The present invention relates generally to a hollow golf club head having a heat shrinkable membrane for a back surface and the method of making such a club head.
The desire for perimeter weighting in a golf club iron is well known in the art. This desire stems from the fact that as the mass of the club is distributed towards the perimeter, the trajectory of the hit ball becomes more accurate, despite off-center hits away from the sweet spot of the golf club face or hitting surface. Consequently, many modern golf club irons have a rear cavity that extends towards the rear side of the face surface of the iron. The weight saved, by creating a rear cavity in the club, is re-distributed to the perimeter of the golf club head, and, the larger the cavity volume, the greater amount of mass of metal that may be redistributed to the perimeter of the golf club head.
Conventionally, golf club heads were made from a single material, usually stainless steel for some metal woods and iron type clubs, and recently the use of titanium for metal woods. Lightweight materials such as carbon fiber composites have been introduced, especially in metal woods, in an effort to decrease the weight of the golf club head while subsequently increasing the club head's volume. In iron type clubs, composite materials have been used widely to reinforce thin club faces, while providing “feel” and in some instances vibration dampening.
The manufacturers of hollow golf club heads have followed many paths, with the main focus being to have primarily perimeter weighting of the club head. Bladder molding is a popular method of manufacturing hollow club heads, while increasing the club head size and simultaneously maintaining the club head weight.
It is desirable to provide a golf club wherein the ease of hitting the ball is enhanced and wherein the simplicity of the manufacturing process utilizes lightweight materials.
The present invention relates to a hollow golf club head having an upper portion and a sole portion defining a cavity therein. The cavity is enclosed by a framework that is comprised of a lightweight material such as aluminum or plastic which may be attached into a channel in rear surface of the club head. A heat shrinkable membrane is securely captured and stretched in the framework. The membrane maintains a tensioned shape regardless of typical operating temperatures or environmental exposures. The membrane has virtually no compressive strength.
The heat shrinkable membrane material has the characteristics found in such materials as canvas, Kevlar, sailcloth, airplanes etc. The membrane material is also relatively thin, flexible, and having long interwoven fibers which are strong in tensile strength.
The present invention presents a method of forming the hollow golf club wherein the membrane material is stretched in the framework by applying heat to a heat-shrinkable material prior to being attached to the club head. The framework may be secured by an epoxy or mechanical means.
The objectives of the golf club head of the present invention may be achieved in golf club heads, whether they be forged or cast.
a is a detailed view of an embodiment for attaching the framework to the club head by means of a flexible clamp.
b is a detailed view of an embodiment of the invention wherein the framework is attached to the club head by a loom assembly.
c is a detailed view of an embodiment of the invention wherein the framework is attached to the club head by an adhesive.
An embodiment of a hollow iron golf club head 10 of the present invention is shown in
a shows an embodiment of the invention wherein the framework 24 has a flexible clamp 40 about the perimeter and is attached directly to the club head ledge 27 with an epoxy 41. The membrane 26 is attached to a ring 42 which is squeeze-fitted into the flexible clamp 40.
b shows an embodiment wherein the framework 24 uses a loom ring assembly 50 to attach the framework 24 to the ledge 27. The perimeter of the membrane has a bead 51, which when secured in the loom ring assembly 50 secures the membrane 26 tautly with the framework 24. The loom ring assembly 50 is attached to the ledge 27 by an epoxy 41.
c shows another embodiment of the invention, wherein a channel 60 is defined about the perimeter opening 19, and the membrane 26 secured to a ring 42 as shown in
An embodiment has a decorative medallion 30, possibly with a logo or some form of indicia, attached directly to the membrane 26 with the medallion 30 having a specific gravity heavier than the membrane 26, wherein the medallion 30 may provide a source of vibration dampening. This is taught in U.S. Pat. No. 6,835,144, issued to Best, and which is incorporated by reference herein in its entirety.
The membrane 26 is chosen from a material exhibiting the following property ranges: a shrink rate between 0 to 35% for a temperature range of 200° F. to 450° F.; a woven strength between 50 to 1100 lbs per inch; a woven flexural strength between about 20 to 450 MPa (million Pascals); a woven flexural modulus between about 2 to 45 GPa (billion Pascals); a density between 0.1 to 2.5 grams per cubic centimeter (g//cc); a yarn tenacity between about 2 to 40 g/d (tenacity is the tensile stress when expressed as force per unit linear density of the unrestrained material−grams-force per denier); and a yarn modulus between about 20 to 1600 g/d.
Once mounted on the club head 10, the membrane 26 is visible from the rear of the club head 10. The heating of the material creates a rear membrane surface that is taut across the framework 24.
While embodiments of the present invention focus on irons, it is to be appreciated that the same principles may be applied to a metal wood driver, such as placing a membrane on the crown section of the driver.
It is believed that those skilled in the pertinent art will recognize the improved inventive concepts of this invention. And they will readily understand that while the present invention has been described in association with a preferred embodiment thereof, and other embodiments illustrated in the accompanying drawings, numerous changes, modifications and substitutions of equivalents may be made therein without departing from the spirit and scope of this invention.