The present application claims priority on Patent Application No. 2011-111002 filed in JAPAN on May 18, 2011, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a golf club.
2. Description of the Related Art
Various specifications are considered in design of a golf club.
Japanese Patent Application Laid-Open No. 2002-35186 discloses a golf club having a head weight equal to or greater than 175 g and a club length equal to or greater than 46 inch. When the total mass of a portion except a head is defined as A, and the mass of a butt portion between the back end of a grip and a position separated by 170 mm from the back end is defined as B, the ratio of the mass B to the total mass A is 55% or greater and 70% or less.
A coefficient of restitution, a club length, and a moment of inertia of a head are regulated by the rules. Consequently, it is difficult to further improve flight distance performance in the conventional technique.
It is an object of the present invention to provide a golf club capable of enhancing flight distance performance.
A golf club of the present invention includes a shaft and a head. When a shaft full length is defined as Ls, and a distance between a tip end of the shaft and a center of gravity G of the shaft is defined as Lg, a ratio (Lg/Ls) is 0.52 or greater and 0.65 or less. When a club length is defined as X (inch) and a club weight is defined as Y (g), the golf club satisfies the following relational expression (1).
Y≦7.62X+635 (1)
Preferably, the distance Lg is 615 mm or greater and 660 mm or less. Preferably, a shaft weight Ws is equal to or less than 52 g. Preferably, the club length X is equal to or less than 46 inch.
Hereinafter, the present invention will be described in detail based on the preferred embodiments with appropriate references to the accompanying drawings.
The term “layer” and the term “sheet” are used in the present application. The “layer” is termed after being wound. On the other hand, the “sheet” is termed before being wound. The “layer” is formed by winding the “sheet”. That is, the wound “sheet” forms the “layer”. In the present application, the same reference numeral is used in the layer and the sheet. For example, a layer formed by a sheet a1 is defined as a layer a1.
In the present application, an “inside” means an inside in a radial direction of a shaft. In the present application, an “outside” means an outside in the radial direction of the shaft.
In the present application, an “axis direction” means an axis direction of the shaft.
In the present application, an angle Af and an absolute angle θa are used for the angle of a fiber to the axis direction. The angle Af is a plus or minus angle. The absolute angle θa is the absolute value of the angle Af. In other words, the absolute angle θa is the absolute value of an angle between the axis direction and the direction of the fiber. For example, “the absolute angle θa is equal to or less than 10 degrees” means that “the angle Af is −10 degrees or greater and +10 degrees or less”.
The head 4 of the embodiment is a wood type golf club head. A comparatively long club has a high effect of improving a flight distance. In this respect, the wood type golf club head, the hybrid type golf club head and the utility type golf club head are preferable as the head 4. A hollow head has a large moment of inertia. A club with a head having a large moment of inertia stably has an effect of improving a flight distance. In this respect, the head 4 is preferably hollow.
The material of the head 4 is not restricted. Examples of the material of the head 4 include titanium, a titanium alloy, CFRP (carbon fiber reinforced plastic), stainless steel, maraging steel, and soft iron. A plurality of materials can be combined. For example, the CFRP and the titanium alloy can be combined. In respect of lowering the center of gravity of the head, at least a part of a crown may be made of CFRP and at least a part of a sole may be made of a titanium alloy. In respect of a strength, the whole face is preferably made of a titanium alloy.
The shaft 6 includes a laminate of fiber reinforced resin layers. The shaft 6 is a tubular body. The shaft 6 has a hollow structure. As shown in
The shaft 6 is a so-called carbon shaft. The shaft 6 is preferably produced by curing a prepreg sheet. In the prepreg sheet, a fiber is oriented substantially in one direction. Thus, the prepreg in which the fiber is oriented substantially in one direction is also referred to as a UD prepreg. The term “UD” stands for uni-direction. Prepregs other than the UD prepreg may be used. For example, fibers contained in the prepreg sheet may be woven.
The prepreg sheet has a fiber and a resin. The resin is also referred to as a matrix resin. The fiber is typically a carbon fiber. The matrix resin is typically a thermosetting resin.
The shaft 6 is manufactured by a so-called sheet winding method. In the prepreg, the matrix resin is in a semicured state. The shaft 6 is obtained by winding and curing the prepreg sheet. The curing means the curing of the semicured matrix resin. The curing is attained by heating. The manufacturing process of the shaft 6 includes a heating process. The heating process cures the matrix resin of the prepreg sheet.
The developed view of the present application shows not only the winding order of each of the sheets but also the disposal of each of the sheets in the axis direction of the shaft. For example, in
The shaft 6 has a straight layer, a bias layer, and a hoop layer. The orientation angle of the fiber is described in the developed view of the present application. A sheet described as “0 degree” constitutes the straight layer. The sheet for the straight layer is also referred to as a straight sheet in the present application.
