross-section shape whereas the weight port 2735 may have a V-like cross-section shape. Further, two or more weight ports associated with the first set of weight portions 1420 may have different cross-section shapes. In a similar manner, two or more weight ports associated with the second set of weight portions 1430 may have different cross-section shapes. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The first and second sets of weight portions 1420 and 1430, respectively, may be similar in mass (e.g., all of the weight portions of the first and second sets 1420 and 1430, respectively, weigh about the same). Alternatively, the first and second sets of weight portions 1420 and 1430, respectively, may be different in mass individually or as an entire set. In particular, each of the weight portions of the first set 1420 (e.g., shown as 1421, 1422, 1423, and 1424) may have relatively less mass than any of the weight portions of the second set 1430 (e.g., shown as 1431, 1432, 1433, 1434, 1435, 1436, and 1437). For example, the second set of weight portions 1430 may account for more than 50% of the total mass from exterior weight portions of the golf club head 1400. As a result, the golf club head 1400 may be configured to have at least 50% of the total mass from exterior weight portions disposed below the horizontal midplane 2320. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In one example, the golf club head 1400 may have a mass in the range of about 220 grams to about 330 grams based on the type of golf club (e.g., a 4-iron versus a lob wedge). The body portion 1410 may have a mass in the range of about 200 grams to about 310 grams with the first and second sets of weight portions 1420 and 1430, respectively, having a mass of about 20 grams (e.g., a total mass from exterior weight portions). Each of the weight portions of the first set 1420 may have a mass of about one gram (1.0 g) whereas each of the weight portions of the second set 1430 may have a mass of about 2.4 grams. The sum of the mass of the first set of weight portions 1420 may be about 3 grams whereas the sum of the mass of the first set of weight portions 1430 may be about 16.8 grams. The total mass of the second set of weight portions 1430 may weigh more than five times as much as the total mass of the first set of weight portions 1420 (e.g., a total mass of the second set of weight portions 1430 of about 16.8 grams versus a total mass of the first set of weight portions 1420 of about 3 grams). The golf club head 1400 may have a total mass of 19.8 grams from the first and second sets of weight portions 1420 and 1430, respectively (e.g., sum of 3 grams from the first set of weight portions 1420 and 16.8 grams from the second set of weight portions 1430). Accordingly, the first set of weight portions 1420 may account for about 15% of the total mass from exterior weight portions of the golf club head 1400 whereas the second set of weight portions 1430 may be account for about 85% of the total mass from exterior weight portions of the golf club head 1400. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
By coupling the first and second sets of weight portions 1420 and 1430, respectively, to the body portion 1410 (e.g., securing the first and second sets of weight portions 1420 and 1430 in the weight ports on the back portion 1470), the location of the center of gravity (CG) and the moment of inertia (MOI) of the golf club head 1400 may be optimized. In particular, as described herein, the first and second sets of weight portions 1420 and 1430, respectively, may lower the location of the CG towards the sole portion 1490 and further back away from the face portion 1462. Further, the MOI may be higher as measured about a vertical axis extending through the CG (e.g., perpendicular to the ground plane 2310). The MOI may also be higher as measured about a horizontal axis extending through the CG (e.g., extending towards the toe and heel portions 1450 and 1460, respectively, of the golf club head 1400). As a result, the golf club head 1400 may provide a relatively higher launch angle and a relatively lower spin rate than a golf club head without the first and second sets of weight portions 1420 and 1430, respectively. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Alternatively, two or more weight portions in the same set may be different in mass. In one example, the weight portion 1421 of the first set 1420 may have a relatively lower mass than the weight portion 1422 of the first set 1420. In another example, the weight portion 1431 of the second set 1430 may have a relatively lower mass than the weight portion 1435 of the second set 1430. With relatively greater mass at the top-and-toe transition region and/or the sole-and-toe transition region, more weight may be distributed away from the center of gravity (CG) of the golf club head 1400 to increase the moment of inertia (MOI) about the vertical axis through the CG.
Although the figures may depict the weight portions as separate and individual parts, each set of the first and second sets of weight portions 1420 and 1430, respectively, may be a single piece of weight portion. In one example, all of the weight portions of the first set 1420 (e.g., shown as 1421, 1422, 1423, and 1424) may be combined into a single piece of weight portion (e.g., a first weight portion). In a similar manner, all of the weight portions of the second set 1430 (e.g., 1431, 1432, 1433, 1434, 1435, 1436, and 1437) may be combined into a single piece of weight portion as well (e.g., a second weight portion). In this example, the golf club head 1400 may have only two weight portions. While the figures may depict a particular number of weight portions, the apparatus, methods, and articles of manufacture described herein may include more or less number of weight portions. In one example, the first set of weight portions 1420 may include two separate weight portions instead of three separate weight portions as shown in the figures. In another example, the second set of weight portions 1430 may include five separate weight portions instead of seven separate weight portions a shown in the figures. Alternatively as mentioned above, the apparatus, methods, and articles of manufacture described herein may not include any separate weight portions (e.g., the body portion 1410 may be manufactured to include the mass of the separate weight portions as integral part(s) of the body portion 1410). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Referring back to
In one example, the interior cavity 2000 may be unfilled (i.e., empty space). The body portion 1410 with the interior cavity 2000 may weigh about 100 grams less than the body portion 1410 without the interior cavity 2000. Alternatively, the interior cavity 2000 may be partially or entirely filled with an elastic polymer or elastomer material (e.g., a viscoelastic urethane polymer material such as Sorbothane® material manufactured by Sorbothane, Inc., Kent, Ohio), a thermoplastic elastomer material (TPE), a thermoplastic polyurethane material (TPU), and/or other suitable types of materials to absorb shock, isolate vibration, and/or dampen noise. For example, at least 50% of the interior cavity 2000 may be filled with a TPE material to absorb shock, isolate vibration, and/or dampen noise when the golf club head 1400 strikes a golf ball via the face portion 1462.
In another example, the interior cavity 2000 may be partially or entirely filled with a polymer material such as an ethylene copolymer material to absorb shock, isolate vibration, and/or dampen noise when the golf club head 1400 strikes a golf ball via the face portion 1462. In particular, at least 50% of the interior cavity 2000 may be filled with a high density ethylene copolymer ionomer, a fatty acid modified ethylene copolymer ionomer, a highly amorphous ethylene copolymer ionomer, an ionomer of ethylene acid acrylate terpolymer, an ethylene copolymer comprising a magnesium ionomer, an injection moldable ethylene copolymer that may be used in conventional injection molding equipment to create various shapes, an ethylene copolymer that can be used in conventional extrusion equipment to create various shapes, and/or an ethylene copolymer having high compression and low resilience similar to thermoset polybutadiene rubbers. For example, the ethylene copolymer may include any of the ethylene copolymers associated with DuPont™ High-Performance Resin (HPF) family of materials (e.g., DuPont™ HPF AD1172, DuPont™ HPF AD1035, DuPont® HPF 1000 and DuPont™ HPF 2000), which are manufactured by E.I. du Pont de Nemours and Company of Wilmington, Del. The DuPont™ HPF family of ethylene copolymers are injection moldable and may be used with conventional injection molding equipment and molds, provide low compression, and provide high resilience. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Turning to
To lower and/or move the CG of the golf club head 1400 further back, weight from the front portion 1460 of the golf club head 1400 may be removed by using a relatively thinner face portion 1462. For example, the first thickness 2810 may be about 0.075 inch (1.905 millimeters) (e.g., T1=0.075 inch). With the support of the back wall portion 2710 to form the interior cavity 2000 and filling at least a portion of the interior cavity 2000 with an elastic polymer material, the face portion 1462 may be relatively thinner (e.g., T1<0.075 inch) without degrading the structural integrity, sound, and/or feel of the golf club head 1400. In one example, the first thickness 2810 may be less than or equal to 0.060 inch (1.524 millimeters) (e.g., T1≤0.060 inch). In another example, the first thickness 2810 may be less than or equal to 0.040 inch (1.016 millimeters) (e.g., T1≤0.040 inch). Based on the type of material(s) used to form the face portion 1462 and/or the body portion 1410, the face portion 1462 may be even thinner with the first thickness 2810 being less than or equal to 0.030 inch (0.762 millimeters) (e.g., T1≤0.030 inch). The groove depth 2825 may be greater than or equal to the second thickness 2820 (e.g., Dgroove≥T2). In one example, the groove depth 2825 may be about 0.020 inch (0.508 millimeters) (e.g., Dgroove=0.020 inch). Accordingly, the second thickness 2820 may be about 0.010 inch (0.254 millimeters) (e.g., T2=0.010 inch). In another example, the groove depth 2825 may be about 0.015 inch (0.381 millimeters), and the second thickness 2820 may be about 0.015 inch (e.g., Dgroove=T2=0.015 inch). Alternatively, the groove depth 2825 may be less than the second thickness 2820 (e.g., Dgroove<T2). Without the support of the back wall portion 2710 and the elastic polymer material to fill in the interior cavity 2000, a golf club head may not be able to withstand multiple impacts by a golf ball on a face portion. In contrast to the golf club head 1400 as described herein, a golf club head with a relatively thin face portion but without the support of the back wall portion 2710 and the elastic polymer material to fill in the interior cavity 2000 (e.g., a cavity-back golf club head) may produce unpleasant sound (e.g., a tinny sound) and/or feel during impact with a golf ball. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Based on manufacturing processes and methods used to form the golf club head 1400, the face portion 1462 may include additional material at or proximate to a periphery of the face portion 1462. Accordingly, the face portion 1462 may also include a third thickness 2830, and a chamfer portion 2840. The third thickness 2830 may be greater than either the first thickness 2810 or the second thickness 2820 (e.g., T3>T1>T2). In particular, the face portion 1462 may be coupled to the body portion 1410 by a welding process. For example, the first thickness 2810 may be about 0.030 inch (0.762 millimeters), the second thickness 2820 may be about 0.015 inch (0.381 millimeters), and the third thickness 2830 may be about 0.050 inch (1.27 millimeters). Accordingly, the chamfer portion 2840 may accommodate some of the additional material when the face portion 1462 is welded to the body portion 1410.
