This disclosure relates generally to a golf club head with an adjustable weight wherein the weight system provides peripheral weighting and trajectory manipulation of the golf ball flight upon impact.
In general, there are many important physical parameters (i.e., volume, mass, etc.) that effect the overall performance of the golf club head. One of the most important physical parameters is the center of gravity (CG) of the golf club head. The CG of the golf club head directly affects the performance characteristics (i.e., moment of inertia, launch, ball speed, etc.). A desirable CG position on a golf club head is low and rearward from the strike face, to optimally raise the launch angle and MOI of the golf ball. Additionally, the CG position can be moved nearer to the toe end or heel end of the golf club head to further affect the side spin of the golf ball.
Many current wood type golf club heads achieve a desired CG position through the use of slidable swing weights on the sole of the golf club head, or through the use of multiple swing weight ports, wherein one or more weights can be affixed within. However, slidable swing weights and multiple weight configurations require a large amount of internal structure to support the plurality of weights and/or the different positioning of the weight(s). Further, these bulky weight systems can negatively affect the CG positioning since discretionary mass of the club head is allotted to support the weight systems. There is a need in the art for a weighting system that can variably affect the CG of the golf club head, without the need for a slidable system or plurality of weight ports.
Moving the center of gravity of a golf club head toward the heel or toe of the golf club head contributes to shaping golf ball flight towards a fade or draw bias. Such shot shaping is desirable to help improve a golfer's shot. However, if an adjustable weight system requires a comparatively large movement of the adjustable weight across the volume of the golf club head, then the CG of the golf club head is moved forward toward the striking face of the golf club head, and usually moved higher above the sole in the volume of the golf club head. This movement of the CG towards the striking face and higher in the club head volume reduces the combined moment of inertia of the golf club head. The reduction of club head MOI is not desirable, as the forgiveness for off center hits is reduced. Thus, in conventional adjustable weight systems, the user must choose between shot shaping and forgiveness. Further, in conventional adjustable weight systems, the larger or more distributed weight port structures are permanently placed masses that often offset the effect of the movement of an adjustable weight member to other positions on a golf club head
This disclosure relates generally to sport equipment and relates more particularly to golf club heads and related methods.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Described herein is a golf club head having an adjustable weight assembly. The golf club head comprises a heavy, large mass weight member mechanically fixed within a slot on the sole of the golf club head. The slot is located at the farthest rear point of the golf club head and is confined to a comparably small arc at the rear portion of the golf club head. The positioning of the adjustable weight assembly, the large mass of the weight member, and the small arc of movement of the weight member combine to address an ongoing problem associated with adjustable weight systems for golf club heads.
In conventional adjustable weight systems, a large movement of the adjustable weight is needed to affect ball flight, because the mass of the weight moved is relatively small. However, the large movement of the weight mass also cause relatively large decreases in the total moment of inertia of the golf club head. Thus, in a conventional adjustable weight system the user is forced to accept a decrease in forgiveness for miss-hits in order to achieve shot shaping.
The weight assembly slot described herein comprises two to six threaded receivers positioned relatively close to one another. The weight member can be positioned in two to six positions within the slot, to influence a straight ball flight, a right to left ball flight, and a left to right ball flight. The combination of a single, smaller slot on the sole with a single, heavy weight member leads to improvements in CG movement and MOI preservation. This is achieved by confining the slot to a relatively small arc on the rear of the golf club head. The smaller arc provided a smaller displacement towards the heel or toe of the golf club head, but the heavier weight counter balances the smaller displacement of the weight member, allowing the user to shape golf ball flight by using a comparatively smaller weight member displacement.