The straight layer is a layer in which the orientation direction of the fiber is substantially 0 degree to the longitudinal direction (axis direction of the shaft) of the shaft. The orientation of the fiber may not be completely set to 0 degree to the axis direction of the shaft by error or the like in winding. Usually, in the straight layer, the absolute angle θa is equal to or less than 10 degrees.
In the embodiment of
On the other hand, the bias layer is highly correlated with the torsional rigidity and torsional strength of the shaft. Preferably, the bias layer includes two sheets in which orientation angles of fibers are inclined in opposite directions to each other. In respect of the torsional rigidity, the absolute angle θa of the bias layer is preferably equal to or greater than 15 degrees, more preferably equal to or greater than 25 degrees, and still more preferably equal to or greater than 40 degrees. In respects of the torsional rigidity and the flexural rigidity, the absolute angle θa of the bias layer is preferably equal to or less than 60 degrees, and more preferably equal to or less than 50 degrees.
In the shaft 6, the sheets constituting the bias layer are the sheet a2 and the sheet a3. In
In the embodiment of
In the shaft 6, the sheets constituting the hoop layer are the sheet a4 and the sheet a9. Preferably, the absolute angle θa in the hoop layer is substantially 90 degrees to a shaft axis line. However, the orientation direction of the fiber to the axis direction of the shaft may not be completely set to 90 degrees by error or the like in winding. Usually, in the hoop layer, the absolute angle θa is 80 degrees or greater and 90 degrees or less. In the present application, the prepreg sheet for the hoop layer is also referred to as a hoop sheet.
The hoop layer contributes to enhancement of the crushing rigidity and crushing strength of the shaft. The crushing rigidity is rigidity to a force crushing the shaft toward the inside of the radial direction thereof. The crushing strength is a strength to a force crushing the shaft toward the inside of the radial direction thereof. The crushing strength can be also involved with the flexural strength. Crushing deformation can be generated with flexural deformation. In a particularly thin lightweight shaft, this interlocking property is large. The enhancement of the crushing strength also can cause the enhancement of the flexural strength.
Although not shown in the drawings, the prepreg sheet before being used is sandwiched between cover sheets. The cover sheets are usually a mold release paper and a resin film. That is, the prepreg sheet before being used is sandwiched between the mold release paper and the resin film. The mold release paper is laminated on one surface of the prepreg sheet, and the resin film is laminated on the other surface of the prepreg sheet. Hereinafter, the surface on which the mold release paper is laminated is also referred to as “a surface of a mold release paper side”, and the surface on which the resin film is laminated is also referred to as “a surface of a film side”.
In the developed view of the present application, the surface of the film side is the front side. That is, in the developed view of the present application, the front side of the figure is the surface of the film side, and the back side of the figure is the surface of the mold release paper side. For example, in
In order to wind the prepreg sheet, the resin film is previously peeled. The surface of the film side is exposed by peeling the resin film. The exposed surface has tacking property (tackiness). The tacking property is caused by the matrix resin. That is, since the matrix resin is in a semicured state, the tackiness is developed. Next, the edge part of the exposed surface of the film side (also referred to as a winding start edge part) is laminated on a wound object. The winding start edge part can be smoothly laminated by the tackiness of the matrix resin. The wound object is a mandrel or a wound article obtained by winding the other prepreg sheet around the mandrel. Next, the mold release paper is peeled. Next, the wound object is rotated to wind the prepreg sheet around the wound object. Thus, the resin film is previously peeled. Next, the winding start edge part is laminated on the wound object, and the mold release paper is then peeled. That is, the resin film is previously peeled, then, the winding start edge part is laminated on the wound object, and then, the mold release paper is peeled. The procedure suppresses wrinkles and winding fault of the sheet. This is because the sheet on which the mold release paper is laminated is supported by the mold release paper, and hardly causes wrinkles. The mold release paper has flexural rigidity higher than that of the resin film.
A united sheet is used in the embodiment of
The two united sheets are formed in the embodiment of
A procedure for producing the first united sheet a234 is as follows. First, a preliminary united sheet a34 obtained by laminating two sheets is produced. The sheet a3 and the sheet a4 are laminated. The second bias sheet a3 is laminated on the hoop sheet a4 while the second bias sheet a3 is reversed in the production of the preliminary united sheet a34. In the preliminary united sheet a34, the upper end of the sheet a4 coincides with the upper end of the sheet a3. Next, the preliminary united sheet a34 and the first bias sheet a2 are laminated. The preliminary united sheet a34 and the sheet a2 are laminated in a state where the preliminary united sheet a34 and the sheet a2 are deviated from each other for a half circle.
The sheet a2 and the sheet a3 are deviated for a half circle in the united sheet a234. That is, in the shaft after being wound, the circumferential position of the sheet a2 and the circumferential position of the sheet a3 are different from each other in the circumferential position. The difference angle is preferably 180 degrees (±15 degrees).