As illustrated in
Alternatively, the face portion 1462 may vary in thickness at and/or between the top portion 1480 and the sole portion 1490. In one example, the face portion 1462 may be relatively thicker at or proximate to the top portion 1480 than at or proximate to the sole portion 1490 (e.g., thickness of the face portion 1462 may taper from the top portion 1480 towards the sole portion 1490). In another example, the face portion 1462 may be relatively thicker at or proximate to the sole portion 1490 than at or proximate to the top portion 1480 (e.g., thickness of the face portion 1462 may taper from the sole portion 1490 towards the top portion 1480). In yet another example, the face portion 1462 may be relatively thicker between the top portion 1480 and the sole portion 1490 than at or proximate to the top portion 1480 and the sole portion 1490 (e.g., thickness of the face portion 1462 may have a bell-shaped contour). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Different from other golf club head designs, the interior cavity 2000 of the body portion 1410 and the location of the first and second sets of weight portions 1420 and 1430, respectively, along the perimeter of the golf club head 1400 may result in a golf ball traveling away from the face portion 1462 at a relatively higher ball launch angle and a relatively lower spin rate. As a result, the golf ball may travel farther (i.e., greater total distance, which includes carry and roll distances).
The process 3000 may provide a body portion 1410 having the face portion 1462, the interior cavity 2000, and the back portion 1470 with two or more exterior weight ports, generally shown as 2720 and 2730 (block 3020). The body portion 1410 may be made of a second material, which is different than the first material. The body portion 1410 may be manufacture using an investment casting process, a billet forging process, a stamping process, a computer numerically controlled (CNC) machining process, a die casting process, any combination thereof, or other suitable manufacturing processes. In one example, the body portion 1410 may be made of 17-4 PH stainless steel using a casting process. In another example, the body portion 1410 may be made of other suitable type of stainless steel (e.g., Nitronic® 50 stainless steel manufactured by AK Steel Corporation, West Chester, Ohio) using a forging process. By using Nitronic® 50 stainless steel to manufacture the body portion 1410, the golf club head 1400 may be relatively stronger and/or more resistant to corrosion than golf club heads made from other types of steel. Each weight port of the body portion 1410 may include an opening and a port wall. For example, the weight port 2721 may include the opening 2020 and the port wall 2025 with the opening 2020 and the port wall 2025 being on opposite ends of each other. The interior cavity 2000 may separate the port wall 2025 of the weight port 2721 and the back surface 1466 of the face portion 1462. In a similar manner, the weight port 3135 may include the opening 2030 and the port wall 2035 with the opening 2030 and the port wall 2035 being on opposite ends of each other. The interior cavity 2000 may separate the port wall 2035 of the weight port 2735 and the back surface 1466 of the face portion 1462.
The process 3000 may couple each of the first and second sets of weight portions 1420 and 1430 into one of the two or more exterior weight ports (blocks 3030). In one example, the process 3000 may insert and secure the weight portion 1421 in the exterior weight port 2721, and the weight portion 1435 in the exterior weight portion 2735. The process 3000 may use various manufacturing methods and/or processes to secure the first and second sets of weight portions 1420 and 1430, respectively, in the exterior weight ports such as the weight ports 2721 and 2735 (e.g., epoxy, welding, brazing, mechanical lock(s), any combination thereof, etc.).
The process 3000 may partially or entirely fill the interior cavity 2000 with an elastic polymer material (e.g., Sorbothane® material) or a polymer material (e.g., an ethylene copolymer material such as DuPont™ HPF family of materials) (block 3040). In one example, at least 50% of the interior cavity 2000 may be filled with the elastic polymer material. As mentioned above, the elastic polymer material may absorb shock, isolate vibration, and/or dampen noise in response to the golf club head 1400 striking a golf ball. In addition or alternatively, the interior cavity 2000 may be filled with a thermoplastic elastomer material and/or a thermoplastic polyurethane material. As illustrated in
Referring back to
Referring back to
As illustrated in
The back surface 3310 may also include one or more channels, generally shown as 3320. The channels 3320 may extend longitudinally across the back surface 3310. The channels 3320 may be parallel or substantially parallel to each other. The channels 3320 may engage with the elastic polymer material used to fill the interior cavity 2000, and serve as a mechanical locking mechanism between the face portion 3200 and the elastic polymer material. In particular, a channel 3400 may include an opening 3410, a bottom section 3420, and two sidewalls, generally shown as 3430 and 3432. The bottom section 3420 may be parallel or substantially parallel to the back surface 3310. The two sidewalls 3430 and 3432 may be converging sidewalls (i.e., the two sidewalls 3430 and 3432 may not be parallel to each other). The bottom section 3420 and the sidewalls 3430 and 3432 may form two undercut portions, generally shown as 3440 and 3442. That is, a width 3415 at the opening 3410 may be less than a width 3425 of the bottom section 3420. A cross section of the channel 3400 may be symmetrical about an axis 3450. While
Instead of flat or substantially flat sidewalls as shown in
Instead of being symmetrical as shown in
Referring to
In the example as shown in
In addition or alternatively, the golf club head 1400 may include a bonding agent to improve adhesion and/or mitigate delamination between the face portion 1462 and the elastic polymer material used to fill the interior cavity 2000 of the golf club head 1400 (e.g.,
As discussed above, the elastic polymer material may be heated to a liquid state (i.e., non-foaming) and solidifies after being injection molded in the interior cavity 2000. An elastic polymer material with a low modulus of elasticity may provide vibration and noise dampening for the face portion 1462 when the face portion 1462 impacts a golf ball. For example, an elastic polymer material that foams when heated may provide vibration and noise dampening. However, such a foaming elastic polymer material may not have sufficient rigidity to provide structural support to a relatively thin face portion because of possible excessive deflection and/or compression of the elastic polymer material when absorbing the impact of a golf ball. In one example, the elastic polymer material that is injection molded in the interior cavity 2000 may have a relatively high modulus of elasticity to provide structural support to the face portion 1462 and yet elastically deflect to absorb the impact forces experienced by the face portion 1462 when striking a golf ball. Thus, a non-foaming and injection moldable elastic polymer material with a relatively high modulus of elasticity may be used for partially or fully filling the interior cavity 2000 to provide structural support and reinforcement for the face portion 1462 in addition to providing vibration and noise dampening. That is, the non-foaming and injection moldable elastic polymer material may be a structural support portion for the face portion 1462. The apparatus, methods, and articles of manufacture are not limited in this regard.