In addition, the discretionary mass that is saved from only having a single, smaller weight slot can be allocated to favorable locations to further improve the CG and MOI of the golf club head. The weight member configuration allows improvements in heel and toe movement of the CG without grossly affecting the overall CG and total inertia of the golf club head. Furthermore, the weight member and slot combination improves the heel and toe movement of the CG, without physically reallocating the mass of the golf club head to completely different portions of the golf club head. Thus, the weight member configuration allows the user to change the shot shape of the golf club head, without effecting the overall inertia and launch of the golf club head.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, device, or apparatus that comprises a list of elements is not necessarily limited to those elements but may include other elements not expressly listed or inherent to such process, method, system, article, device, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the apparatus, methods, and/or articles of manufacture described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
The golf club head 100, 300 comprises a hosel 130, a strike face 108, a crown 110, a sole 116, a heel region 120, a toe region 124, and a rear portion 128. Together, the strike face 108, the crown 110, the sole 116, the heel region 120, the toe region 124, and the rear portion 128 form a hollow interior of the club head 100. The golf club head 100 further comprises a slot 240 in the rear portion 128 and the sole 116. A weight assembly 380 can be positioned and affixed within the slot 240.
Referring to
Referring to
Referring to
Referring to
In these or other embodiments, the club head 100 can be viewed from a front view (
The club head 100, 300 defines a depth 160, 360, a length 162, 362, and a height 164, 364. Referring to
The length 162 of the club head 100 can be measured as the furthest extent of the club head 100 from the heel 120 to the toe 124, in a direction parallel to the X axis 1050, when viewed from the front view (
The height 164 of the club head 100 can be measured as the furthest extent of the club head 100 from the crown 110 to the sole 116, in a direction parallel to the Y axis 1060, when viewed from the front view (
Referring to
The club head 100 can further comprises a moment of inertia Ixx (i.e. crown-to-sole moment of inertia) about an axis parallel to the X axis through the club head CG 180, a moment of inertia Iyy (i.e. heel-to-toe moment of inertia) about an axis parallel to the Y axis through the club head CG 180, and a moment of inertia Izz about an axis parallel to the Z axis through the club head CG 180. The sum of Ixx, Iyy, and Izz is the total or combined moment of inertia of the golf club head 100. In many embodiments, the crown-to-sole moment of inertia Ixx and the heel-to-toe moment of inertia Iyy are increased or maximized based on various club head parameters, such as volume and loft angle, as described in further detail below. Further, in many embodiments, the crown-to-sole moment of inertia Ixx and the heel-to-toe moment of inertia Iyy, are increased or maximized in combination with reduced aerodynamic drag.
Described herein are various embodiments of a golf club head 100 having a movable weight assembly 380. In many embodiments, the golf club head 100 can be wood type golf club head (i.e. driver, fairway wood, hybrid).
In some embodiments, the golf club head 100 can comprise a driver. In these embodiments, the loft angle of the club head can be less than approximately 16 degrees, less than approximately 15 degrees, less than approximately 14 degrees, less than approximately 13 degrees, less than approximately 12 degrees, less than approximately 11 degrees, or less than approximately 10 degrees. Further, in these embodiments, the volume of the club head can be greater than approximately 400 cc, greater than approximately 425 cc, greater than approximately 450 cc, greater than approximately 475 cc, greater than approximately 500 cc, greater than approximately 525 cc, greater than approximately 550 cc, greater than approximately 575 cc, greater than approximately 600 cc, greater than approximately 625 cc, greater than approximately 650 cc, greater than approximately 675 cc, or greater than approximately 700 cc. In some embodiments, the volume of the club head can be approximately 400 cc-600 cc, 425 cc-500 cc, approximately 500 cc-600 cc, approximately 500 cc-650 cc, approximately 550 cc-700 cc, approximately 600 cc-650 cc, approximately 600 cc-700 cc, or approximately 600 cc-800 cc.
