This invention generally relates to golf club shafts, and more specifically to golf club shafts having high balance points.
Oftentimes, to improve the performance of golf clubs the mass characteristics of a golf club head are altered to improve forgiveness and/or the length of the club is altered to increase head speed. However, the increased head weight and/or length in combination with conventional golf club shafts and grips often creates an undesirable feel during a swing of the golf club.
Golf club manufacturers have created the swing weight measurement to quantify the feel of rotating a golf club about a pivot point that is produced during a swing. Each of the components of a golf club has a mass and center of gravity location that is specific to its design and construction. The mass and location of the center of gravity of each component results in a net moment that can be calculated for any location along the club. Traditionally, swing weight has been quantified by determining the net moment applied by the components on a reference point designated at a location 14.0 inches from the butt end of the golf club.
The lengths of golf clubs through a set generally increase from the wedge-type clubs to wood-type clubs, which generally have lengths of 34.0-48.0 inches. Because of the lengths of the wood-type clubs and the location of the swing weight reference point, small changes in the weight of a club head and the length of the club have a dramatic impact on the swing weight of the assembled golf club.
Some manufacturers have done nothing to counter the effect of the increased length and/or heavier club heads and simply offer golf clubs having greater swing weight. As a result, the user is provided with a club that feels heavier through the swing, which is undesired by many players.
Others have made attempts to reduce the swing weight by adding weights at the grip end of the club and/or heavier grips to counteract the increased moment created by longer clubs and/or heavier club heads. For example, U.S. Pat. No. 4,690,407 to Reisner describes a weighted golf grip that includes a weight element fixed within the grip. The weighted grip is intended to weight the club behind the hands of the user to provide better control and tempo.
However, because the distance between the club head and the reference point is significantly greater than the distance between the reference point and the butt end of the golf club, any additional mass added on the club head end of the golf club must be counteracted by a much larger mass on the butt end of the golf club. As a result, a significant amount of weight must be added as a counterweight to balance even a small increase at the club head end and those weights add a significant amount of weight to the overall golf club weight. The increased overall weight also increases the difficulty in swinging the golf club.
Little attention has been given to the distribution of the existing weight in a golf club, especially the distribution of the weight of the shaft, which may also be used to alter the swing weight. Therefore, it is desirable to provide a golf club shaft that has a weight distribution that counteracts an increase in the swing weight of a golf club caused by an increase in length and/or club head weight.
The invention is directed to a golf club shaft having a high balance point and a golf club incorporating the shaft. Several embodiments of the present invention are described below.
In an embodiment, a shaft for a golf club includes an elongate body. The elongate body has a length greater than 42 inches and it extends between a tip end and a butt end. The center of gravity of the elongate body is located a distance from the butt end that is less than or equal to 44.50% of the length of the elongate body.
In another embodiment, a golf club includes a club head and a shaft. The club head has a mass greater than 180.0 grams. The shaft includes an elongate body that has a length greater than 44 inches and it extends between a tip end and a butt end. The center of gravity of the elongate body is located a distance from the butt end that is less than or equal to 43.75% of the length of the elongate body.
In a further embodiment, a golf club includes a shaft, a club head and a grip. The shaft includes an elongate body that has a length greater than 44 inches and it extends between a tip end and a butt end. The center of gravity of the elongate body is located a distance from the butt end that is less than or equal to 43.75% of the length of the elongate body. The club head is coupled to the tip end of the elongate body. The grip is coupled to the butt end of the elongate body. The club head and the shaft apply a net moment about a reference point located 14.0 inches from the butt end of the elongate body of 221.7-252.3 in-oz.
In the accompanying drawings, which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:
The present invention is directed to a golf club shaft having a high balance point and a golf club incorporating the shaft. The high balance point of the shaft provides a golf club that allows a swing weight to be maintained while increasing the length of the club and/or the weight of the club head. As a result, the feel during the swing of the club is maintained while the club head speed is increased and/or the head mass properties are tailored to provide desired forgiveness.