The process 4300 may also include spreading the bonding agent on the back surface 1466 (block 4320) after injection of the bonding agent onto the back surface 1466 so that a generally uniform coating of the bonding agent is provided on the back surface 1466. According to one example, the bonding agent may be spread on the back surface 1466 by injecting air into the interior cavity 2000 through one or more of the first set of weight ports 2720 and the second set of weight ports 2730. The air may be injected into the interior cavity 2000 and on the back surface 1466 by inserting an air nozzle into one or more of the first set of weight ports 2720 and the second set of weight ports 2730. According to one example, the air nozzle may be moved, rotated and/or swiveled at a certain distance from the back surface 1466 so as to uniformly blow air onto the bonding agent to spread the bonding agent on the back surface 1466 for a uniform coating or a substantially uniform coating of the bonding agent on the back surface 1466. The apparatus, methods, and articles of manufacture are not limited in this regard.
The process 4300 may include a single step of injecting and uniformly or substantially uniformly coating the back surface 1466 with the bonding agent. In one example, the bonding agent may be injected on the back surface 1466 by being converted into fine particles or droplets (i.e., atomized) and sprayed on the back surface 1466. Accordingly, the back surface 1466 may be uniformly or substantially uniformly coated with the bonding agent in one step. A substantially uniform coating of the back surface 1466 with the bonding agent may be defined as a coating having slight non-uniformities due to the injection process or the manufacturing process. However, such slight non-uniformities may not affect the bonding of the filler material to the back surface 1466 with the bonding agent as described herein. For example, spraying the bonding agent on the back surface 1466 may result in overlapping regions of the bonding agent having a slightly greater coating thickness than other regions of the bonding agent on the back surface 1466. The apparatus, methods, and articles of manufacture are not limited in this regard.
As described herein, any two or more of the weight portions may be configured as a single weight portion. In the example of
The body portion 4410 may be made of a first material whereas the first set of weight portions 4420 and the second weight portion 4430 may be made of a second material. The first and second materials may be similar or different materials. For example, the body portion 4410 may be partially or entirely made of a steel-based material (e.g., 30-4 PH stainless steel, Nitronic® 50 stainless steel, maraging steel or other types of stainless steel), a titanium-based material, an aluminum-based material (e.g., a high-strength aluminum alloy or a composite aluminum alloy coated with a high-strength alloy), any combination thereof, and/or other suitable types of materials. The first set of weight portions 4420 and the second weight portion 4430 may be partially or entirely made of a high-density material such as a tungsten-based material or other suitable types of materials. Alternatively, the body portion 4410 and/or the first set of weight portions 4420 and the second weight portion 4430 may be partially or entirely made of a non-metal material (e.g., composite, plastic, etc.). The apparatus, methods, and articles of manufacture are not limited in this regard.
The golf club head 4400 may be an iron-type golf club head (e.g., a 1-iron, a 2-iron, a 3-iron, a 4-iron, a 5-iron, a 6-iron, a 7-iron, an 8-iron, a 9-iron, etc.) or a wedge-type golf club head (e.g., a pitching wedge, a lob wedge, a sand wedge, an n-degree wedge such as 44 degrees (°), 48°, 52°, 56°, 60°, etc.). Although
The toe portion 4440 and the heel portion 4450 may be on opposite ends of the body portion 4410. The heel portion 4450 may include a hosel portion 4455 configured to receive a shaft (not shown) with a grip (not shown) on one end and the golf club head 4400 on the opposite end of the shaft to form a golf club.
The back portion 4470 may include a back wall portion 4510 with one or more exterior weight ports along a periphery of the back portion 4470, generally shown as a first set of exterior weight ports 4520 (e.g., shown as weight ports 4521, 4522, 4523, and 4524) and a second weight port 4530. Each exterior weight port of the first set of weight ports 4520 may be associated with a port diameter. In one example, the port diameter may be about 0.25 inch (6.35 millimeters). Any two adjacent exterior weight ports of the first set of exterior weight ports 4520 may be separated by less than the port diameter. The first set of weight ports 4520 and the second weight port 4530 may be exterior weight ports configured to receive one or more weight portions.
Each weight portion of the first set of weight portions 4420 (e.g., shown as weight portions 4421, 4422, 4423, and 4424) may be disposed in a weight port of the first set of weight ports 4520 (e.g., shown as weight ports 4521, 4522, 4523, and 4524) located at or proximate to the toe portion 4440 and/or the top portion 4480 on the back portion 4470. For example, the weight portion 4421 may be partially or entirely disposed in the weight port 4521. In another example, the weight portion 4422 may be disposed in a weight port 4522 located in a transition region between the top portion 4480 and the toe portion 4440 (e.g., a top-and-toe transition region). The configuration of the first set of weight ports 4520 and the first set of weight portions 4420 is similar to many respects to the golf club head 1400. Accordingly, a detailed description of the configuration of the first set of weight ports 4520 and the first set of weight portions 4420 is not provided.
The second weight port 4530 may be a recess extending from the toe portion 4440 or a location proximate to the toe portion 4440 to the sole portion or a location proximate to the sole portion 4490 and through the transition region between the toe portion 4440 and the sole portion 4490. Accordingly, as shown in
The second weight portion 4430 may be configured to place the center of gravity of the golf club head 1400 at an optimal location and optimize the moment of inertia of the golf club head about a vertical axis that extends through the center of gravity of the golf club head 4400. All or a substantial portion of the second weight portion 4430 may be generally near the sole portion 4490. For example, the second weight portion 4430 may be near the periphery of the body portion 4410 and extend from the sole portion 4490 to the toe portion 4440. As shown in the example of
The weight portions of the first set of weight portions 4420 may have similar or different physical properties (e.g., color, shape, size, density, mass, volume, etc.). In the illustrated example as shown in
In the example of
The body portion 4610 may be made of a first material whereas the first and second sets of weight portions 4620 and 4630, respectively, may be made of a second material. The first and second materials may be similar or different materials. The materials from which the golf club head 4600, weight portions 4620 and/or weight portions 4630 are constructed may be similar in many respects to any of the golf club heads and the weight portions described herein such as the golf club head 1400. Accordingly, a detailed description of the materials of construction of the golf club head 4600, weight portions 4620 and/or weight 4630 are not described in detail. The apparatus, methods, and articles of manufacture are not limited in this regard.