In some embodiments, the golf club head can comprise a fairway wood. In these embodiments, the loft angle of the golf club head can be less than approximately 35 degrees, less than approximately 34 degrees, less than approximately 33 degrees, less than approximately 32 degrees, less than approximately 31 degrees, or less than approximately 30 degrees. Further, in these embodiments, the loft angle of the club head can be greater than approximately 12 degrees, greater than approximately 13 degrees, greater than approximately 14 degrees, greater than approximately 15 degrees, greater than approximately 16 degrees, greater than approximately 17 degrees, greater than approximately 18 degrees, greater than approximately 19 degrees, or greater than approximately 20 degrees. For example, in some embodiments, the loft angle of the club head can be between 12 degrees and 35 degrees, between 15 degrees and 35 degrees, between 20 degrees and 35 degrees, or between 12 degrees and 30 degrees.
In embodiments where the golf club head comprises a fairway wood, the volume of the club head is less than approximately 400 cc, less than approximately 375 cc, less than approximately 350 cc, less than approximately 325 cc, less than approximately 300 cc, less than approximately 275 cc, less than approximately 250 cc, less than approximately 225 cc, or less than approximately 200 cc. In these embodiments, the volume of the club head can be approximately 160 cc-200 cc, approximately 160 cc-250 cc, approximately 160 cc-300 cc, approximately 160 cc-350 cc, approximately 160 cc-400 cc, approximately 300 cc-400 cc, approximately 325 cc-400 cc, approximately 350 cc-400 cc, approximately 250 cc-400 cc, approximately 250 cc-350 cc, or approximately 275 cc-375 cc.
In some embodiments, the golf club head can comprise a hybrid. In these embodiments, the loft angle of the club head can be less than approximately 40 degrees, less than approximately 39 degrees, less than approximately 38 degrees, less than approximately 37 degrees, less than approximately 36 degrees, less than approximately 35 degrees, less than approximately 34 degrees, less than approximately 33 degrees, less than approximately 32 degrees, less than approximately 31 degrees, or less than approximately 30 degrees. Further, in these embodiments, the loft angle of the club head can be greater than approximately 16 degrees, greater than approximately 17 degrees, greater than approximately 18 degrees, greater than approximately 19 degrees, greater than approximately 20 degrees, greater than approximately 21 degrees, greater than approximately 22 degrees, greater than approximately 23 degrees, greater than approximately 24 degrees, or greater than approximately 25 degrees.
In embodiments where the golf club head comprises a hybrid, the volume of the club head is less than approximately 200 cc, less than approximately 175 cc, less than approximately 160 cc, less than approximately 125 cc, less than approximately 100 cc, or less than approximately 75 cc. In some embodiments, the volume of the club head can be approximately 100 cc-160 cc, approximately 75 cc-160 cc, approximately 100 cc-125 cc, or approximately 75 cc-125 cc.
In some embodiments, the golf club head 100 can comprise stainless steel, titanium, aluminum, a steel alloy (e.g. 455 steel, 475 steel, 431 steel, 17-4 stainless steel, maraging steel), a titanium alloy (e.g. Ti 7-4, Ti 6-4, T-9S), an aluminum alloy, or a composite material. In some embodiments, the strike face 108 of the golf club head 100 can comprise stainless steel, titanium, aluminum, a steel alloy (e.g. 455 steel, 475 steel, 431 steel, 17-4 stainless steel, maraging steel), a titanium alloy (e.g. Ti 7-4, Ti 6-4, T-9S), an aluminum alloy, or a composite material. In other embodiments, the golf club head 100 can comprise the same material as strike face 108. In some embodiments, the golf club head 100 can comprise a different material than strike face 108.
Referring to
Referring to
The slot 240 may comprise two to six apertures. The slot 240 may comprise 2, 3, 4, 5, or 6 apertures. In most embodiments, the apertures are equally spaced, however in some embodiments, the apertures can be unevenly spaced across the interior surface 242 of the slot 240. In the exemplary embodiment, the slot 240 comprises three apertures spaced along the interior surface of the slot 242 such that each aperture center is spaced between 0.5 inch and 0.6 inch from the adjacent aperture(s).