As a result of using the united sheet a234, a first bias layer a2 and a second bias layer a3 are deviated from each other in the circumferential position. The positions of the ends of the bias layers are dispersed in the circumferential direction by the deviation. The dispersion improves the uniformity of the shaft in the circumferential position. In the united sheet a234, the whole hoop sheet a4 is sandwiched between the first bias sheet a2 and the second bias sheet a3 (see
As shown in
As described above, in the present application, the sheet and the layer are classified by the orientation angle of the fiber. Furthermore, in the present application, the sheet and the layer are classified by the length of the axis direction of the shaft.
In the present application, a layer disposed all over in the axis direction of the shaft is referred to as a full length layer. In the present application, a sheet disposed all over in the axis direction of the shaft is referred to as a full length sheet. The wound full length sheet forms the full length layer.
On the other hand, in the present application, a layer partially disposed in the axis direction of the shaft is referred to as a partial layer. In the present application, a sheet partially disposed in the axis direction of the shaft is referred to as a partial sheet. The wound partial sheet forms the partial layer.
In the present application, the full length layer which is the straight layer is referred to a full length straight layer. In the embodiment of
In the present application, the full length layer which is the hoop layer is referred to as a full length hoop layer. In the embodiment of
In the present application, the partial layer which is the straight layer is referred to a partial straight layer. In the embodiment of
In the present application, the partial layer which is the hoop layer is referred to as a partial hoop layer. In the embodiment of
The sheet a8 is an intermediate partial layer. The tip of the intermediate partial layer is separated from the tip end Tp. The back end of the intermediate partial layer is separated from the butt end Bt. Preferably, the intermediate partial layer is disposed at a position including a center position S1 in the axis direction of the shaft. Preferably, the intermediate partial layer is disposed at a position including a point B. The point B is defined in a method for measuring a three-point flexural strength, which will be described later. The axial center part of the shaft is largely deformed by flexure. The intermediate partial layer can selectively reinforce a largely deformed portion. The intermediate partial layer can contribute to the weight saving of the shaft.
The term “butt partial layer” is used in the present application. The butt partial layer is one aspect of the partial layer. A point located nearest to the butt side on the tip side edge of the butt partial layer is represented by reference numeral Al in
In the present application, the term “butt straight layer” is used. The butt straight layer is a partial straight layer. Preferably, the whole butt straight layer is located in the butt part from the center position S1 in the axis direction of the shaft. The back end of the butt straight layer may not be located in the butt end Bt of the shaft, and may be located in the butt end Bt of the shaft. In respect of bringing the position of the center of gravity of the shaft near to the butt end Bt, the disposal range of the butt straight layer preferably includes a position P1 separated by 100 mm from the butt end Bt of the shaft. In respect of bringing the center of gravity of the shaft near to the butt end Bt, the back end of the butt straight layer is more preferably located in the butt end Bt of the shaft.
In the present application, the butt straight layers are the sheet a5 and the sheet a6.
In the embodiment of
The shaft 6 is produced by the sheet winding method using the sheets shown in
Hereinafter, a manufacturing process of the shaft 6 will be schematically described.
The prepreg sheet is cut into a desired shape in the cutting process. Each of the sheets shown in
The cutting may be performed by a cutting machine, or may be manually performed. In the manual case, for example, a cutter knife is used.
A plurality of sheets is laminated in the laminating process, to produce the above-mentioned united sheets a234 and a910.
In the laminating process, heating or a press may be used. More preferably, the heating and the press are used in combination. In a winding process to be described later, the deviation between the sheets may be produced during the winding operation of the united sheet. The deviation reduces winding accuracy. The heating and the press improve an adhesive force between the sheets. The heating and the press suppress the deviation between the sheets in the winding process.
In respect of enhancing the adhesive force between the sheets, a heating temperature in the laminating process is preferably equal to or greater than 30° C., and more preferably equal to or greater than 35° C. When the heating temperature is too high, the curing of the matrix resin may be progressed, to reduce the tackiness of the sheet. The reduction of the tackiness reduces adhesion between the united sheet and the wound object. The reduction of the adhesion may allow the generation of wrinkles, to generate the deviation of a winding position. In this respect, the heating temperature in the laminating process is preferably equal to or less than 60° C., more preferably equal to or less than 50° C., and still more preferably equal to or less than 40° C.
In respect of enhancing the adhesive force between the sheets, a heating time in the laminating process is preferably equal to or greater than 20 seconds, and more preferably equal to or greater than 30 seconds. In respect of maintaining the tackiness of the sheet, the heating time in the laminating process is preferably equal to or less than 300 seconds.
