The present disclosure generally relates to golf equipment and, more particularly, to golf club heads with face deflection structures.
Golf clubs and specifically golf club heads of various designs have typically been developed to improve a person's golf swing and resulting golf shot. In particular, many people are unable to hit or lack consistency when hitting “down” on a ball, that is, to regularly hit the ball squarely. Golf club designs and, particularly, golf club head designs may optimize a golf club head's impact on the golf ball, such that the golf club head can impart better flight characteristics to the golf ball, such as increased launch angle, increased speed, and/or decreased ball spin. Such designs may mitigate a person's inconsistency problems.
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the disclosure. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present disclosure. The same reference numerals in different figures denote the same elements.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the disclosure described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
The terms “couple,” “coupled,” “couples,” “coupling,” and the like should be broadly understood and refer to connecting two or more elements mechanically and/or otherwise. Two or more mechanical elements may be mechanically coupled together, but not be electrically or otherwise coupled together. Coupling may be for any length of time, e.g., permanent or semi permanent or only for an instant.
“Electrical coupling” and the like should be broadly understood and include coupling involving any electrical signal, whether a power signal, a data signal, and/or other types or combinations of electrical signals. “Mechanical coupling” and the like should be broadly understood and include mechanical coupling of all types.
The absence of the word “removably,” “removable,” and the like near the word “coupled,” and the like does not mean that the coupling, etc. in question is or is not removable.
In one embodiment of the golf club heads with face deflection structures and related methods, a golf club head comprises a crown, a sole, a head front end, a head rear end, a shaft axis defining a shaft axis plane, and at least one of a hosel, a toe skirt, or a heel skirt. The embodiment can further comprise a head wave section proximate the head front end and comprising part of at least one of the crown, the sole, the toe skirt, or the heel skirt, and a deflector at the head wave section. In some embodiments, with the golf club head at address over a ground plane, the shaft axis plane can be orthogonal to the ground plane and the head front end comprises a strikeplate and a leading edge. In addition, the deflector comprises a deflector front edge adjacent to the head front end, a deflector rear edge opposite the deflector front edge, and a wave surface extended from the deflector front edge to the deflector rear edge and comprising a wavelength measured in a front-rear direction with respect to the head front end and the head rear end. A leading edge vertical plane intersects the leading edge and is parallel to the shaft axis plane, and a deflector front plane intersects the deflector front edge and is parallel to the shaft axis plane. Further, the strikeplate comprises a strikeplate thickness, and a deflector front offset, measured from the leading edge vertical plane to the deflector front plane and orthogonal to the shaft axis plane, is less than three times the strikeplate thickness.
In some embodiments of the golf club heads with face deflection structures and related methods, a method comprises providing a head body of a golf club head, the head body comprising a crown, a sole, a head front end, a head rear end, a shaft axis defining a shaft axis plane, at least one of a hosel, a toe skirt, or a heel skirt, and a head wave section proximate the head front end and comprising part of at least one of the crown, the sole, the toe skirt, or the heel skirt, and providing a deflector at the head wave section. The method may further comprise that, with the golf club at address over a ground plane the shaft axis is orthogonal to the ground plane and the head front end comprises a strikeplate and a leading edge. The deflector comprises a deflector front edge adjacent to the head front end, a deflector rear edge opposite the deflector front edge, and a wave surface extended from the deflector front edge to the deflector rear edge and comprising a wavelength measured in a front-rear direction with respect to the head front end and the head rear end. Further, a leading edge vertical plane intersects the leading edge and is parallel to the shaft axis plane, a deflector front plane intersects the deflector front edge and is parallel to the shaft axis plane, the strikeplate comprises a strikeplate thickness, and a deflector front offset, measured from the leading edge vertical plane to the deflector front plane and orthogonal to the shaft axis plane, is less than three times the strikeplate thickness.
Examples and embodiments are disclosed herein. Such examples and embodiments may be found in the figures, in the claims, and/or in the present description.
As shown in
Golf club head 1000 comprises crown 1100, sole 1200, head rear end 260, and head front end 150 with strikeplate 1600. In the present example, golf club head 1000 also comprises skirt 1300 with toe skirt 1310 and heel skirt 1320. Also in the present example, golf club head 1000 comprises hosel 1900 configured to receive shaft 1950, where shaft axis 1930 extends along a longitudinal centerline of shaft 1950 and/or or hosel 1900.