The weight assembly 380 can be positioned and affixed within the single slot 240. The position of the weight assembly 380 within the single slot 240 determines the effect that the mass of the weight assembly 380 will have on the position of the total CG 180 of the golf club head 100. A movement of the weight assembly 380 toward the toe 124 or heel 120 of the golf club head 100 will move the CG 180, and will help shape the flight of a golf ball when it is struck with the golf club head 100.
The single slot 240 can further comprise at least a central aperture 252, a heel-side aperture 254, and a toe-side aperture 256. Each of the apertures comprise weight assembly 380 attachment points within the single slot 240. Each of the toe-side, central, and heel-side apertures comprise a circular cross section and an aperture center. Each of the toe-side, central, and heel-side apertures are threaded to receive a threaded fastener 390.
The golf club head 100 can further comprise a shroud 220, wherein the shroud 220 is a portion of the sole 116 of the golf club head 100 that can extend to span over the slot 240. The shroud 220 may comprise a portion or all of the bottom surface 244.
In most embodiments, the shape of the interior surface of the slot 242 is complimentary to the shape of the inner surface 364 of the weight member 370. In the exemplary embodiment, the interior surface of the slot 242 is convex and is complementary to the concave interior surface 364 of the weight member 370.
The slot length 257 of the slot interior surface 242 may vary between 1.6 inches and 2.0 inches. The slot length 257 may be 1.6 inches, 1.7 inches, 1.8 inches, 1.9 inches, or 2.0 inches. The slot length 257 of the slot interior surface 242 is no longer than 2.0 inches.
Further, in some embodiments, the slot 240 can comprise an asymmetric shape, wherein the cross-sectional shape of the slot 240 in a heel to toe direction is non-uniform. The shape of the slot 240 is imperative to the security of the weight assembly within the slot 240, since the asymmetric cross-sectional shape of the slot channel 248 enables three positions to align the weight assembly 380 with one of the heel-side 254, toe-side 256, or central 252 apertures. Due to the asymmetric shape of the slot 240 the weight assembly 380 is unable to slide throughout the channel 248. Rather, the weight assembly 380 must be removed and placed in one of the three distinct positions.
Furthermore, the slot 240 can comprise a height 247 measured from the bottom surface of the slot 244 to the sole 116. Wherein the height 247 of the slot 240 is the height of the channel 248. In most embodiments, the slot 240 can comprise a variable height 247, wherein the height is inconsistent in the heel to toe direction. The non-uniform height of the slot 240 is imperative to the security of the weight assembly 380 within the slot 240, since the variable height 247 of the channel 248 enables three positions to align the weight assembly 380 with one of the heel-side 254, toe-side 256, or central 252 apertures. Due to the non-uniform height 247 of the slot 240 the weight assembly 380 is unable to slide laterally throughout the channel 248. Rather, the weight assembly 380 must be removed and placed in one of the three distinct positions. This prevents the golfer from being provided unlimited position choices that create confusion in determining shot shape of the golf ball and flight.
The variable height 247 of the slot 240 may vary in a range between 0.2 and 0.6 inch. The variable height 247 of the slot 240 may be 0.2 inch, 0.3 inch, 0.4 inch, 0.5 inch, or 0.6 inch.
In some embodiments, the golf club head 100 can comprise a shroud 220, wherein a portion of the sole 116 of the golf club head can span over the slot 240. The shroud 220 functions to increase the aerodynamics of the channel 248 and assist in properly inserting the weight member 370 within the slot 240. The shroud 220 can have any desired geometry to cover a specific portion(s) of the slot or the entire slot 240. In some embodiments, the shroud 220 can cover 5%-10% of the slot, 10%-15% of the slot, 15%-20% of the slot, 20%-25% of the slot, 25%-30% of the slot, 30%-35% of the slot, 35%-40% of the slot, 40%-45% of the slot, 45%-50% of the slot, 50%-55% of the slot, 55%-60% of the slot, 60%-65% of the slot, 65%-70% of the slot, 70%-75% of the slot, 75%-80% of the slot, 80%-85% of the slot, 85%-90% of the slot, 90%-95% of the slot, or 95%-100% of the slot.
