This application claims the priority of Japanese patent application No. 2008-65056, filed on Mar. 14, 2008 and PCT Application No. PCT/JP2009/053237, filed on Feb. 24, 2009, the disclosures of which are incorporated herein by reference in their entirety.
The present invention relates to a golf club shaft formed by winding prepregs (sheets) made of thermosetting resin and curing the same thermally, and also relates to a golf club.
Prepregs are known as sheet materials made of carbon fibers impregnated with uncured thermosetting resin. In the field of golf club shafts, a plurality of prepregs are wound on a mandrel in the shape of a tapered shaft and thermally cured to be formed into a tapered golf club shaft.
Conventionally, there are usually two types of prepregs: full-length layer and distal-end reinforcing layer. The full-length layer is usually formed into a trapezoidal shape so that the number of turns becomes the same across the full length when wound on a taper-shaped mandrel. The distal-end reinforcing layer is a layer wound only on the distal end portion because the strength (bending rigidity, EI) of the distal end portion becomes insufficient if only trapezoidal prepregs are wound thereon.
The trapezoidal layers 11 through 15, the distal-end reinforcing layer 16 and the triangular prepreg 17 which are wound on a mandrel 10 are heated to cure the uncured thermosetting resin of these layers, thereby forming a golf club shaft. Various types of carbon fibers which can be used as carbon fibers of the trapezoidal layers 11 through 15, the distal-end reinforcing layer 16 and the triangular prepreg 17, and various types of thermosetting resins which can be used as thermosetting resin with which such carbon fibers are impregnated are known in the art.
Line C shown in
In addition, it has been proposed to make a golf club shaft contain rectangular carbon prepregs; however, if rectangular carbon prepregs are simply used, flexural rigidities at different positions in the circumferential direction disperse, so that the performance as a golf club, to which a club head is attached, does not become stable.
In view of the above described problems concerning conventional golf club shafts, an object of the present invention is to obtain a golf club shaft in which the flexural rigidity of the distal end portion can be improved with no change in flexural rigidity on the proximal end while the dispersion in the values of the flexural rigidity in the circumferential direction can be reduced without the use of a distal-end reinforcing layer that causes discontinuous points in the lengthwise direction in flexural rigidity.
As a means for solving the problem the present invention is characterized by a golf club shaft formed by winding prepregs made of uncured thermosetting resin into a tapered shape and curing the prepregs thermally, the golf club shaft including at least three rectangular carbon prepregs as full-length layers, wherein all of the rectangular carbon prepregs are composed of a 0-degree layer, a long fiber direction of which is coincident with a longitudinal direction of the golf club shaft, all of the rectangular carbon prepregs are configured such that an amount of overlapping of each the rectangular carbon prepreg is zero at a large-diameter proximal end portion of the gold club shaft and increasingly overlaps at positions increasingly toward a distal end of the golf club shaft, and wind start positions of the rectangular carbon prepregs are different from one another.
The most desirable number of the rectangular carbon prepregs is four.
It is desirable for the wind start positions of at least three rectangular carbon prepregs to be clocked.
It is generally the case that the golf club shaft according to the present invention is configured such that a triangular carbon prepreg is added to a distal end portion of the golf club shaft to make the distal end portion into a straight shape for fixing the distal end portion to a club head.
The golf club according to the present invention is a golf club having the above-described golf club shaft to which a golf club head and a grip are fixed.
In a golf club shaft according to the present invention, with no occurrence of discontinuous points in the lengthwise direction in flexural rigidity, the flexural rigidity of the distal end portion can be improved, the flexural rigidity of the full length can be improved, and also the dispersion in the values of the flexural rigidity in the circumferential direction can be reduced.
Portions of the rectangular carbon prepregs 21 through 23 on the proximal end (large-diameter portion side) are wound one turn over the entire circumference of the mandrel 10 (with opposite ends of each rectangular carbon prepreg being butt-joined to each other), and remaining portions of the rectangular carbon prepregs 21 through 23 are wound on the mandrel 10 so that the amount of overlapping increases at positions increasingly toward the distal end portion (small-diameter portion). Although the amount of overlapping (overlap angle) of each of the rectangular carbon prepregs 21 through 23 at the distal end varies depending on the length of the mandrel 10 and the taper angle thereof, there are two layers (turns) at the distal end in the first embodiment shown in
Line A shown in
As shown in the above described embodiments, it is essential that the number of rectangular carbon prepregs to be used in each of the above described embodiments is at least three and that all the rectangular carbon prepregs be 0-degree layers and be full-length layers. By satisfying these conditions, the rigidity of the distal end portion can be increased smoothly without changing the rigidity of the proximal end portion.
Next, the necessity of at least three rectangular carbon prepregs to prevent the flexural rigidity in the circumferential direction from dispersing will be hereinafter discussed with reference to comparative examples.
In addition, similar to
As clearly understood from these graphical diagrams, in the case where the number of rectangular carbon prepregs is one or two, dispersion in the flexural rigidity in the circumferential direction is confirmed.
In the present embodiments, the distal-end reinforcing layer 16 that is an essential element of the conventional golf club shaft is unnecessary. Accordingly, the flexural rigidity of distal end portion can be increased with no need to use the distal-end reinforcing layer 16, which is advantageous with respect to parts management also in manufacturing process.
Although the two bias layers 11 and 12 (each of which is wound two turns) are illustrated as full-length trapezoidal layers under the rectangular carbon prepregs 21 through 24 in the above described embodiments, the number of turns of the bias layers can be any number. In addition, regarding the bias layers, the number of turns on the distal end side and the number of turns on the proximal end do not have to be the same. Additionally, the fiber direction and the material thereof are also optional.
Number | Date | Country | Kind |
---|---|---|---|
2008-65056 | Mar 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/053237 | 2/24/2009 | WO | 00 | 11/13/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/113382 | 9/17/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5093162 | Fenton et al. | Mar 1992 | A |
5427373 | Kusumoto | Jun 1995 | A |
6126557 | Preece et al. | Oct 2000 | A |
6354957 | Saito | Mar 2002 | B1 |
6705954 | Takiguchi et al. | Mar 2004 | B2 |
6872151 | Oyama | Mar 2005 | B2 |
6875127 | Hasegawa | Apr 2005 | B2 |
7077761 | Nishio | Jul 2006 | B2 |
7318780 | Oyama | Jan 2008 | B2 |
7361098 | Oyama | Apr 2008 | B2 |
7404771 | Kumamoto | Jul 2008 | B2 |
7727083 | Takeuchi | Jun 2010 | B2 |
20020123392 | Yamada | Sep 2002 | A1 |
20060058111 | Kumamoto | Mar 2006 | A1 |
20060073905 | Oyama | Apr 2006 | A1 |
20070072697 | Matsumoto et al. | Mar 2007 | A1 |
20070238546 | Takeuchi | Oct 2007 | A1 |
20080026868 | Takeuchi | Jan 2008 | A1 |
20090305811 | Matsumoto et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
09-131422 | May 1997 | JP |
10-329247 | Dec 1998 | JP |
11-188125 | Jul 1999 | JP |
2005-270515 | Oct 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20100234124 A1 | Sep 2010 | US |