In respect of enhancing the adhesive force between the sheets, a press pressure in the laminating process is preferably equal to or greater than 300 g/cm2, and more preferably equal to or greater than 350 g/cm2. When the press pressure is excessive, the prepreg may be crushed. In this case, the thickness of the prepreg is made thinner than a designed value. In respect of thickness accuracy of the prepreg, the press pressure in the laminating process is preferably equal to or less than 600 g/cm2, and more preferably equal to or less than 500 g/cm2.
In respect of enhancing the adhesive force between the sheets, a press time in the laminating process is preferably equal to or greater than 20 seconds, and more preferably equal to or greater than 30 seconds. In respect of the thickness accuracy of the prepreg, the press time in the laminating process is preferably equal to or less than 300 seconds.
A mandrel is prepared in the winding process. A typical mandrel is made of a metal. A mold release agent is applied to the mandrel. Furthermore, a resin having tackiness is applied to the mandrel. The resin is also referred to as a tacking resin. The cut sheet is wound around the mandrel. The tacking resin facilitates the lamination of the end part of the sheet on the mandrel.
The laminated sheets are wound in a state of the united sheet.
A winding body is obtained by the winding process. The winding body is obtained by wrapping the prepreg sheet around the outside of the mandrel. For example, the winding is performed by rolling the wound object on a plane. The winding may be performed by a manual operation or a machine. The machine is referred to as a rolling machine.
A tape is wrapped around the outer peripheral surface of the winding body in the tape wrapping process. The tape is also referred to as a wrapping tape. The wrapping tape is wrapped while tension is applied to the wrapping tape. A pressure is applied to the winding body by the wrapping tape. The pressure reduces voids.
In the curing process, the winding body after performing the tape wrapping is heated. The heating cures the matrix resin. In the curing process, the matrix resin fluidizes temporarily. The fluidization of the matrix resin can discharge air between the sheets or in the sheet. The pressure (fastening force) of the wrapping tape accelerates the discharge of the air. The curing provides a cured laminate.
The process of extracting the mandrel and the process of removing the wrapping tape are performed after the curing process. The order of the both processes is not restricted. However, the process of removing the wrapping tape is preferably performed after the process of extracting the mandrel in respect of improving the efficiency of the process of removing the wrapping tape.
The both end parts of the cured laminate are cut in the process. The cutting flattens the end face of the tip end Tp and the end face of the butt end Bt.
The surface of the cured laminate is polished in the process. Spiral unevenness left behind as the trace of the wrapping tape exists on the surface of the cured laminate. The polishing extinguishes the unevenness as the trace of the wrapping tape to flatten the surface of the cured laminate.
The cured laminate after the polishing process is subjected to coating.
The shaft 6 is obtained in the processes. In the shaft 6, a ratio (Lg/Ls) is large. The shaft 6 is lightweight, and has a large ratio (Lg/Ls).
In the present application, “a ratio of a center of gravity of a shaft” is used. The ratio of the center of gravity of the shaft (%) is [(Lg/Ls)×100].
The head 4 and the grip 8 are attached to the shaft 6 thus manufactured, to obtain the golf club 2.
In the present application, a club length is defined as X (inch) and a club weight is defined as Y (g). At this time, the golf club 2 satisfies the following relational expression (1).
Y≦−7.62X+635 (1)
High flight distance performance can be obtained in the golf club 2 having a ratio (Lg/Ls) equal to or greater than 0.52 and satisfying the relational expression (1). The relational expression (1) is based on examples 1, 3, 5, 7, 9, and 11 to be described later.
Preferably, the golf club 2 satisfies the following relational expression (2).
Y≧−7.62X+619 (2)
The relational expression (2) is based on examples 2, 4, 6, 8, 10, and 12 to be described later.
More preferably, the golf club 2 satisfies the following relational expression (3).
Y≦−7.60X+626 (3)
The relational expression (3) is based on examples 13, 14, and 15 to be described later.
The shaft 10 has a straight layer, a bias layer, and a hoop layer. In the embodiment of
In the embodiment of
In the embodiment of
The manufacturing method of the shaft 10 is the same as that of the shaft 6. Also in the shaft 10, the ratio of the center of gravity of the shaft is large. The shaft 10 is lightweight, and can provide a large ratio of a center of gravity of the shaft.
The center of gravity of the shaft 6 is represented by reference numeral G in
A shaft full length is represented by a double pointed arrow Ls in
[Distance Lg between Tip End Tp and Center of Gravity G of Shaft]
An axial distance between the tip end Tp and the center of gravity G of the shaft is represented by a double pointed arrow Lg in
In respects of the easiness to swing and the head speed, the distance Lg is preferably equal to or greater than 615 mm, more preferably equal to or greater than 620 mm, still more preferably equal to or greater than 625 mm, and yet still more preferably equal to or greater than 630 mm.
When the center of gravity G of the shaft is too close to the butt end Bt, a centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. That is, when the ratio of the center of gravity of the shaft is large, the centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. In this case, the flexure of the shaft may be hardly felt. The shaft of which the flexure is hardly felt is apt to cause a rigid feeling. In respect of suppressing the rigid feeling, the distance Lg is preferably equal to or less than 660 mm, more preferably equal to or less than 655 mm, and still more preferably equal to or less than 650 mm.