Referring to
In some embodiments, more than one weight member 370 may be available to be affixed to the golf club head. Two weight members 370 may have different masses. However, only one weight assembly 380 may be affixed to the golf club head at a time. Two or more weight members 370 or two or more weight assemblies 380 may not be affixed to the golf club head at a time.
The weight member 370 can be made of any material, such as metals, polymers (e.g. thermoplastic polyurethane, thermoplastic elastomer), composites, or any combination thereof. The weight member 370 can be a polymer injection molded with different quantities of a high-density material (e.g. metal powder) or materials of different densities, to achieve backweights of varying mass, while maintaining the same volume. Injection molded weight members with different densities allow for a wide range of weight members with an identical volume and geometric shape.
In many embodiments, the mass of the weight member ranges between 14 g and 48 g. In some embodiments, the mass of the weight member ranges from 14 g-16 g. 16 g-18 g, 18 gr-20 gr, 20.0 g-22.0 g, 22.0 g-24.0 g, 24.0 g-26.0 g, 26.0 g-28.0 g, 28.0 g-30.0 g, 30.0 g-32.0 g, 32.0 g-34.0 g, 34.0 g-36.0 g, or 36.0 g-38.0 g. The mass of the weight assembly can be 14 g, 15, 16, 17, 18, 19, 20 g, 21 g, 22 g, 23 g, 24 g, 25 g, 26 g, 27 g, 28 g, 29 g, 30 g, 31 g, 32 g, 33 g, 34 g, 35 g, 36 g, 37 g, 38 g, 39 g, 40 g, 41 g, 42 g, 43 g, 44 g, 45 g, 46 g, 47 g, or 48 g. In many embodiments, the mass of the weight assembly (weight member and fastener) ranges between 16 grams and 50 grams. In some embodiments, the mass of the backweight assembly ranges from 16 g-18 g, 18 g-20 g, 20 g-22 g, 22.0 g-24.0 g, 24.0 g-26.0 g, 26.0 g-28.0 g, 28.0 g-30.0 g, 30.0 g-32.0 g, 32.0 g-34.0 g, 34.0 g-36.0 g, 36.0 g-38.0 g, or 38.0 g-40.0 g, 40 g-42 g, 42 g-44 g, 44 g-46 g, 46 g-48 g, or 48 g-50 g. The mass of the weight assembly can be 16 g, 17 g, 18 g, 19 g, 20 g, 21 g, 22 g, 23 g, 24 g, 25 g, 26 g, 27 g, 28 g, 29 g, 30 g, 31 g, 32 g, 33 g, 34 g, 35 g, 36 g, 37 g, 38 g, 39 g, 40 g, 41 g, 42 g, 43 g, 44 g, 45 g, 46 g, 47 g, 48 g, 49 g, or 50 g.
The weight member 370 may not have a mass less than 14 grams. The weight assembly may not have a weight assembly 380 mass less than 16 grams. A lower mass for the weight member 370 or weight assembly 380 will provide insufficient mass to affect golf club head performance in a meaningful manner given the restriction of movement the slot 240 size and location imposes on movement of the weight assembly 380.
Referring to
The weight member 370 comprises a length 374 measured along in a toe to heel direction when the weight member 370 is affixed within the slot 240. The weight member 370 comprises a width 376 measured in a front to rear direction when the weight member 370 is affixed within the slot 240. The weight member 370 comprises a maximum outer surface height 363 measured in a sole to crown direction along a weight outer surface 362 when the weight member 370 is affixed within the slot 240. The weight member 370 comprises a maximum interior surface height 365 measured in a sole to crown direction along a weight interior surface 364 when the weight member 370 is affixed within the slot 240. The weight member 370 comprises a weight member center of gravity or CG 500. The weight member 370 is configured such that the weight member CG 500 is within the weight member aperture 375.