Referring to
Grip 16 is a generally tubular, cylindrical member that is coupled to butt 18 of shaft 14 and provides a surface that is easily gripped by a user so that the user is able to control the movement of golf club 10 during a swing. Generally, grip 16 is comprised of an elastic material and is attached to butt 18 using an adhesive tape. The grip generally has a weight of 35.0-75.0 grams, a length of approximately 10.5 inches, and a center of gravity located 2.0-8.5 inches from the butt end of grip 16.
As described above, one method of determining the swing weight of golf club 10 is to determine the net moment created by the components about reference point R that is located 14.0 inches from butt 18 of golf club 10. For example, the weight of club head 12 (FH) is multiplied by the distance between the center of gravity of club head 12 and reference point R (XH) to determine the moment caused by club head 12 about reference point R. Similarly, the weight of shaft 14 (FS) is multiplied by the distance between the center of gravity of shaft 14 (also referred to as the “balance point”) and reference point R (XS) to determine the moment caused by shaft 14 about reference point R. Finally, the weight of grip 16 (FG) is multiplied by the distance between the center of gravity of grip 16 and reference point R (XG).
As depicted in
As described above, the swing weight of golf club 10 is affected by the weight of each component as well as the distance between the center of gravity of the respective component and reference point R. For example, keeping all other attributes constant, as the length of golf club 10 is increased, distance XH and XS increase, resulting in an increased swing weight of golf club 10. Similarly, as the weight FH of club head 12 is increased, the swing weight of golf club 10 is increased. As a result, increasing the length of golf club 10 to increase head speed and ball travel distance and/or increasing the mass of club head 12 to provide more discretionary mass and more forgiving mass properties both tend to increase the swing weight of golf club 10.
Shaft 14 of the present invention provides a balance point that is shifted toward butt 18 of golf club 10, as compared to conventional shafts, to at least partially counter the effect of increasing the length and/or head weight of golf club 10. In particular, the shaft of the present invention has a length that is greater than or equal to 42.0 inches, and more preferably 44.0 inches, and a balance point percentage (BP%) that is less than or equal to 44.50% (i.e., the distance from the butt end of the shaft to the balance point is less than or equal to 44.50% of the shaft length LS), and more preferably 43.75%, and a shaft weight less than 90.0 grams. As a result, the distance XS is reduced, thereby reducing the moment applied to reference point R by shaft 14, as compared to a conventional shaft of the same weight.
The position of the balance point of shaft 14 allows more discretion in the length of golf club 10 and weight of club head 12 by reducing the impact of shaft 14 on the swing weight of golf club 10. Referring to
Each of isobars A-F illustrates the relationship between head weight and balance point percentage for golf club 10 having a particular length and a swing weight of 216.75 in·oz. For example, isobar A corresponds to golf club 10 having an overall length of 44.0 inches and illustrates that the swing weight is achieved with a shaft having a balance point percentage greater than 43.75% (as indicated by the dashed line) with a head weight less than approximately 212.0 grams. Isobar B corresponds to golf club 10 having an overall length of 44.5 inches and illustrates that the swing weight is achieved with a shaft balance point percentage greater than 43.75% with a head weight less than approximately 208.0 grams, but keeping all else equal including a head weight greater than 208.0 grams requires a shaft balance point percentage less than or equal to 43.75%. Isobar C illustrates the relationship for golf club 10 having an overall length of 45.0 inches and illustrates that the swing weight is achieved keeping the weight of the shaft and grip constant after increasing the weight of club head 12 above approximately 204.5 grams by reducing the shaft balance point percentage to less than or equal to 43.75%. Isobar D illustrates that the swing weight is achieved in a golf club having overall length of 45.5 inches and club head weight of approximately 201.0 grams with a shaft balance point percentage less than or equal to 43.75%. Isobar E corresponds to golf club 10 having an overall length of 46.0 inches and illustrates that the desired swing weight may be achieved by constructing the shaft so that has a balance point percentage less than or equal to 43.75% for club head 12 having a weight greater than approximately 197.5 grams. Isobar F illustrates the relationship for golf club 10 having an overall length of 46.5 inches and illustrates that for a club head having a weight greater than 195.0 grams the swing weight may be achieved by constructing shaft 14 to have a balance point percentage less than 43.75%.