Strikeplate 1600 comprises strikeface 1610, and is coupled to golf club head 1000 at head front end 150. Golf club head 1000 also comprises head wave section 2200 with deflector 2500 coupled thereto, where deflector 2500 is configured to permit or increase deflection of strikeplate 1600 upon ball impact with golf ball 4000 (
Head wave section 2200 is proximate to head front end 150, and can be located alongside part of at least one of crown 1100, sole 1200, toe skirt 1310, or heel skirt 1320. For instance, the embodiment of
Deflector 2500 is shown in
As shown in
Deflector 2500 comprises deflector front edge 2510 adjacent to head front end 150, and deflector rear edge 2520 opposite deflector front edge 2510. Deflector 2500 also comprises wave surface 2550 extended from deflector front edge 2510 to deflector rear edge 2520. In some embodiments, deflector front edge 2510 can be defined by external wave through 2501, which is the frontmost external wave trough of wave surface 2550 in the present example. Similarly, deflector rear edge 2520 can be defined by rearmost external wave trough 2502, which is the rearmost external wave trough of wave surface 2550 in the present example. Wave surface 2550 also comprises wavelength 2560 which, as seen in
In the present example wave surface 2550 comprises a substantially sinusoidal wave shape. There can be other embodiments where wave surface 2550 can comprise a different wave shape, such as a substantially sawtooth wave shape, a substantially triangular wave shape, or a substantially square wave shape. In addition, there can be embodiments where wave surface 2550 need not be fully periodic, such that its ripples, crests, or troughs need not be evenly spread from each other.
Head front end 150 of golf club head 1000 comprises strikeplate 1600 with strikeplate thickness 1650. In some examples, strikeplate thickness 1650 can comprise a maximum thickness of strikeplate 1600, measured from strikeface 1610 to backface 4630. In the same or other examples, strikeplate thickness 1650 can be measured at a center of strikeplate 1600, or proximate to deflector 2500.
The inclusion of deflector 2500 permits strikeplate 1600 to deflect towards the interior of golf club head 1000 and then towards the front of golf club head 1000 during impact with golf ball 4000, thereby dissipating impact stresses that would otherwise be absorbed by strikeplate 1600. Such a feature permits strikeplate thickness 1650 to be reduced or minimized without compromising structural integrity thereof, thus reducing the amount of mass required for strikeplate 1600, where such mass can be relocated or removed to thereby adjust golf club characteristics and improve golf shot performance. For instance, the deflection of strikeplate 1600 permitted by deflector 2500 can improve a launch angle of golf ball 4000, and/or can reduce a ball spin thereof for improved flight characteristics.
To improve the dissipation of impact stresses by deflector 2500, and/or to augment the deflection of strikeplate 1600, deflector 2500 can be located as close as practical to head front end 150 and/or to leading edge 1550 of golf club head 1000 to be more directly exposed to such impact stresses. Accordingly, in some implementations, deflector 2500 can comprise deflector front offset 4710, which can be less than three times strikeplate thickness 1650 such as to increase the exposure of deflector 2500 to the impact stresses associated with impact with golf ball 4000. In the present example, deflector front offset 4710 is measured from leading edge vertical plane 1555 to deflector front plane 2515 and is measured substantially orthogonal to shaft axis plane 1931. Leading edge vertical plane 1555 intersects leading edge 1550 at forwardmost point 1551 and is substantially parallel to shaft axis plane 1931, and deflector front plane 2515 intersects deflector front edge 2510 and is substantially parallel to shaft axis plane 1931.
Deflector 2500 can be implemented in different kinds of golf club heads to provide corresponding deflection benefits. For instance, for fairway-wood-type or hybrid-type golf club head examples, deflector 2500 can be located such that deflector front offset 4710 can be up to approximately 7.65 mm, and can permit strikeplate 1600 to be thinner such that strikeplate thickness 1650 can be approximately 1.2 mm to approximately 2.5 mm. As another example, for driver-type golf club head embodiments, deflector 2500 can be located such that deflector front offset 4710 can be up to approximately 13.5 mm, and can permit strikeplate 1600 to be thinner such that strikeplate thickness 1650 can be approximately 1.9 mm to approximately 4.4 mm.