The weight member length 374 is measured in a toe to heel direction along the interior surface 364 of the weight member 370, The weight member length 374 may vary in range of 0.5 inch to 2.0 inch. The weight member length 374 may be 0.5 inch, 0.6 inch, 0.7 inch, 0.8 inch, 0.9 inch, 1.0 inch, 1.1 inches, 1.2 inches, 1.3 inches, 1.4 inches, 1.5 inches, 1.6 inches, 1.7 inches, 1.8 inches, 1.9 inches, or 2.0 inches. The weight member length 374 may not be greater than 2.0 inches.
The weight member width 376 may vary in a range of 0.4 inch to 2.0 inches. The weight member length 376 may be 0.4 inch, 0.5 inch, 0.6 inch, 0.7 inch, 0.8 inch, 0.9 inch, 1.0 inch, 1.1 inches, 1.2 inches, 1.3 inches, 1.4 inches, 1.5 inches, 1.6 inches, 1.7 inches, 1.8 inches, 1.9 inches, or 2.0 inches.
The weight member maximum outer surface height 363 may vary in a range of 0.2 inch to 0.6 inch. The maximum outer surface height 363 may be 0.2 inch, 0.3 inch, 0.4 inch, 0.5 inch, or 0.6 inch.
The weight member maximum interior surface height 365 may vary in a range of 0.1 inch to 0.5 inch. The interior surface height 365 may be 0.1 inch, 0.2 inch, 0.3 inch, 0.4 inch, or 0.5 inch.
When the weight assembly 380 is affixed to the golf club head 100, the weight member 370 slopes downward from the interior surface 364 towards the outer surface 362 such that more of the mass of the weight member 370 is distributed towards the rear portion 128 and sole 116 of the golf club head 100. This further contributes to the movement of the total CG 180 of the golf club head 100 rearwards and downwards.
The outer surface height 363 is greater than the inner surface height 365, which produces the downward sloping shape of the weight member 370. An lower surface slant or angle 373 is defined by the difference in the outer surface height 363 and the interior surface height 365. The lower surface angle 373 may vary in a range of 1 degree to 30 degrees. The lower surface angle 373 may be 1 degree, 2 degrees, 3 degrees, 4 degrees, 5 degrees, 6 degrees, 7 degrees, 8 degrees, 9 degrees, 10 degrees, 11 degrees, 12 degrees, 13 degrees, 14 degrees, 15 degrees, 16 degrees, 17 degrees, 18 degrees, 19 degrees, 20 degrees, 21 degrees, 22 degrees, 23 degrees, 24 degrees, 25 degrees, 26 degrees, 27 degrees, 28 degrees, 29 degrees, 30 degrees.
The weight member 370 further comprises a sloping reduction of its maximum height towards each end along the length 374 of the weight member. The two sloping shoulders of the weight member's reduced height further assists in the retention of the weight member 370 within the slot 240. As the slot height 247 varies asymmetrically, the positions within the slot 240 wherein the weight member 370 may be affixed have a larger height. The sloping shoulders of the weight member 370 allow either end of the weight member 370 to fit within the slot 240 as the variable height 247 of the slot 240 decreases around the positions wherein the weight member 370 may be affixed. The sloping shoulders therefore contribute to the retention of the weight member 370 within the slot 240, and are configured to fit within the variable height 247 of the slot 240.
Referring to
Because the interior surface of the slot 242 is convex, each of the toe-side fastener axis 516 and the heel-side fastener axis 512 extend in a line toward the golf club head front end 112 such that the extended axes come to a point of intersection. The point of intersection of the two axes comprises a depth from the loft plane 1010. The fastener axis intersection point depth 540 may vary between 2.8 inches and 3.2 inches. The fastener axis intersection point depth 540 may be 2.8 inches, 2.9 inches, 3.0 inches, 3.1 inches, or 3.2 inches.