The golf club head 4600 may be an iron-type golf club head (e.g., a 1-iron, a 2-iron, a 3-iron, a 4-iron, a 5-iron, a 6-iron, a 7-iron, an 8-iron, a 9-iron, etc.) or a wedge-type golf club head (e.g., a pitching wedge, a lob wedge, a sand wedge, an n-degree wedge such as 44 degrees (°), 48°, 52°, 56°, 60°, etc.). Although
The front portion 4660 may include a face portion 4662 (e.g., a strike face). The face portion 4662 may include a front surface 4664 and a back surface 4666 (shown in
As illustrated in
Alternatively, the golf club head 4600 may not include (i) the first set of weight portions 4620, (ii) the second set of weight portions 4630, or (iii) both the first and second sets of weight portions 4620 and 4630. In particular, the back portion 4670 of the body portion 4610 may not include weight ports at or proximate to the top portion 4680 and/or the sole portion 4690. For example, the mass of the first set of weight portions 4620 (e.g., 3 grams) and/or the mass of the second set of weight portions 4630 (e.g., 16.8 grams) may be integral part(s) the body portion 4610 instead of separate weight portion(s). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The first and second sets of weight portions 4620 and 4630, respectively, may have similar or different physical properties (e.g., color, shape, size, density, mass, volume, etc.). As a result, the first and second sets of weight portions 4620 and 4630, respectively, may contribute to the ornamental design of the golf club head 4600. The physical properties of the first and second sets of weight portions 4620 and 4630 may be similar in many respect to any of the weight portions described herein, such as the weight portions shown in the example of
As illustrated in
To provide optimal perimeter weighting for the golf club head 4600, the first set of weight portions 4620 (e.g., weight portions 4621 and 4622) may be configured to counter-balance the weight of the hosel 4655 and/or increase the moment of inertia of the golf club head 4600 about a vertical axis of the golf club head 4600 that extends through the center of gravity of the golf club head 4600. For example, as shown in
The second set of weight portions 4630 (e.g., weight portions 4631, 4632, 4633, 4634 and 4635) may be configured to place the center of gravity of the golf club head 4600 at an optimal location and/or optimize the moment of inertia of the golf club head about a vertical axis that extends through the center of gravity of the golf club head 4600. Referring to
Turning to
As discussed herein, the center of gravity (CG) of the golf club head 4600 may be relatively farther back from the face portion 4662 and relatively lower towards a ground plane (e.g., one shown as 5410 in
While the figures may depict weight ports with a particular cross-section shape, the apparatus, methods, and articles of manufacture described herein may include weight ports with other suitable cross-section shapes. The weight ports of the first and/or second sets of weight ports 4820 and 4830 may have cross-sectional shapes that are similar to the cross-sectional shapes of any of the weight ports described herein. Accordingly, the detailed description of the cross-sectional shapes of the weight ports 4820 and 4830 are not described in detail. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The first and second sets of weight portions 4620 and 4630, respectively, may be similar in mass (e.g., all of the weight portions of the first and second sets 4620 and 4630, respectively, weigh about the same). Alternatively, the first and second sets of weight portions 4620 and 4630, respectively, may be different in mass individually or as an entire set. In particular, each of the weight portions of the first set 4620 (e.g., shown as 4621 and 4622) may have relatively less mass than any of the weight portions of the second set 4630 (e.g., shown as 4631, 4632, 4633, 4634 and 4635). For example, the second set of weight portions 4630 may account for more than 50% of the total mass from exterior weight portions of the golf club head 4600. As a result, the golf club head 4600 may be configured to have at least 50% of the total mass from exterior weight portions disposed below the horizontal midplane 5420. In one example, the total mass from exterior weight portions may be greater below the horizontal midplane 5420 that the total mass from exterior weight portions above the horizontal midplane 5420. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In one example, the golf club head 4600 may have a mass in the range of about 220 grams to about 330 grams based on the type of golf club (e.g., a 4-iron versus a lob wedge). The body portion 4610 may have a mass in the range of about 200 grams to about 310 grams with the first and second sets of weight portions 4620 and 4630, respectively, having a mass of about 20 grams (e.g., a total mass from exterior weight portions). Each of the weight portions of the first set 334620 may have a mass of about one gram (1.0 g) whereas each of the weight portions of the second set 4630 may have a mass of about 2.4 grams. The sum of the mass of the first set of weight portions 4620 may be about 3 grams whereas the sum of the mass of the first set of weight portions 4630 may be about 16.8 grams. The total mass of the second set of weight portions 4630 may weigh more than five times as much as the total mass of the first set of weight portions 4620 (e.g., a total mass of the second set of weight portions 4630 of about 16.8 grams versus a total mass of the first set of weight portions 4620 of about 3 grams). The golf club head 4600 may have a total mass of 19.8 grams from the first and second sets of weight portions 4620 and 4630, respectively (e.g., sum of 3 grams from the first set of weight portions 4620 and 16.8 grams from the second set of weight portions 4630). Accordingly, the first set of weight portions 4620 may account for about 15% of the total mass from exterior weight portions of the golf club head 4600 whereas the second set of weight portions 4630 may be account for about 85% of the total mass from exterior weight portions of the golf club head 4600. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
By coupling the first and second sets of weight portions 4620 and 4630, respectively, to the body portion 4610 (e.g., securing the first and second sets of weight portions 4620 and 4630 in the weight ports on the back portion 4670), the location of the center of gravity (CG) and the moment of inertia (MOI) of the golf club head 4600 may be optimized. In particular, the first and second sets of weight portions 4620 and 4630, respectively, may lower the location of the CG towards the sole portion 4690 and further back away from the face portion 4662. Further, the MOI may be higher as measured about a vertical axis extending through the CG (e.g., perpendicular to the ground plane 5410). The MOI may also be higher as measured about a horizontal axis extending through the CG (e.g., extending towards the toe and heel portions 4640 and 4650, respectively, of the golf club head 4600). As a result, the golf club head 4600 may provide a relatively higher launch angle and a relatively lower spin rate than a golf club head without the first and second sets of weight portions 4620 and 4630, respectively. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Alternatively, two or more weight portions in the same set may be different in mass. In one example, the weight portion 4621 of the first set 4620 may have a relatively lower mass than the weight portion 4622 of the first set 4620. In another example, the weight portion 4631 of the second set 4630 may have a relatively lower mass than the weight portion 4635 of the second set 4630. With relatively greater mass at the top-and-toe transition region and/or the sole-and-toe transition region, more weight may be distributed away from the center of gravity (CG) of the golf club head 4600 to increase the moment of inertia (MOI) about the vertical axis through the CG.
Although the figures may depict the weight portions as separate and individual parts, each set of the first and second sets of weight portions 4620 and 4630, respectively, may be a single piece of weight portion. In one example, all of the weight portions of the first set 4620 (e.g., shown as 4621 and 4622) may be combined into a single piece of weight portion (e.g., a first weight portion). In a similar manner, all of the weight portions of the second set 4630 (e.g., 4631, 4632, 4633, 4634 and 4635) may be combined into a single piece of weight portion as well (e.g., a second weight portion) similar to the example of
The body portion 4610 may be a hollow body including the interior cavity 5100 extending between the front portion 4660 and the back portion 4670. Further, the interior cavity 5100 may extend between the top portion 4680 and the sole portion 4690. The interior cavity 5100 may be associated with a cavity height 5150 (HC), and the body portion 4610 may be associated with a body height 5250 (HB). While the cavity height 5150 and the body height 5250 may vary between the toe and heel portions 4640 and 4650, and the top and sole portions 4680 and 4690, the cavity height 5150 may be at least 50% of a body height 5250 (HC>0.5*HB). For example, the cavity height 5150 may vary between 70%-85% of the body height 5250. With the cavity height 5150 of the interior cavity 5100 being greater than 50% of the body height 5250, the golf club head 4600 may produce relatively more consistent feel, sound, and/or result when the golf club head 4600 strikes a golf ball via the face portion 4662 than a golf club head with a cavity height of less than 50% of the body height. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The interior cavity 5100 may be associated with a cavity width 5140 (WC), and the body portion 4610 may be associated with a body width 5290 (WB). The cavity width 5140 and the body width 5290 may vary between the top portion 4680 and the sole portion 4690 and between the toe portion 4640 and the heel portion 4650. The cavity width 5140 may be at least 50% of a body width 5290 (WC>0.5*WB) at certain regions on the body portion 4610 between the top and sole portions 4680 and 4690 and between the toe and heel portions 4640 and 4650. According to another example, the cavity width 5140 may vary between about 40%-60% of a body width 5290 at certain regions between the top and sole portions 4680 and 4690. According to another example, the cavity width 5140 may vary between about 30%-70% of a body width 5290 at certain regions between the top and sole portions 4680 and 4690. According to another example, the cavity width 5140 may vary between about 20%-80% of a body width 5290 at certain regions between the top and sole portions 4680. For example, the cavity width 5140 may vary between about 20%-80% of the body width 5290 at or below the horizontal midplane 5420. With the cavity width 5190 of the interior cavity 5100 that may vary between about 20% or more to about 80% or less of the body width 5290 at or below the horizontal midplane 5420, a substantial portion of the mass of the golf club head 4600 may be moved lower and farther back as compared to a golf club head with a cavity width of less than about 20% of the body width. Further, the golf club head 4600 may produce relatively more consistent feel, sound, and/or result when the golf club head 4600 strikes a golf ball via the face portion 4662 than a golf club head with a cavity width of less than about 20% of the body width. In one example as illustrated in
To provide an interior cavity 5100 having cavity a width 5140 that may vary between about 20%-80% of a body width 5290 at or below the horizontal midplane 5420, to lower the CG of the golf club head 4600, and/or to move the CG of the golf club head 4600 farther back relative to the face portion 4662, the back portion 4670 may have a recessed portion 4710 (shown in
To generally maintain a cavity width 5140 that may be around 20%-80% of the body width 5290, the cavity width 5140 may be greater near the sole portion 4690 or below the horizontal midplane 5420 than near the top portion 4680 or above the horizontal midplane 5420. According to one example, the cavity width 5140 may generally vary according to a variation in the body width 5290 at certain regions of the body portion 4610 between the top portion 4680 and the sole portion 4690 and between the toe portion 4640 and the heel portion 4650. For example, as shown in
In one example, the interior cavity 5100 may be unfilled (i.e., empty space). The body portion 4610 with the interior cavity 5100 may weight about 100 grams less than the body portion 4610 without the interior cavity 5100. Alternatively, the interior cavity 5100 may be partially or entirely filled with an elastic polymer or elastomer material (e.g., a viscoelastic urethane polymer material such as Sorbothane® material manufactured by Sorbothane, Inc., Kent, Ohio), a thermoplastic elastomer material (TPE), a thermoplastic polyurethane material (TPU), and/or other suitable types of materials to absorb shock, isolate vibration, and/or dampen noise. For example, at least 50% of the interior cavity 5100 may be filled with a TPE material to absorb shock, isolate vibration, and/or dampen noise when the golf club head 4600 strikes a golf ball via the face portion 4662.