A golf player feels difficulty to swing caused by the rigid feeling. In respect of the easiness to swing, the rigid feeling is preferably suppressed.
In respects of the easiness to swing and the head speed, the ratio (Lg/Ls) is preferably equal to or greater than 0.52, more preferably equal to or greater than 0.53, and still more preferably equal to or greater than 0.54. When the ratio (Lg/Ls) is excessively large, the shaft strength of the tip part may be reduced. In respect of the shaft strength, the ratio (Lg/Ls) is preferably equal to or less than 0.65, and more preferably equal to or less than 0.64.
Examples of means for adjusting the ratio of the center of gravity of the shaft include the following items (a1) to (a8):
(a1) increase or decrease of number of windings of the butt partial layer;
(a2) increase or decrease of a thickness of the butt partial layer;
(a3) increase or decrease of a length L1 (to be described later) of the butt partial layer;
(a4) increase or decrease of a length L2 (to be described later) of the butt partial layer;
(a5) increase or decrease of number of windings of a tip partial layer;
(a6) increase or decrease of a thickness of the tip partial layer;
(a7) increase or decrease of an axial length of the tip partial layer; and
(a8) increase or decrease of a taper ratio of the shaft.
When the shaft weight Ws is small as described above, the center of gravity G of the shaft tends to be close to the tip end Tp. In this case, the weight saving contributes to improvement in the head speed. However, the center of gravity G of the shaft close to the tip end Tp may cause the reduction of the head speed. The effect of improving the head speed can be reduced. On the other hand, in the embodiment, the synergic effect of the light shaft weight Ws and the large ratio of the center of gravity of the shaft can further improve the head speed. In this respect, the shaft weight Ws is preferably equal to or less than 60 g, more preferably equal to or less than 52 g, more preferably equal to or less than 51 g, more preferably equal to or less than 50 g, more preferably less than 50 g, more preferably equal to or less than 49 g, and still more preferably equal to or less than 48 g. In respect of the shaft strength, the shaft weight Ws is preferably equal to or greater than 30 g, more preferably equal to or greater than 36 g, more preferably equal to or greater than 38 g, and still more preferably equal to or greater than 40 g.
In respect of increasing the ratio of the center of gravity of the shaft, the weight of the butt partial layer is preferably equal to or greater than 5% by weight based on the shaft weight Ws, and more preferably equal to or greater than 10% by weight. In respect of suppressing the rigid feeling, the weight of the butt partial layer is preferably equal to or less than 50% by weight based on the shaft weight Ws, and more preferably equal to or less than 45% by weight. In the embodiment of
A point separated by 250 mm from the butt end Bt is represented by P2 in
In respect of the strength of the butt part, the fiber elastic modulus of the butt partial layer is preferably equal to or greater than 5 t/mm2, and more preferably equal to or greater than 7 t/mm2. When the center of gravity G of the shaft is close to the butt end Bt, the centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. That is, when the ratio of the center of gravity of the shaft is large, the centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. In this case, the flexure of the shaft may be hardly felt. Therefore, the rigid feeling is apt to be caused. In respect of suppressing the rigid feeling, the fiber elastic modulus of the butt partial layer is preferably equal to or less than 20 t/mm2, more preferably equal to or less than 15 t/mm2, and still more preferably equal to or less than 10 t/mm2.
In respects of increasing the ratio of the center of gravity of the shaft and of suppressing the rigid feeling, the resin content of the butt partial layer is preferably equal to or greater than 20% by weight, and more preferably equal to or greater than 25% by weight. In respect of the strength of the butt part, the resin content of the butt partial layer is preferably equal to or less than 50% by weight, and more preferably equal to or less than 45% by weight.
In respect of increasing the ratio of the center of gravity of the shaft, the weight of the butt straight layer is preferably equal to or greater than 2 g, more preferably equal to or greater than 4 g, and still more preferably equal to or greater than 8 g. In respect of suppressing the rigid feeling, the weight of the butt straight layer is preferably equal to or less than 30 g, more preferably equal to or less than 20 g, and still more preferably equal to or less than 10 g.
In respect of increasing the ratio of the center of gravity of the shaft, the weight of the butt straight layer is preferably equal to or greater than 5% by weight based on the shaft weight Ws, and more preferably equal to or greater than 10% by weight. In respect of suppressing the rigid feeling, the weight of the butt straight layer is preferably equal to or less than 50% by weight based on the shaft weight Ws, and more preferably equal to or less than 45% by weight. In the embodiment of
In respect of the strength of the butt part, the fiber elastic modulus of the butt straight layer is preferably equal to or greater than 5 t/mm2, and more preferably equal to or greater than 7 t/mm2. In respect of suppressing the rigid feeling, the fiber elastic modulus of the butt straight layer is more preferably equal to or less than 20 t/mm2, more preferably equal to or less than 15 t/mm2, and still more preferably equal to or less than 10 t/mm2.