Deflector 2500 also comprises deflector depth 4720 measured from deflector front plane 2515 to deflector rear plane 2525 and is measured substantially orthogonal to shaft axis plane 1931, where deflector rear plane 2525 intersects deflector rear edge 2520 and is substantially parallel to shaft axis plane 1931. Deflector depth 4720 can be less than approximately 12.5 mm in some implementations. Deflector 2500 also can have a deflector length from heel to toe of less than approximately 6.4 centimeters (cm).
In the present example, deflector front edge 2510 of deflector 2500 is located forward of shaft axis plane 1931, considering the benefits of placing deflector 2500 closer to head front end 150 as described above. For similar reasons, deflector 2500 is located between leading edge 1550 and shaft axis plane 1931 such that deflector rear edge 2520 is located forward of shaft axis plane 1931. There can be examples where a majority of deflector rear edge 2520 is located forward of shaft axis plane 1931.
As seen in
As seen in
As seen in
Deflector 2500 is configured in the present embodiment such that deflector front edge 2510 is longer than deflector rear edge 2520. In particular, deflector 2500 is bounded by deflector perimeter 2590, which comprises deflector front edge 2510, deflector rear edge 2520, deflector heel edge 2530, and deflector toe edge 2540, and where deflector perimeter 2590 is substantially trapezoidal with a largest dimension thereof facing towards head front end 150 of golf club head 1000. In other examples, however, deflector perimeter 2590 can comprise other shapes, such as a substantially rectangular shape, a substantially semicircular shape, a substantially elliptical shape, or a substantially semi-elliptical shape.
As can be seen in
For instance,
As another example,
By using multiple low amplitude waves, the performance, mass distribution, and durability of the golf club can be optimized. Each dimension influences the wave structure performance in a unique way. Deflector front offset 4710 can influence the durability of the club head and the force transfer from ball impact. Wave height 2570 can influence the deformation at ball contact by wave structure compression (parallel with the direction of the ball travel). Deflector depth 4720 can influence the deformation at ball contact because it determines the torque formed about the toe-side and heel-side end points of the wave structures.
In some embodiments, these three dimensions can be optimized for performance and durability by staying proportional to one another: the smaller in magnitude deflector front offset 4710 is, the smaller in magnitude wave height 2570 can be, and the smaller deflector depth 4720 can be. In some embodiments. an advantage can be gained when wave height 2570 is minimized to keep the mass low in the club head, the durability of the club head remains, and the wave structures properly deflect at ball contact. The smaller front offset 4710 gets, the lower wave height 2570 can be made. However, there can be a value of front offset 4710 wherein the durability drops off, and there can be a threshold value for wave height 2570 wherein the wave structures no longer compress in the desired way.
Deflector depth 4720 contributes to the wave structure deformation by providing a moment arm from the point of contact with the golf ball (where the face deforms at contact with a golf ball), to the two ends of the wave structures. When deflector depth 4720 is increased, so is the moment arm, and consequently, the amount of torque applied at the ends of the wave structures is increased. The increased torque from the longer moment arm can cause the wave structures to deform more severely about the two ends of the wave structures. A greater torque about the anchor point can cause greater deformation of the wave structures.
An advantage of not extending the sole feature vertically is that it is created with less mass and that the mass used is lower on the club head. By using less mass to create the feature, it allows for more discretionary mass to be placed further back in the club head to promote better launch conditions and increased moment of inertia (MOI). By keeping the mass that is used low, it promotes better launch conditions through reduced spin and a more efficient impact to increase ball speed.
Shots struck low on the face of a typical metalwood have increased spin caused by gear affect. This sole feature concept can increase the ratio of lower-to-upper face deflection, which can create a top spin gear affect. This top spin gear affect can counteract the gear affect of the head, leading to reduced spin on shots struck low on the face versus a metalwood without this structure.
Continuing to
Block 7100 of method 7000 involves providing a head body of the golf club head, where the head body comprises a head wave section. In some examples, the head body can be similar to the head body described above for
Block 7200 of method 7000 comprises providing a deflection structure at the head wave section of the head body. In some examples, the deflection structure can be similar to deflector 2500 (
There can be examples where different blocks of method 7000 can be combined into a single block or performed simultaneously, and/or where the sequence of such blocks can be changed. In some examples, some of the blocks of method 7000 can be optional. There can also be examples where method 7000 can comprise further or different blocks. As an example, method 7000 can comprise another block for coupling a golf club shaft to the golf club head. Other variations can be implemented for method 9000 without departing from the scope of the present disclosure.