In another example, the interior cavity 5100 may be partially or entirely filled with a polymer material such as an ethylene copolymer material to absorb shock, isolate vibration, and/or dampen noise when the golf club head 4600 strikes a golf ball via the face portion 4662. In particular, at least 50% of the interior cavity 5100 may be filled with a high density ethylene copolymer ionomer, a fatty acid modified ethylene copolymer ionomer, a highly amorphous ethylene copolymer ionomer, an ionomer of ethylene acid acrylate terpolymer, an ethylene copolymer comprising a magnesium ionomer, an injection moldable ethylene copolymer that may be used in conventional injection molding equipment to create various shapes, an ethylene copolymer that can be used in conventional extrusion equipment to create various shapes, and/or an ethylene copolymer having high compression and low resilience similar to thermoset polybutadiene rubbers. For example, the ethylene copolymer may include any of the ethylene copolymers associated with DuPont™ High-Performance Resin (HPF) family of materials (e.g., DuPont™ HPF AD1172, DuPont™ HPF AD1035, DuPont® HPF 1000 and DuPont™ HPF 3300), which are manufactured by E.I. du Pont de Nemours and Company of Wilmington, Del. The DuPont™ HPF family of ethylene copolymers are injection moldable and may be used with conventional injection molding equipment and molds, provide low compression, and provide high resilience. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
As described herein, the cavity width 5140 may vary between about 20%-80% of a body width 5290 at or below the horizontal midplane 5420. According to one example, at least 50% of the elastic polymer or elastomer material partially or filling the interior cavity 5100 may be located below the horizontal midplane 5420 of the golf club head 4600. Accordingly, the center of gravity of the golf club head 4600 may be further lowered and moved farther back as compared to a golf club head with a cavity width of less than about 20% of the body width and that is partially or fully filled with an elastic polymer or elastomer material. Further, the golf club head 4600 may produce relatively more consistent feel, sound, and/or result when the golf club head 4600 strikes a golf ball via the face portion 4662 as compared to a golf club head with a cavity width of less than about 20% of the body width that is partially or fully filled with an elastic polymer material. In one example as illustrated in
The thickness of the face portion 4662 may vary between the top portion 4680 and the sole portion 4690 and between the toe portion 4640 and the heel portion 4650 as discussed in detail herein and shown in the examples of
Different from other golf club head designs, the interior cavity 5100 of the body portion 4610 and the location of the first and second sets of weight portions 4620 and 4630, respectively, along the perimeter of the golf club head 4600 may result in a golf ball traveling away from the face portion 4662 at a relatively higher ball launch angle and a relatively lower spin rate. As a result, the golf ball may travel farther (i.e., greater total distance, which includes carry and roll distances).
The golf club head 4600 may be manufactured by any of the methods described herein and illustrated in
As illustrated in
The body portion and/or any other portion of a golf club head according to any of the examples described herein may be constructed from stainless steel so as to resist corrosion or to be corrosion resistant. In some embodiments, all or portions of the body portion and/or any other portion of the golf club head may be constructed by a forging process. Accordingly, in some embodiments, the stainless steel from which all or portions of the body portion and/or any other portion of the golf club head are constructed may be a forgeable stainless steel. However, the apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In embodiments in which stainless steel is used, various ranges of material properties, such as density, tensile strength, yield strength, hardness, elongation, etc., may be used. For any given embodiment, certain material properties may produce more desirable results in certain application or conditions. It should be understood, however, that the disclosed golf club heads and method for manufacturing may not be limited to the exemplary ranges.
In some embodiments, the density of the stainless steel may be between and including 7.0 g/cm3 and 8.3 g/cm3. In one example, the density of the stainless steel may be between and including 7.2 g/cm3 and 7.8 g/cm3. In another example, the density of the stainless steel may be between and including 7.3 g/cm3 and 7.7 g/cm3. In one example, the density of the stainless steel may be between and including 7.1 g/cm3 and 7.6 g/cm3. In another example, the density of the stainless steel may be between and including 7.4 g/cm3 and 8.3 g/cm3. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In some embodiments, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 600 MPa and 800 MPa (106 Pascal=106 N/m2). In one example, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 620 MPa and 780 MPa. In another example, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 660 MPa and 720 MPa. In one example, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 680 MPa and 790 MPa. In another example, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 640 MPa and 760 MPa. In one example, the tensile strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 670 MPa and 770 MPa. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In some embodiments, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 500 MPa and 700 MPa. In one example, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 520 MPa and 680 MPa. In another example, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 560 MPa and 620 MPa. In one example, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 580 MPa and 690 MPa. In one example, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 540 MPa and 660 MPa. In one example, the yield strength of the stainless steel from which all of portions of the body portion may be constructed may be between and including 570 MPa and 670 MPa. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In some embodiments, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 10 and 40 HRC (Rockwell Hardness in the C scale). In one example, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 15 and 35 HRC. In one example, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 22 and 28 HRC. In one example, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 12 and 38 HRC. In one example, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 17 and 33 HRC. In one example, the hardness of the stainless steel from which all of portions of the body portion may be constructed may be between and including 11 and 31 HRC. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In some embodiments, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 5% and 40%. In one example, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 10% and 32%. In one example, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 13% and 28%. In one example, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 18% and 37%. In one example, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 14% and 33%. In one example, the elongation of the stainless steel from which all of portions of the body portion may be constructed may be between and including 7% and 36%. The apparatus, methods, and articles of manufacture described herein are not limited in this