In respects of increasing the ratio of the center of gravity of the shaft and of suppressing the rigid feeling, the resin content of the butt straight layer is preferably equal to or greater than 20% by weight, and more preferably equal to or greater than 25% by weight. In respect of the strength of the butt part, the resin content of the butt straight layer is preferably equal to or less than 50% by weight, and more preferably equal to or less than 45% by weight.
An axial maximum length of the butt partial layer is represented by a double pointed arrow L1 in
In respect of securing the weight of the butt partial layer, the length L1 is preferably equal to or greater than 100 mm, more preferably equal to or greater than 125 mm, and still more preferably equal to or greater than 150 mm. In respect of increasing the ratio of the center of gravity of the shaft, the length L1 is preferably equal to or less than 700 mm, more preferably equal to or less than 650 mm, and still more preferably equal to or less than 600 mm.
An axial minimum length of the butt partial layer is represented by a double pointed arrow L2 in
In respect of securing the weight of the butt partial layer, the length L2 is preferably equal to or greater than 50 mm, more preferably equal to or greater than 75 mm, and still more preferably equal to or greater than 100 mm. In respect of increasing the ratio of the center of gravity of the shaft, the length L2 is preferably equal to or less than 650 mm, more preferably equal to or less than 600 mm, and still more preferably equal to or less than 550 mm.
When the butt partial layer is disposed, the rigidity of the vicinity of the grip is increased. The increased rigidity applies the rigid feeling of the shaft to the golf player. Particularly, the rigid feeling is not preferable for an average golf player. Many golf players hardly swing the club applying the rigid feeling. In respect of suppressing the rigid feeling, the torsional rigidity of the butt part is preferably suppressed. In this respect, the number of windings (PLY number) of the full length bias layer is preferably reduced gradually or in steps toward the butt end Bt. In the embodiment of
When the butt partial layer is used, a shaft outer diameter in the specific butt range is increased. When the shaft outer diameter is increased, a cross sectional secondary moment is increased, and the flexural rigidity of the shaft is apt to be excessive. In respect of suppressing the rigid feeling, the shaft outer diameter in the specific butt range is preferably equal to or less than 17 mm, more preferably equal to or less than 16.5 mm, and still more preferably equal to or less than 16 mm. In respect of securing moderate rigidity in the butt part, the shaft outer diameter in the specific butt range is preferably equal to or greater than 11 mm, more preferably equal to or greater than 12 mm, and still more preferably equal to or greater than 13 mm.
When the butt partial layer is used, a shaft thickness in the specific butt range is increased. When the shaft thickness is increased, a cross sectional secondary moment is increased, and the flexural rigidity of the shaft is apt to be excessive. In respect of suppressing the rigid feeling, the shaft thickness in the specific butt range is preferably equal to or less than 1.3 mm, more preferably equal to or less than 1.2 mm, and still more preferably equal to or less than 1.1 mm. In respect of securing moderate rigidity in the butt part, the shaft thickness in the specific butt range is preferably equal to or greater than 0.4 mm, more preferably equal to or greater than 0.5 mm, and still more preferably equal to or greater than 0.6 mm. The shaft thickness can be calculated by dividing the difference between an outer diameter and an inner diameter by 2.
In the case of the excessively flexed shaft, hit balls may vary. In this respect, a forward flex F1 is preferably equal to or less than 155 mm, and more preferably equal to or less than 150 mm. When the conformity of the shaft to the average golf player is considered, the forward flex F1 is preferably equal to or greater than 125 mm, and more preferably equal to or greater than 130 mm.
The section shape of a portion (hereinafter, referred to as an abutting portion) of the support 34 abutting on the shaft is as follows. The section shape of the abutting portion of the support 34 has convex roundness in a section parallel to the axis direction of the shaft. The curvature radius of the roundness is 15 mm. The section shape of the abutting portion of the support 34 has concave roundness in a section perpendicular to the axis direction of the shaft. The curvature radius of the concave roundness is 40 mm. The horizontal length (a length in a depth direction in
In the case of the excessively flexed shaft, hit balls may vary. In this respect, a backward flex F2 is preferably equal to or less than 145 mm, and more preferably equal to or less than 140 mm. When the conformity of the shaft to the average golf player is considered, the backward flex F2 is preferably equal to or greater than 118 mm, and more preferably equal to or greater than 120 mm.
A measuring method of a backward flex is shown in
[Flex point ratio C1 of Shaft]
In the present application, a flex point ratio C1 of the shaft (%) is defined by the following formula.
C1=[F2/(F1+F2)]×100
F1 is the forward flex (mm), and F2 is the backward flex (mm).