Additionally, each of isobars A-F illustrates that reducing the balance point percentage of the shaft allows the length of golf club 10 to be increased for a club head having a constant weight. For example, for a club head weight of 203.0 grams, a swing weight of 216.75 in·oz is achieved in a 45.0 inch golf club with a balance point percentage of approximately 47.50%, but by reducing the balance point percentage to approximately 41.00% the same swing weight is achieved in a golf club having a length of 45.5 inches.
Referring to
Isobar G of
Referring to
Isobar M of
Golf club manufacturers are generally supplied shafts having raw shaft length that is greater than the length necessary for a particular club, for example driver shafts are often provided having lengths of 46.0 inches or greater. The club manufacturer then removes material from the butt end of the raw shaft to reduce the length of the shaft to the appropriate length for a desired overall length of golf club 10. The weight of shaft 14 is distributed through the shaft so that as material is removed from the shaft the balance point percentage remains less than 43.75% with the cut length of the shaft being greater than or equal to 44.0 inches.
It is also desirable to provide shaft 14 with additional attributes to control the performance attributes of the shaft in addition to providing a shaft balance point percentage of less than 43.75%. For example, the weight of shaft 14 is preferably less than 90.0 grams, more preferably 40.0-70.0 grams and even more preferably 50.0-60.0 grams. The outer diameter of tip 20 of shaft 14 is preferably 0.250-0.500 inches, and more preferably 0.330-0.355 inches. The outer diameter of butt 18 of shaft 14 is preferably 0.550-0.900 inches, and more preferably 0.560-0.700 inches. The butt frequency (i.e., frequency of vibration of shaft 14 clamped at butt 18 and tip end deflected) is preferably 200-400 cycles per minute (cpm), and more preferably 230-275 cpm. The tip frequency (i.e., the frequency of vibration of shaft 14 clamped at approximately 12.5 inches from tip 20 and the tip end deflected) is preferably 400-1200 cpm, and more preferably 550-1000 cpm. The mid frequency (i.e., the frequency of vibration of shaft 14 clamped at approximately 27.5 inches from the tip and tip end deflected) is preferably 150-450 cpm, and more preferably 250-375 cpm. Additionally, shaft 14 preferably has a torque value 1°-10°, and more preferably 2°-9°when a 1.0 ft·lb torque is applied at approximately 1.0 inch from tip 20 with butt 18 of shaft 14 clamped.
In one example, a shaft having a length of 45.8-46.2 inches and weight of 53.0-59.0 grams has a balance point of 19.15-19.85 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 41.45%-43.34%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.608-0.620 inch, a butt frequency of 240-246 cpm, a tip frequency of 680-724 cpm, a mid frequency of 304-318 cpm, and a torque of 6.25°-6.75°. In one example, a 45.0 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 200.0-208.0 grams and a grip having a weight of 43.0-48.0 grams. The resulting club has a swing weight of approximately 216.75-220.25 in oz.
In another example, a shaft having a length of 45.8-46.2 inches and weight of 57.0-63.0 grams has a balance point of 19.15-19.85 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 41.45%-43.34%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.614-0.626 inch, a butt frequency of 243-249 cpm, a tip frequency of 713-759 cpm, a mid frequency of 317-331 cpm, and a torque of 6.25°-6.75°. In one example, a 45.0 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 200.0-208.0 grams and a grip having a weight of 47.0-52.0 grams. The resulting club has a swing weight of approximately 216.75-220.25 in·oz.
In a further example, a shaft having a length of 45.8-46.2 inches and weight of 61.0-67.0 grams has a balance point of 19.35-20.05 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 41.88%-43.78%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.614-0.626 inch, a butt frequency of 258-264 cpm, a tip frequency of 774-822 cpm, a mid frequency of 338-352 cpm, and a torque of 5.35°-5.85°. In one example, a 45.0 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 200.0-208.0 grams and a grip having a weight of 50.0-55.0 grams. The resulting club has a swing weight of approximately 216.75-220.25 in·oz.