In one example, any of the filler materials described herein (i.e., the one or more materials that may be used to partially or fully fill any internal cavity of a golf club head) may be an elastic polymer or an elastomer material (e.g., a viscoelastic urethane polymer material such as Sorbothane® material manufactured by Sorbothane, Inc., Kent, Ohio), a thermoplastic elastomer material (TPE), a thermoplastic polyurethane material (TPU), other polymer material(s), bonding material(s) (e.g., adhesive), and/or other suitable types of materials that may absorb shock, isolate vibration, and/or dampen noise. In another example, a filler material may be one or more thermoset polymers having bonding properties (e.g., one or more adhesive or epoxy materials). A material may also absorb shock, isolate vibration, and/or dampen noise when a golf club head as described herein strikes a golf ball. Further, a filler material may be an epoxy material that may be flexible or slightly flexible when cured. In another example, a filler material may include any of the 3M™ Scotch-Weld™ DP100 family of epoxy adhesives (e.g., 3M™ Scotch-Weld™ Epoxy Adhesives DP100, DP100 Plus, DP100NS and DP100FR), which are manufactured by 3M corporation of St. Paul, Minn. In another example, a filler material may include 3M™ Scotch-Weld™ DP100 Plus Clear adhesive. In another example, a filler material may include low-viscosity, organic, solvent-based solutions and/or dispersions of polymers and other reactive chemicals such as MEGUM™, ROBOND™, and/or THIXON′ materials manufactured by the Dow Chemical Company, Auburn Hills, Mich. In yet another example, a filler material may be LOCTITE® materials manufactured by Henkel Corporation, Rocky Hill, Conn. In another example, a filler material may be a polymer material such as an ethylene copolymer material that may absorb shock, isolate vibration, and/or dampen noise when a golf club head strikes a golf ball via the face portion. In another example, a filler material may be a high density ethylene copolymer ionomer, a fatty acid modified ethylene copolymer ionomer, a highly amorphous ethylene copolymer ionomer, an ionomer of ethylene acid acrylate terpolymer, an ethylene copolymer comprising a magnesium ionomer, an injection moldable ethylene copolymer that may be used in conventional injection molding equipment to create various shapes, an ethylene copolymer that can be used in conventional extrusion equipment to create various shapes, an ethylene copolymer having high compression and low resilience similar to thermoset polybutadiene rubbers, and/or a blend of highly neutralized polymer compositions, highly neutralized acid polymers or highly neutralized acid polymer compositions, and fillers. For example, the ethylene copolymer may include any of the ethylene copolymers associated with DuPont™ High-Performance Resin (HPF) family of materials (e.g., DuPont™ HPF AD1172, DuPont™ HPF AD1035, DuPont® HPF 1000 and DuPont™ HPF 2000), which are manufactured by E.I. du Pont de Nemours and Company of Wilmington, Del. The DuPont™ HPF family of ethylene copolymers are injection moldable and may be used with conventional injection molding equipment and molds, provide low compression, and provide high resilience, i.e., relatively high coefficient of restitution (COR). The apparatus, methods, and articles of manufacture described herein are not limited in this regard. A filler material not specifically described in detail herein may include one or more similar or different types of materials described herein and in any of the incorporated by reference applications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In another example, any of the filler materials described herein (i.e., the one or more materials that may be used to partially or fully fill any internal cavity of a golf club head) may be a polymer material including rubber or a rubber compound that may provide certain COR and compression properties as may be described herein or in any of the incorporated by reference applications. In one example, a filler material may include rubber and at least another compound that may provide increased softness or firmness to the filler material to maximize the COR of the filler material while maintaining compression values within a certain range as may be described herein or in any of the incorporated by reference applications. In one example, the filler material may include rubber and Zinc Diacrylate (ZDA), which may increase the compression value of the filler material and hence the COR of the filler material. The amount of Zinc Diacrylate (ZDA) in the filler material may be varied to achieve certain COR and/or compression values as may be described herein or in any of the incorporated by reference applications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
In another example, any of the filler materials described herein (i.e., the one or more materials that may be used to partially or fully fill any internal cavity of a golf club head) may be a rubber-type of material such as a compound including a mixture of polybutadiene as a base polymer material, and a vulcanizing agent, which may be based on sulfur, peroxides, metallic oxides, acetoxysilane, or urethane crosslinkers. The added vulcanizing agent may facilitate cross linkage between polybutadiene chains to vulcanize or cure the polybutadiene polymer. The amount of vulcanizing agent may be directly related to the resilience of the resulting vulcanized polymer, which may be measured by Yerzley method, ASTM D945-59. In one example, the filler material may be formed from a compound including between 3 parts by weight and 7.5 parts by weight of sulfur per 100 parts by weight of polybutadiene. In another example, the filler material may be formed from a compound including between 4 parts by weight and 6.25 parts by weight of a vulcanizing agent such as sulfur per 100 parts by weight of polybutadiene. In yet another example, the filler material may be formed from a compound including between 4.75 parts by weight and 5.75 parts by weight of sulfur per 100 parts by weight of polybutadiene. The amounts of polybutadiene and sulfur as described herein may yield a compound having a Yerzley resilience of (1) between 75% and 85%, (2) between 80% and 90%, or (3) greater than 90%. The filler material and the mixture composition thereof may be similar to any of the compounds described in U.S. Pat. No. 3,241,834, which is incorporated by reference herein. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Other additives may be combined with the mixture of polybutadiene and the vulcanizing agent to initiate the curing cycle. In particular, an activating agent such as zinc oxide and/or stearic acid may be used to initiate the curing cycle of the mixture of polybutadiene and the vulcanizing agent. In one example, the amount of zinc oxide used may be between 2 parts by weight and 5 parts by weight per 100 parts by weight of polybutadiene, and/or the amount of stearic acid used may be between 0.5 parts by weight and 4 parts by weight per 100 parts by weight of polybutadiene. In another example, the amount of zinc oxide used may be between 2.5 parts by weight and 4.5 parts by weight per 100 parts by weight of polybutadiene, and/or the amount of stearic acid used may be between 1 part by weight and 2 parts by weight per 100 parts by weight of polybutadiene. In yet another example, the amount of zinc oxide used may be between 3.5 parts by weight and 4.5 parts by weight per 100 parts by weight of polybutadiene, and/or the amount of stearic acid used may be between 1.5 parts by weight and 2.5 parts by weight per 100 parts by weight of polybutadiene. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Further, other additives may be combined with the mixture of polybutadiene and the vulcanizing agent to accelerate the rate of vulcanization. Accelerating the rate of vulcanization may shorten the length of the molding cycle of the filler material and may also equalize the heat throughout the mixture during the curing cycle. In one example, any one or a combination of N-oxydiethylene benzothiazole 2 sulfenamide (referred to under the trade name AMAX), di-ortho-tolylguanidine (referred to under the trade name DOTG) and bismuth dimethyldithio-carbonate (referred to under the trade name Bismate) may be used to accelerate the vulcanization process. The activation of these accelerators may occur as the mixture reaches a specific temperature. For Bismate and DOTG, the activation temperature is approximately 230° F., whereas the activation temperature of AMAX is approximately 260° F. By ensuring that the heat of reaction is equalized throughout the mixture a more uniform rate of vulcanization and improved consistency in the end product is obtained. In one example, the amount of each of AMAX, DOTG, and Bismate may be between 0.25 and 4 parts by weight per 100 parts by weight of polybutadiene. In another example, the amount of each of AMAX, DOTG, and Bismate may be between 1 and 3 parts by weight per 100 parts by weight of polybutadiene. In yet another example, the amount of each of AMAX, DOTG, and Bismate may be between 1.5 and 2.75 parts by weight per 100 parts by weight of polybutadiene. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Fillers may be added to the mixture of polybutadiene and the vulcanizing agent. In one example, hydrated silica may be added to the mixture as a filler. The added filler material(s) may perform the function of providing tear and abrasion resistance. The filler material may be selected to include to improve the durability of polybutadiene without unduly increasing the specific gravity. In another example, carbon black may be used as a filler material. In yet another example, lithium oxide may be used as a filler material. In one example, the amount of filler material used may be between 4 and 16 parts by weight per 100 parts by weight of polybutadiene. In another example, the amount of filler material used may be between 5 and 10 parts by weight per 100 parts by weight of polybutadiene. In yet another example, the amount of filler material used may be between 7 and 8 parts by weight per 100 parts by weight of polybutadiene.