When the center of gravity G of the shaft is close to the butt end Bt, a centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. That is, when the ratio of the center of gravity of the shaft is large, the centrifugal force acting on the center of gravity G of the shaft is apt to be reduced. In this case, the flexure of the shaft may be hardly felt. The shaft of which the flexure is hardly felt is apt to cause a rigid feeling. A portion close to the grip tends to be flexed, and thereby the rigid feeling can be reduced. In this respect, the flex point ratio C1 of the shaft is preferably equal to or less than 50%, more preferably equal to or less than 49%, and still more preferably equal to or less than 48%. When the flex point ratio C1 of the shaft is excessively small, the flexure of a butt portion may be excessive, which may reduce the strength. In this respect, the flex point ratio C1 of the shaft is preferably equal to or greater than 38%, and more preferably equal to or greater than 40%.
A three-point flexural strength in the present application is based on an SG type three-point flexural strength test. This is a test set by Consumer Product Safety Association. A measuring method of the SG type three-point flexural strength test will be described later. Measured points are a point T, a point A, a point B, and a point C. The point T is a point separated by 90 mm from the tip end Tp. The point A is a point separated by 175 mm from the tip end Tp. The point B is a point separated by 525 mm from the tip end Tp. The point C is a point separated by 175 mm from the butt end Bt.
In respect of durability, the three-point flexural strength of the point T is preferably equal to or greater than 150 kgf, and more preferably equal to or greater than 180 kgf. In order to increase the ratio of the center of gravity of the shaft, the weight of the tip part of the shaft is preferably suppressed. In this respect, the three-point flexural strength of the point T is preferably equal to or less than 350 kgf, and more preferably equal to or less than 300 kgf.
In respect of durability, the three-point flexural strength of the point A is preferably equal to or greater than 40 kgf, and more preferably equal to or greater than 50 kgf. In order to increase the ratio of the center of gravity of the shaft, the weight of the tip part of the shaft is preferably suppressed. In this respect, the three-point flexural strength of the point A is preferably equal to or less than 150 kgf, and more preferably equal to or less than 130 kgf.
In respect of durability, the three-point flexural strength of the point B is preferably equal to or greater than 40 kgf, and more preferably equal to or greater than 50 kgf. In respect of the weight saving of the shaft, the three-point flexural strength of the point B is preferably equal to or less than 150 kgf, and more preferably equal to or less than 130 kgf.
In respect of durability, the three-point flexural strength of the point C is preferably equal to or greater than 50 kgf, and more preferably equal to or greater than 55 kgf. In respect of the weight saving of the shaft, the three-point flexural strength of the point C is preferably equal to or less than 200 kgf, and more preferably equal to or less than 180 kgf.
In respect of enhancing the head speed, a club length X is preferably longer. On the other hand, in respect of a meet rate, the club length X is preferably shorter. The meet rate is the probability that a ball hits a sweet area of the head. In the case of a driver (1-wood), the club length X may be equal to or greater than 46 inch. In respect of the meet rate, the club length X is preferably less than 46 inch, more preferably equal to or less than 45.75 inch, and still more preferably equal to or less than 45.5 inch. Since the shaft has a large ratio of the center of gravity of the shaft, the shaft can attain a high head speed even if the club length is short. In respect of the flexure of the shaft enhancing the head speed, the club length X is preferably equal to or greater than 44 inch, more preferably equal to or greater than 44.5 inch, still more preferably equal to or greater than 45 inch, and yet still more preferably equal to or greater than 45.25 inch. An error of ±0.1 inch is acceptable in the club length X.
The club length X in the present application is measured based on “1c Length” in “1 Clubs” of the Golf Rules “Appendix II Design of Clubs” defined by R&A (Royal and Ancient Golf Club of Saint Andrews).
The loft of the driver head is usually 8 degrees or greater and 13 degrees or less. In respect of the moment of inertia of the head, the volume of the driver head is preferably equal to or greater than 400 cc, and more preferably equal to or greater than 420 cc. In respect of the golf rules, the volume of the driver head is preferably equal to or less than 470 cc. The present invention is particularly effective in the driver (1-wood).
In respect of the easiness to swing, a club weight Y is preferably equal to or less than 300 g, more preferably equal to or less than 290 g, and still more preferably equal to or less than 285 g. In respect of the strength of the shaft and the head, the club weight is preferably equal to or greater than 250 g, more preferably equal to or greater than 260 g, and still more preferably equal to or greater than 270 g.
A rotation axis passing through a grip end (the back end of the club) and being perpendicular to the axis direction of the shaft is considered. The moment of inertia M1 (g·cm2) of the club around the rotation axis can be calculated by the following formula.
MI=(T2·M·g·H)/47π2
T is a pendulum motion cycle (second) with the grip end as a center; M is a club weight (g); H is a distance (cm) between the grip end and the center of gravity of the club, and g is a gravitational acceleration.