The toe-side fastener axis 516 and heel-side fastener axis 512 form two rays of an angle having a vertex at the fastener axis intersection point 540. The size of the angle between the toe-side fastener axis 516 and heel-side fastener axis 512 comprises an angular separation between the two axes. Further, because toe-side and heel-side apertures are the apertures furthest apart within the slot, the two fasteners axes are at a maximum angular separation.
Referring to
Alternately, the golf club head depth 160 is in a range of 3.0 inches to 6.0 inches. Referring to
The slot structure depth 412 may vary in a range from 0.9 inch to 1.2 inches. The slot structure length 414 may vary in a range from 2.2 inches to 2.8 inches.
The slot structure depth 412 may be 0.9 inch, 1.0 inch, 1.1 inches, or 1.2 inches.
The slot structure length 414 may be 2.2 inches, 2.3 inches, 2.4 inches, 2.5 inches, 2.6 inches, 2.7 inches, or 2.8 inches.
The slot structure depth 412 may not be greater than 1.2 inches. The slot structure length 414 may not be greater than 2.8 inches.
Due to the limited size of the slot structure 240, the mass of the slot structure 240 is very small in comparison to the total mass of the golf club head 100. The mass of the slot structure 240 may be less than 7.0% of the total mass of the golf club head 100.
Referring to
Referring to
The weight assembly 380 is moveable to each of the slot apertures. Each of the slot apertures is separated from the adjacent aperture(s) by an aperture separation distance 610. The aperture separation distance 610 may vary in a range from 0.5 inch to 0.6 inch. The aperture separation distance 610 may be 0.5 inch or 0.6 inch. In the exemplary embodiment, the aperture separation distance 610 is 0.6 inch. Moving the weight assembly from a central aperture position 252 to either the toe-side aperture 256 or heel-side aperture 254 moves the large mass of the weight assembly 380 such that the overall CG 180 of the golf club head 100 is displaced.
In one embodiment, the weight assembly 380 can be configured in the slot 240 of the golf club head 100 to set up in a neutral position to hit a straight golf shot. The fastener 390 affixes within the central aperture 252 of the slot 240. The central positioning of the weight member 370 within the slot 240 leads to a generally straight ball flight, as the center of gravity or CG 180 of the entire golf club head 100 is extremely balanced.
In another embodiment, the weight assembly 380 can be configured in the slot 240 of the golf club head 100, to set up a heel-ward position, to hit a fade type golf shot. The fastener 390 affixes within the heel-side aperture 254 of the slot 240. The heel-ward positioning of the weight member 370 within the slot 240 leads to a generally left to right ball flight (for lefthanded golfers a right to left ball flight), as the entire golf club head CG 180 is off center towards the heel portion 120, 320 of the golf club head 100.
In another embodiment, the weight assembly 380 can be configured in the slot 240 of the golf club head 100, to set up a toe-ward position, to hit a draw type golf shot. The fastener 390 affixes within the toe-side aperture 256 of the slot 240. The toe-ward positioning of the weight member 370 within the slot 240 leads to a generally right to left ball flight (for righthanded golfers a left to right ball flight), as the entire golf club head CG 180 is off center towards the toe portion 124, 324 of the golf club head 100.
Table 1 below displays the positioning of the CG 180 of the golf club head, as the weight assembly 380 is reconfigured within the slot 240. The golf club head CG 180 is displace in terms of movement parallel to the X-axis 1050, the Y-axis 1060, and the Z-axis 1070. The CG 180 differential movement in inches parallel to the X-axis is the CGx 185, the differential movement in inches parallel to the Y-axis is the CGy 186, and the differential movement in inches relative to the Z-axis is the CGz 187. The results below were compiled from a 35 gram tungsten weight, a 199 g golf club head weight, and with 0.6 inches of reconfiguration (or aperture separation distance 610) within the slot 240 relative to the central aperture 252 when the weight assembly 380 is moved to either the heel-side aperture 254 or the toe-side aperture 256.