The amount of filler material may affect the specific gravity of the resulting polymer material, which in turn may affect the resilience of the resulting polymer material. In one example, the amount of filler material used in the polybutadiene and the vulcanizing agent mixture may provide a specific gravity of between 1.0 and 1.5 to optimize resilience of the resulting polymer material (i.e. the filler material). In another example, the amount of filler material used in the polybutadiene and the vulcanizing agent mixture may provide a specific gravity of between 1.1 and 1.4 to optimize resilience of the resulting polymer material. In yet another example, the amount of filler material used in the polybutadiene and the vulcanizing agent mixture, the amount of filler material may provide a specific gravity of between 1.0 and 1.05 to optimize resilience of the resulting polymer material. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
One or more anti-oxidation materials may be added to the polymer mixture to prevent oxidation and staining, and/or to inhibit aging of the resulting polymer compound. In one example, 4 methyl-6 tertiary-butyl phenol (referred to under the trade name Antioxidant 2246) may be added to the mixture at an amount of between 0.25 and 3 parts by weight per 100 parts by weight of polybutadiene. Other examples anti-oxidant materials that may be used include phenyl 13 naphthylamine, alkyl diphenylamine, and/or hindered alkyl phenols. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The various elements of the polymer mixture described herein may be sufficiently mixed to provide uniform distribution of the elements throughout the mixture. In one example, the mixture may then be placed in a mold and subjected to a pressure of between 500 and 3000 pounds per square inch (psi) for a period of approximately 10 to 30 minutes, while concurrently, the temperature of the mixture may be raised to approximately 285-340° F. In another example, the mixture may then be placed in a mold and subjected to a pressure of between 750 and 2000 psi for a period of approximately 12 to 25 minutes, while concurrently, the temperature of the mixture may be raised to approximately 300-330° F. In yet another example, the mixture may then be placed in a mold and subjected to a pressure of between 900 and 1100 psi for a period of approximately 15 to 20 minutes, while concurrently, the temperature of the mixture may be raised to approximately 315-325° F. Various aspects of the treatment of the mixture (e.g., the length of each of the molding operation, the pressure, and/or the temperature) may be adjusted to compensate for any variation in other aspects of the treatment the mixture. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Any of the filler materials described herein may be subjected to different processes during manufacturing of any of the golf club heads described herein. Such processes may include one or more filler materials being heated and/or cooled by conduction, convection, and/or radiation during one or more injection molding processes or post injection molding curing processes. For example, all of the heating and cooling processes may be performed by using heating or cooling systems that employ conveyor belts that move a golf club head described herein through a heating or cooling environment for a period of time as described herein. The processes of manufacturing a golf club head with one or more filler materials may be similar to any of the processes described in any of the incorporated by reference applications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
Any of the golf club heads described herein may be manufactured by casting from metal such as steel. However, other techniques for manufacturing a golf club head as described herein may be used such as 3D printing, or molding a golf club head from metal or non-metal materials such as ceramics.
All methods described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Although a particular order of actions may be described herein with respect to one or more processes, these actions may be performed in other temporal sequences. Further, two or more actions in any of the processes described herein may be performed sequentially, concurrently, or simultaneously.
Procedures defined by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA) and/or the Royal and Ancient Golf Club of St. Andrews (R&A) may be used for measuring the club head volume of any of the golf club heads described herein. For example, a club head volume may be determined by using the weighted water displacement method (i.e., Archimedes Principle). Although the figures may depict particular types of club heads (e.g., a driver-type club head or iron-type golf club head), the apparatus, methods, and articles of manufacture described herein may be applicable to other types of club head (e.g., a fairway wood-type club head, a hybrid-type club head, a putter-type club head, etc.). Accordingly, any golf club head as described herein may have a volume that is within a volume range corresponding to certain type of golf club head as defined by golf governing bodies. A driver-type golf club head may have a club head volume of greater than or equal to 300 cubic centimeters (cm3 or cc). In another example, a driver-type golf club head may have a club head volume of 460 cc. A fairway wood golf club head may have a club head volume of between 100 cc and 300 cc. In one example, a fairway wood golf club head may have a club head volume of 180 cc. An iron-type golf club head may have a club head volume of between 25 cc and 100 cc. In one example, an iron-type golf club head may have a volume of 50 cc. Any of the golf clubs described herein may have the physical characteristics of a certain type of golf club (i.e., driver, fairway wood, iron, etc.), but have a volume that may fall outside of the above described ranges. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
As the rules of golf may change from time to time (e.g., new regulations may be adopted or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA), the Royal and Ancient Golf Club of St. Andrews (R&A), etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
While the above examples may describe an iron-type or a wedge-type golf club head, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of golf club heads (e.g., a driver-type golf club head, a fairway wood-type golf club head, a hybrid-type golf club head, a putter-type golf club head, etc.). Further, although the above examples may describe steel-based material, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of metal materials, non-metal materials, or both.
Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. A numerical range defined using the word “between” includes numerical values at both end points of the numerical range. A spatial range defined using the word “between” includes any point within the spatial range and the boundaries of the spatial range. A location expressed relative to two spaced apart or overlapping elements using the word “between” includes (i) any space between the elements, (ii) a portion of each element, and/or (iii) the boundaries of each element.
The terms “a,” “an,” and/or “the” used in the context of describing various embodiments the present disclosure are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The term “coupled” and any variation thereof refer to directly or indirectly connecting two or more elements chemically, mechanically, and/or otherwise. The phrase “removably connected” is defined such that two elements that are “removably connected” may be separated from each other without breaking or destroying the utility of either element.
The term “substantially” when used to describe a characteristic, parameter, property, or value of an element may represent deviations or variations that do not diminish the characteristic, parameter, property, or value that the element may be intended to provide. Deviations or variations in a characteristic, parameter, property, or value of an element may be based on, for example, tolerances, measurement errors, measurement accuracy limitations and other factors. The term “proximate” is synonymous with terms such as “adjacent,” “close,” “immediate,” “nearby”, “neighboring”, etc., and such terms may be used interchangeably as appearing in this disclosure.
The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely for clarification and does not pose a limitation on the scope of the present disclosure. No language in the specification should be construed as indicating any non-claimed element essential to the practice of any embodiments discussed herein. The apparatus, methods, and articles of manufacture described herein may be implemented in a variety of embodiments, and the foregoing description of some of these embodiments does not necessarily represent a complete description of all possible embodiments. Instead, the description of the drawings, and the drawings themselves, disclose at least one embodiment, and may disclosure alternative embodiments.
Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements disclosed herein. One or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
While different features or aspects of an embodiment may be described with respect to one or more features, a singular feature may comprise multiple elements, and multiple features may be combined into one element without departing from the scope of the present disclosure. Further, although methods may be disclosed as comprising one or more operations, a single operation may comprise multiple steps, and multiple operations may be combined into one step without departing from the scope of the present disclosure.