In yet another example, a shaft having a length of 45.8-46.2 inches and weight of 50.0-56.0 grams has a balance point of 19.55-20.18 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 42.32%-44.06%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.601-0.613 inch, a butt frequency of 240-246 cpm, a tip frequency of 711-755 cpm, a mid frequency of 314-328 cpm, and a torque of 6.75°-7.25°. In one example, a 45.5 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 194.0-203.0 grams and a grip having a weight of 47.5-52.5 grams. The resulting club has a swing weight of approximately 215.00-220.25 in·oz.
In another example, a shaft having a length of 45.8-46.2 inches and weight of 53.0-59.0 grams has a balance point of 19.55-20.18 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 42.32%-44.06%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.606-0.615 inch, a butt frequency of 244-250 cpm, a tip frequency of 721-766 cpm, a mid frequency of 320-334 cpm, and a torque of 5.85°-6.35°. In one example, a 45.5 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 194.0-203.0 grams and a grip having a weight of 47.5-52.5 grams. The resulting club has a swing weight of approximately 215.00-220.25 in·oz.
In another example, a shaft having a length of 45.8-46.2 inches and weight of 61.0-67.0 grams has a balance point of 19.35-20.05 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 41.88%-43.78%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.614-0.626 inch, a butt frequency of 258-264 cpm, a tip frequency of 774-822 cpm, a mid frequency of 338-352 cpm, and a torque of 5.35°-5.85°. In one example, a 45.5 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 194.0-203.0 grams and a grip having a weight of 47.5-52.5 grams. The resulting club has a swing weight of approximately 215.00-220.25 in·oz.
In another example, a shaft having a length of 45.8-46.2 inches and weight of 57.5-63.5 grams has a balance point of 19.45-20.15 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 42.10%-44.00%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.612-0.624 inch, a butt frequency of 232-238 cpm, a tip frequency of 678-720 cpm, a mid frequency of 302-316 cpm, and a torque of 7.75°-8.25°. In one example, a 45.0 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 193.0-204.0 grams and a grip having a weight of 43.0-47.5 grams. The resulting club has a swing weight of approximately 215.00-218.50 in·oz.
In yet another example, a shaft having a length of 45.8-46.2 inches and weight of 58.0-64.0 grams has a balance point of 19.45-20.15 inches from the butt end of the shaft. As a result, the shaft has a balance point percentage of 42.10%-44.00%. The shaft also includes a tip outer diameter of 0.333-0.337 inch, a butt outer diameter of 0.614-0.626 inch, a butt frequency of 246-252 cpm, a tip frequency of 712-758 cpm, a mid frequency of 320-334 cpm, and a torque of 7.75°-8.25°. In one example, a 45.0 inch golf club utilizing that shaft in a cut length, and a balance point percentage less than or equal to 44.50% after being cut, includes a club head having a weight of 194.0-205.0 grams and a grip having a weight of 47.0-52.0 grams. The resulting club has a swing weight of approximately 216.75-220.25 in oz.
While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Elements from one embodiment can be incorporated into other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.
This application is a divisional of U.S. patent application Ser. No. 12/189,825, filed Aug. 12, 2008, now U.S. Pat. No. 8,066,583 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3679207 | Florian | Jul 1972 | A |
5093162 | Fenton et al. | Mar 1992 | A |
5308062 | Hogan | May 1994 | A |
5417108 | Chastonay | May 1995 | A |
5573468 | Baumann | Nov 1996 | A |
6328660 | Bunn | Dec 2001 | B1 |
6532818 | Blankenship | Mar 2003 | B2 |
6546802 | Shiraishi et al. | Apr 2003 | B2 |
6824636 | Nelson et al. | Nov 2004 | B2 |
6981922 | Lenhof et al. | Jan 2006 | B2 |
7338386 | Nakajima | Mar 2008 | B2 |
20030083143 | Kumamoto | May 2003 | A1 |
20030207720 | Sery | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
11192330 | Jul 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20120071266 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12189825 | Aug 2008 | US |
Child | 13305057 | US |