Referring to Table 1, above, the movement of CGx is approximately 0.04 inch towards the heel or 0.09 inch towards the toe from the starting center position when the weight member 370 is placed in either the heel-side aperture 254 or the toe-side aperture 256. However, the movements of CGy and CGz are significantly smaller (less than 0.01 inch and 0.04 inch respectively). Further, the total moment of inertia or MOI decrease of the golf club head 100 is minimized.
Referring to Table 2, above, the change of total MOI for the same golf club head 100 is a very small 3.4% decrease when the weight assembly 380 is shifted to the heel-side aperture 254, and the total golf club head MOI actually increases by 1.7% when the weight assembly is shifted to the toe-side aperture 256. Thus, as the CG 180 of the golf club head 100 is moved in a heelward or toeward direction, the forgiveness of the golf club head 100 is largely preserved.
Referring to Table 3, above, a comparison of a similar, prior art golf club head has an 11.0% decrease in total golf club head MOI when the weight assembly is moved to a most heelward position, and 3.4% decrease when the weight assembly is moved to a most toeward position.
Moving the CG 180 of the exemplary golf club head 100 toward the heel 120 or toe 124 of the golf club head 100 contributes to shaping golf ball flight towards a fade or draw bias. Such shot shaping is desirable to help improve a golfer's shot. However, if an adjustable weight system requires a comparatively large movement of the adjustable weight across the volume of the golf club head, then the CG of the golf club head is moved forwards towards the striking face of the golf club head, and usually moved higher above the sole in the volume of the golf club head. This movement of the CG towards the striking face and higher in the club head volume reduces the combined or total moment of inertia of the golf club head. The reduction of total club head MOI is not desirable, as the forgiveness for off center hits is reduced. Thus, in golf club head having a conventional adjustable weight system, as illustrated in Table 3, the user must choose between shot shaping and forgiveness. Further, in conventional adjustable weight systems, the larger or more distributed weight port structures are permanently placed masses that often offset the effect of the movement of an adjustable weight member to other positions on a golf club head.
The weight assembly slot 240 described herein comprises three threaded receivers positioned relatively close to one another. The weight member 370 can be positioned in three different positions within the slot 240, to influence a straight ball flight, a right to left ball flight, and a left to right ball flight. The combination of a single, smaller slot 240 in the rear portion 128 with a single, heavy weight member 370 leads to improvements in CG movement and MOI preservation. This is achieved by confining the slot 240 to a relatively small arc on the rear 128 of the golf club head 100. The smaller maximum angular fastener axis separation 520 provides a smaller displacement of the weight member 370 towards the heel 120 or toe 124 of the golf club head 100, but the heavier weight member 370 counter balances the smaller maximum angular fastener axis separation 520 of the weight member 370, allowing the user to shape golf ball flight by using a comparatively smaller weight member displacement while also preserving more of the total MOI and forgiveness of the golf club head 100.
Replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims.
As the rules to golf may change from time to time (e.g., new regulations may be adopted or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA), the Royal and Ancient Golf Club of St. Andrews (R&A), etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.
The above examples may be described in connection with a wood-type golf club, the apparatus, methods, and articles of manufacture described herein. Alternatively, the apparatus, methods, and articles of manufacture described herein may be applicable other type of sports equipment such as a hockey stick, a tennis racket, a fishing pole, a ski pole, etc.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This claims benefit of U.S. patent application Ser. No. 16/723,307, filed Dec. 20, 2019, which claims the benefit of Provisional Application No. U.S. 62/784,190 filed Dec. 21, 2018, and Provisional Application No. U.S. 62/855,751 filed May 31, 2019, all of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62784190 | Dec 2018 | US | |
62855751 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16723307 | Dec 2019 | US |
Child | 17249525 | US |