Although certain example apparatus, methods, and articles of manufacture have been described herein, the scope of coverage of this disclosure is not limited thereto. On the contrary, this disclosure covers all apparatus, methods, and articles of articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
This application is a continuation-in-part of application Ser. No. 16/774,449, filed Jan. 28, 2020, which is a continuation of application Ser. No. 16/179,406, filed Nov. 2, 2018, which claims the benefit of U.S. Provisional Application No. 62/581,456, filed Nov. 3, 2017. This application is a continuation-in-part of application Ser. No. 16/590,105, filed Oct. 1, 2019, which claims the benefit of U.S. Provisional Application No. 62/908,467, filed Sep. 30, 2019, U.S. Provisional Application No. 62/903,467, filed Sep. 20, 2019, U.S. Provisional Application No. 62/877,934, filed Jul. 24, 2019, U.S. Provisional Application No. 62/877,915, filed Jul. 24, 2019, U.S. Provisional Application No. 62/865,532, filed Jun. 24, 2019, U.S. Provisional Application No. 62/826,310, filed Mar. 29, 2019, and U.S. Provisional Application No. 62/814,959, filed Mar. 7, 2019. This application is a continuation-in-part of application Ser. No. 16/365,343, filed Mar. 26, 2019, which is a continuation of application Ser. No. 15/841,022, filed Dec. 13, 2017, now U.S. Pat. No. 10,265,590, which is a continuation of application Ser. No. 15/701,131, filed Sep. 11, 2017, now abandoned, which is a continuation-in-part of application Ser. No. 15/685,986, filed Aug. 24, 2017, now U.S. Pat. No. 10,279,233, which is a continuation of application Ser. No. 15/628,251, filed Jun. 20, 2017, now abandoned, which is a continuation of application Ser. No. 15/209,364, filed on Jul. 13, 2016, now U.S. Pat. No. 10,293,229, which is a continuation of International Application No. PCT/US15/16666, filed Feb. 19, 2015, which claims the benefit of U.S. Provisional Application No. 61/942,515, filed Feb. 20, 2014, U.S. Provisional Application No. 61/945,560, filed Feb. 27, 2014, U.S. Provisional Application No. 61/948,839, filed Mar. 6, 2014, U.S. Provisional Application No. 61/952,470, filed Mar. 13, 2014, U.S. Provisional Application No. 61/992,555, filed May 13, 2014, U.S. Provisional Application No. 62/010,836, filed Jun. 11, 2014, U.S. Provisional Application No. 62/011,859, filed Jun. 13, 2014, and U.S. Provisional Application No. 62/032,770, filed Aug. 4, 2014. U.S. application Ser. No. 15/209,364, filed on Jul. 13, 2016, now U.S. Pat. No. 10,293,229, is also a continuation of application Ser. No. 14/618,501, filed Feb. 10, 2015, now U.S. Pat. No. 9,427,634, which is a continuation of application Ser. No. 14/589,277, filed Jan. 5, 2015, now U.S. Pat. No. 9,421,437, which is a continuation of application Ser. No. 14/513,073, filed Oct. 13, 2014, now U.S. Pat. No. 8,961,336, which is a continuation of application Ser. No. 14/498,603, filed Sep. 26, 2014, now U.S. Pat. No. 9,199,143, which claims the benefits of U.S. Provisional Application No. 62/041,538, filed Aug. 25, 2014. This application is a continuation-in-part of application Ser. No. 16,376,868, filed Apr. 5, 2019, which is a continuation of application Ser. No. 15/478,542, filed Apr. 4, 2017, now U.S. Pat. No. 10,286,267, which is a continuation of application Ser. No. 14/709,195, filed May 11, 2015, now U.S. Pat. No. 9,649,542, which claims the benefit of U.S. Provisional Application No. 62/021,415, filed Jul. 7, 2014, U.S. Provisional Application No. 62/058,858, filed Oct. 2, 2014, and U.S. Provisional Application No. 62/137,494, filed Mar. 24, 2015. This application is a continuation-in-part of application Ser. No. 15/683,564, filed Aug. 22, 2017, which is a continuation of application Ser. No. 15/598,949, filed May 18, 2017, now U.S. Pat. No. 10,159,876, which is a continuation of application Ser. No. 14/711,596, filed May 13, 2015, now U.S. Pat. No. 9,675,853, which claims the benefit of U.S. Provisional Application No. 62/118,403, filed Feb. 19, 2015, and U.S. Provisional Application No. 62/159,856, filed May 11, 2015. This application is a continuation-in-part of application Ser. No. 16/376,863, filed Apr. 5, 2019, which is a continuation of application Ser. No. 15/958,288, filed Apr. 20, 2018, now abandoned, which is a continuation of application Ser. No. 15/947,383, filed Apr. 6, 2018, now abandoned, which is a continuation of application Ser. No. 15/842,632, filed Dec. 14, 2017, now U.S. Pat. No. 10,029,159, which is a continuation of application Ser. No. 15/263,018, filed Sep. 12, 2016, now U.S. Pat. No. 9,878,220, which is a continuation of application Ser. No. 15/043,090, filed Feb. 12, 2016, now U.S. Pat. No. 9,468,821, which claims the benefit of U.S. Provisional Application No. 62/209,780, filed Aug. 25, 2015, and U.S. Provisional Application No. 62/277,636, filed Jan. 12, 2016. This application is a continuation-in-part of application Ser. No. 16/351,143, filed Mar. 12, 2019, which is a continuation of Ser. No. 15/842,583, filed Dec. 14, 2017, now U.S. Pat. No. 10,232,235, which is a continuation of application Ser. No. 15/631,610, filed Jun. 23, 2017, now abandoned, which is a continuation of application Ser. No. 15/360,707, filed Nov. 23, 2016, now U.S. Pat. No. 10,029,158, which is a continuation of application Ser. No. 15/043,106, filed Feb. 12, 2016, now U.S. Pat. No. 9,533,201, which claims the benefit of U.S. Provisional Application No. 62/275,443, filed Jan. 6, 2016, and U.S. Provisional Application No. 62/276,358, filed Jan. 8, 2016. This application is a continuation-in-part of application Ser. No. 15/703,639, filed Sep. 13, 2017, which is a continuation-in-part of application Ser. No. 15/484,794, filed Apr. 11, 2017, now U.S. Pat. No. 9,814,952, which claims the benefit of U.S. Provisional Application No. 62/321,652, filed Apr. 12, 2016. The disclosures of the above-referenced applications are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62581456 | Nov 2017 | US | |
62908467 | Sep 2019 | US | |
62903467 | Sep 2019 | US | |
62877934 | Jul 2019 | US | |
62877915 | Jul 2019 | US | |
62865532 | Jun 2019 | US | |
62826310 | Mar 2019 | US | |
62814959 | Mar 2019 | US | |
61942515 | Feb 2014 | US | |
61945560 | Feb 2014 | US | |
61948839 | Mar 2014 | US | |
61952470 | Mar 2014 | US | |
61992555 | May 2014 | US | |
62010836 | Jun 2014 | US | |
62011859 | Jun 2014 | US | |
62032770 | Aug 2014 | US | |
62041538 | Aug 2014 | US | |
62021415 | Jul 2014 | US | |
62058858 | Oct 2014 | US | |
62137494 | Mar 2015 | US | |
62118403 | Feb 2015 | US | |
62159856 | May 2015 | US | |
62209780 | Aug 2015 | US | |
62277636 | Jan 2016 | US | |
62275443 | Jan 2016 | US | |
62276358 | Jan 2016 | US | |
62321652 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16179406 | Nov 2018 | US |
Child | 16774449 | US | |
Parent | 15841022 | Dec 2017 | US |
Child | 16365343 | US | |
Parent | 15701131 | Sep 2017 | US |
Child | 15841022 | US | |
Parent | 15628251 | Jun 2017 | US |
Child | 15685986 | US | |
Parent | 15209364 | Jul 2016 | US |
Child | 15628251 | US | |
Parent | PCT/US2015/016666 | Feb 2015 | US |
Child | 15209364 | US | |
Parent | 14618501 | Feb 2015 | US |
Child | 15209364 | US | |
Parent | 14589277 | Jan 2015 | US |
Child | 14618501 | US | |
Parent | 14513073 | Oct 2014 | US |
Child | 14589277 | US | |
Parent | 14498603 | Sep 2014 | US |
Child | 14513073 | US | |
Parent | 15478542 | Apr 2017 | US |
Child | 16376868 | US | |
Parent | 14709195 | May 2015 | US |
Child | 15478542 | US | |
Parent | 15598949 | May 2017 | US |
Child | 15683564 | US | |
Parent | 14711596 | May 2015 | US |
Child | 15598949 | US | |
Parent | 15958288 | Apr 2018 | US |
Child | 16376863 | US | |
Parent | 15947383 | Apr 2018 | US |
Child | 15958288 | US | |
Parent | 15842632 | Dec 2017 | US |
Child | 15947383 | US | |
Parent | 15263018 | Sep 2016 | US |
Child | 15842632 | US | |
Parent | 15043090 | Feb 2016 | US |
Child | 15263018 | US | |
Parent | 15842583 | Dec 2017 | US |
Child | 16351143 | US | |
Parent | 15631610 | Jun 2017 | US |
Child | 15842583 | US | |
Parent | 15360707 | Nov 2016 | US |
Child | 15631610 | US | |
Parent | 15043106 | Feb 2016 | US |
Child | 15360707 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16774449 | Jan 2020 | US |
Child | 16789167 | US | |
Parent | 16590105 | Oct 2019 | US |
Child | 16179406 | US | |
Parent | 16365343 | Mar 2019 | US |
Child | 16590105 | US | |
Parent | 15685986 | Aug 2017 | US |
Child | 15701131 | US | |
Parent | 16376868 | Apr 2019 | US |
Child | 14498603 | US | |
Parent | 15683564 | Aug 2017 | US |
Child | 14709195 | US | |
Parent | 16376863 | Apr 2019 | US |
Child | 14711596 | US | |
Parent | 16351143 | Mar 2019 | US |
Child | 15043090 | US | |
Parent | 15703639 | Sep 2017 | US |
Child | 15043106 | US | |
Parent | 15484794 | Apr 2017 | US |
Child | 15703639 | US |