The excessive weight saving reduces the strength. The excessive weight saving of the head reduces a coefficient of restitution. In this respect, the moment of inertia M1 is preferably equal to or greater than 240×104(g·cm2), and more preferably equal to or greater than 250×104(g·cm2). In respect of the easiness to swing and the head speed, the moment of inertia M1 is preferably equal to or less than 320×104(g·cm2), and more preferably equal to or less than 310×104(g·cm2).
The excessive weight saving of the head reduces the coefficient of restitution. In this respect, the swing balance is preferably equal to or greater than C9, and more preferably equal to or greater than D0. In respect of the easiness to swing and the head speed, the swing balance is preferably equal to or less than D5, and more preferably equal to or less than D4.
In addition to an epoxy resin, a thermosetting resin other than the epoxy resin and a thermoplastic resin or the like may be also used as the matrix resin of the prepreg sheet. In respect of the shaft strength, the matrix resin is preferably the epoxy resin.
The following Table 1 shows examples of the prepregs capable of being used for the shaft of the present invention.
Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be interpreted in a limited way based on the description of examples.
Golf clubs of examples 1 to 15 and comparative examples 1 to 8 were produced, and these were evaluated. Heads having the same shape were used for all the golf clubs. The volume of the head was 460 cc, and the material of the head was a titanium alloy. A club length, a head weight, and a grip weight were adjusted so that desired specifications were obtained. For example, the grip weight of example 14 was 38 g.
Shafts according to examples 1 to 15 were produced based on a developed view of
Sheet a1: TR350C-125S
Sheet a2: HRX350C-075S
Sheet a3: HRX350C-075S
Sheet a4: 805S-3
Sheet a5: E1026A-09N
Sheet a6: E1026A-09N
Sheet a7: TR350C-100S
Sheet a8: TR350C-100S
Sheet a9: 805S-3
Sheet a10: MR350C-100S
Sheet a11: TR350C-100S
Sheet a12: TR350C-100S
An example of the developed view of a shaft according to comparative example is shown in
Sheet c1: TR350C-1255
Sheet c2: HRX350C-075S
Sheet c3: HRX350C-075S
Sheet c4: 805S-3
Sheet c5: TR350C-100S
Sheet c6: 805S-3
Sheet c7: MR350C-100S
Sheet c8: TR350C-100S
Sheet c9: TR350C-100S
The specifications and the evaluation results of examples 1 to 15 are shown in the following Table 2. The specifications and the evaluation results of comparative examples 1 to 8 are shown in the following Table 3.
Golf clubs of examples 2-1 to 2-21 and comparative examples 2-1 to 2-3 were produced, and these were evaluated. Heads having the same shape were used for all the golf clubs. The volume of the head was 460 cc, and the material of the head was a titanium alloy. A club length was set to 45.5 inch in all the clubs. A head weight and a grip weight were adjusted so that desired specifications were obtained.
Shafts according to examples 2-1 to 2-21 were produced based on a developed view of
Shafts according to comparative examples 2-1 to 2-3 were produced based on a developed view of
The specifications and the evaluation results of examples 2-1 to 2-10 are shown in the following Table 4. The specifications and the evaluation results of examples 2-11 to 2-21 are shown in the following Table 5. The specifications and the evaluation results of comparative examples 2-1 to 2-3 are shown in the following Table 6.
[Forward Flex F1, Backward Flex F2, Flex point ratio C1 of Shaft]
A forward flex F1 and a backward flex F2 were measured by the above-mentioned method. A flex point ratio C1 of the shaft was calculated by the above-mentioned calculation formula. The forward flex F1 and the flex point ratio C1 of the shaft are shown in Table.
Ten golf players evaluated easiness to swing in five stages. The evaluation is sensuous evaluation. The highest evaluation was defined as five points, and the lowest evaluation was defined as one point. Ten golf players' average points (the figures below the decimal point are rounded off) are shown in Table.
B/S is initial velocity of a ball. The ten golf players hit balls five times to obtain fifty data. The average values of these data are shown in Table.
A total flight distance is a flight distance including run. The ten golf players hit balls five times to obtain fifty data. The average values of these data are shown in Table.
A lateral deviation amount is deviation from the target direction. The deviation amount is a distance between a straight line connecting a hit ball point to a target point and a hit ball reaching point. The deviation amount is a plus value in both cases where the ball is deviated to a right side and a left side. The ten golf players hit balls five times to obtain fifty data. The average values of these data are shown in Table. The less the lateral deviation amount is, the higher directional stability is.
As shown in these graphs and Tables, the advantages of the present invention are apparent.
The present invention can be applied to all golf clubs.
The description hereinabove is merely for an illustrative example, and various modifications can be made in the scope not to depart from the principles of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-111002 | May 2011 | JP | national |