Although the golf club heads with deflection structures and related methods herein have been described with reference to specific embodiments, various changes may be made without departing from the spirit or scope of the present disclosure. Additional examples have been given in the foregoing description. Other permutations of the different embodiments having one or more of the features of the various figures are likewise contemplated. Accordingly, the disclosure herein is intended to be illustrative and is not intended to be limiting. It is intended that the scope of this application shall be limited only to the extent required by the appended claims.
The golf club heads with deflection structures and related methods discussed herein may be implemented in a variety of embodiments, and the foregoing discussion of certain of these embodiments does not necessarily represent a complete description of all possible embodiments. Rather, the detailed description of the drawings, and the drawings themselves, disclose at least one preferred embodiment, and may disclose alternative embodiments.
As the rules to golf may change from time to time (e.g., new regulations may be adopted or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA), the Royal and Ancient Golf Club of St. Andrews (R&A), etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
While the above examples may be described in connection with driver-type golf clubs, fairway-wood-type golf clubs, and hybrid-type golf clubs, the apparatus, systems, methods, and articles of manufacture described herein may be applicable to other types of golf club such as, an iron-type golf club, a wedge-type golf club, or a putter-type golf club. Alternatively, the apparatus, methods, and articles of manufacture described herein may be applicable other type of sports equipment such as a hockey stick, a tennis racket, a fishing pole, a ski pole, etc.
All elements claimed in any particular claim are essential to the embodiment claimed in that particular claim. Consequently, replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims, unless such benefits, advantages, solutions, or elements are expressly stated in such claims.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This is a continuation of U.S. patent application Ser. No. 14/454,574, filed on Aug. 7, 2014, which claims priority to U.S. Provisional Patent Application No. 61/863,890, filed on Aug. 8, 2013, the contents of all of which are incorporated fully herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5380009 | Henry et al. | Jan 1995 | A |
D366682 | Antonious | Jan 1996 | S |
5632695 | Hlinka et al. | May 1997 | A |
5762567 | Antonious | Jun 1998 | A |
RE35955 | Luv | Nov 1998 | E |
6348013 | Kosmatka | Feb 2002 | B1 |
6530847 | Antonious | Mar 2003 | B1 |
D482420 | Burrows | Nov 2003 | S |
7294064 | Tsurumaki et al. | Nov 2007 | B2 |
7500924 | Yokota | Mar 2009 | B2 |
8083612 | Stites et al. | Dec 2011 | B2 |
8235841 | Stites et al. | Aug 2012 | B2 |
8235844 | Albertsen et al. | Aug 2012 | B2 |
8403771 | Rice et al. | Mar 2013 | B1 |
8435134 | Tang et al. | May 2013 | B2 |
8529368 | Rice et al. | Sep 2013 | B2 |
D692077 | Greensmith et al. | Oct 2013 | S |
8591351 | Albertsen et al. | Nov 2013 | B2 |
8641555 | Stites et al. | Feb 2014 | B2 |
8721471 | Albertsen et al. | May 2014 | B2 |
8821312 | Burnett et al. | Sep 2014 | B2 |
8834289 | De La Cruz et al. | Sep 2014 | B2 |
8834290 | Bezilla et al. | Sep 2014 | B2 |
8900069 | Beach et al. | Dec 2014 | B2 |
8956242 | Rice et al. | Feb 2015 | B2 |
8961332 | Galvan et al. | Feb 2015 | B2 |
8986133 | Bennett et al. | Mar 2015 | B2 |
9211448 | Bezilla et al. | Dec 2015 | B2 |
9220953 | Beach et al. | Dec 2015 | B2 |
9320949 | Golden et al. | Apr 2016 | B2 |
20020183134 | Allen et al. | Dec 2002 | A1 |
20040192463 | Tsurumaki et al. | Sep 2004 | A1 |
20070026961 | Hou | Feb 2007 | A1 |
20070049416 | Shear | Mar 2007 | A1 |
20120142447 | Boyd et al. | Jun 2012 | A1 |
20120142452 | Burnett | Jun 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20170312594 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61863890 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14454574 | Aug 2014 | US |
Child | 15650440 | US |