This application is based on and claims the benefit of priority from Japanese Patent Application Serial No. 2017-15554 (filed on Jan. 31, 2017), the contents of which are hereby incorporated by reference in their entirety.
The present invention relates to a golf club and relates particularly to a golf club provided with a shaft made of a fiber-reinforced resin (FRP).
Shafts of golf clubs conventionally include those made of steel and those made of a fiber-reinforced resin (hereinafter, referred to as FRP). In general, a golf club equipped with a steel shaft provides an advantage that directional accuracy is stabilized, and a golf club equipped with an FRP shaft provides an advantage that a weight reduction can be achieved, thus increasing a swing speed and improving a launch angle and a carry.
Such an FRP shaft is formed by winding a plurality of prepreg sheets on a mandrel, the plurality of prepreg sheets including reinforcing fibers impregnated with a synthetic resin, and thermally curing them, followed by de-coring. While there are a wide variety of ways of configuring the prepreg sheets wound on the mandrel, for example, as disclosed in Japanese Patent Application Publication No. 2012-245309 (the '309 Publication), in a portion to which a head is mounted, a prepreg sheet for reinforcement (a prepreg sheet including reinforcing fibers oriented in an axial direction) is wound over a given distance (about 300 mm from a distal end thereof). The purpose of this is as follows. The shaft is formed so as to be decreased in diameter near a distal end thereof, and therefore, in the portion to which the head is mounted, an outer surface of the shaft and an inner surface of a fitting hole of a hosel portion of the head are fixed to each other so as to form a straight shape, and this fixing region and a vicinity thereof are prevented from being decreased in strength.
Conceivably, the reason why a golf club equipped with a steel shaft exhibits excellent directional accuracy in ball hitting as described above is that metal has an isotropic property, so that a ratio between torsional rigidity and bending rigidity (GIp/EI) of the steel shaft is uniform over a length direction thereof. In contrast, as for an FRP shaft, while it provides an advantage that, compared with a steel shaft, a weight reduction can be achieved, thus increasing a swing speed and improving a launch angle and a carry, FRP has longitudinal and transverse elastic moduli varying depending on an orientation of reinforcing fibers and thus has an anisotropic property, so that a ratio between torsional rigidity and bending rigidity (GIp/EI) of the FRP shaft varies over a length direction thereof. Conceivably, this is the reason for not being able to stabilize directional accuracy as much as a steel shaft does.
In the FRP shaft disclosed in the '309 Publication, as described above, the prepreg sheet for reinforcement (hereinafter, referred to as a reinforcement sheet) including reinforcing fibers oriented in the axial direction is arranged in a distal end region to which the head is mounted, ending up causing a problem in stabilizing directional accuracy. That is, in a case where such a reinforcement sheet is arranged, bending rigidity is increased in the distal end region, and since the number of winding turns increases toward the distal end, as shown in
The reinforcement sheet thus wound includes reinforcing fibers oriented in the axial direction and thus significantly affects bending rigidity, while directionality thereof hardly affects torsional rigidity. Because of this, similarly to
Accordingly, in the FRP shaft with the reinforcement sheet wound thereon, the reinforcement sheet including reinforcing fibers oriented in the axial direction, a variation of the ratio between torsional rigidity and bending rigidity (GIp/EI) is increased in the distal end region (the ratio between torsional rigidity and bending rigidity varies over the length direction thereof), leading to a problem in stabilizing directional accuracy. Particularly in playing golf by use of a golf club set composed of a golf club equipped with a steel shaft and a golf club equipped with an FRP shaft, there occurs a difference in feeling of bowing and feeling of torsion between these both types of golf clubs, making a miss-shot likely to occur. Further, while achieving a weight reduction and thus providing ease of swinging, the golf club equipped with an FRP shaft makes it difficult to stabilize directional accuracy.
In view of the above-described problems, an object of the present invention is to provide a golf club equipped with a shaft made of FRP, the golf club being excellent in swing feeling and ball-hitting feeling and capable of stabilizing directional accuracy in ball hitting.
In order to achieve the above-described object, a golf club according to the present invention is characterized in that it includes a shaft made of a fiber-reinforced resin and mounted to a head, and the shaft is formed so that a variation of a ratio between torsional rigidity and bending rigidity (GIp/EI) is 0.2 or less over an entire length thereof.
Typically, a swing feeling and a ball-hitting feeling given by a golf club to a golf player are largely affected by torsional rigidity and bending rigidity of a shaft of the golf club. That is, since torsional rigidity is resistance to torsion and bending rigidity indicates how unlikely deformation is with respect to bending, the higher torsional rigidity is, the more likely it is that the shaft transmits a feeling in hand to a head of the golf club (the higher reactivity of the shaft is), and a decrease in bending rigidity makes it possible for the shaft to use deformation of itself to hit a ball. In this case, as for the ratio between torsional rigidity and bending rigidity, when the ratio is uniform (forming a flat straight-line graph) over an entire length of the shaft, the shaft has isotropy, thus providing a uniform rigidity feeling as a whole and also stabilizing directional accuracy in ball hitting. That is, when the ratio largely changes (has large variations) depending on a position on the shaft in an axial direction, it is likely that a sense of discomfort occurs in terms of a swing feeling and a ball-hitting feeling, which is not preferable in stabilizing ball hitting. Particularly in a case where a golf club having such large variations is included in one set of golf clubs, a feeling gap (a difference in feel) between the golf clubs becomes large. For example, in a case where a golf club with a steel shaft and a golf club with an FRP shaft having a large value of the ratio are both used in one round of golf, there occurs a large feeling gap between the golf clubs, possibly resulting in a miss-shot.
The shaft having the above-described configuration is formed so that a variation of the ratio between torsional rigidity and bending rigidity (GIp/EI) is 0.2 or less over the entire length thereof so that the variation of the ratio is extremely decreased. Therefore, the shaft has a property approximate to isotropy of a steel shaft, making it possible to improve a swing feeling and a ball-hitting feeling and to stabilize directional accuracy in ball hitting. Furthermore, since the shaft is made of FRP, there is obtained a golf club being lightweight and providing ease of swinging.
According to the present invention, there is obtained a golf club equipped with a shaft made of FRP, the golf club being excellent in swing feeling and ball-hitting feeling and capable of stabilizing directional accuracy in ball hitting.
An embodiment of a golf club according to the present invention is hereinafter described with reference to the appended drawings.
A golf club 1 shown in
As is known, the shaft 10 is made of FRP and formed by winding a plurality of prepreg sheets on a mandrel, the plurality of prepreg sheets being formed by impregnating reinforcing fibers with a synthetic resin, and thermally curing them, followed by de-coring. In this case, a prepreg sheet for reinforcement (a reinforcement sheet) is wound on the distal end region of the shaft 10 for reasons such as that the distal end region is decreased in diameter by being tapered, that the head 5 as a heavy additional item is mounted thereto, and that the distal end region is subjected to an impact when hitting a ball. The reinforcement sheet can improve bending rigidity and torsional rigidity of the distal end region and carries out a function of forming a straight-shaped fixing region between the inner surface of the fitting hole of the hosel 5a and the outer surface of the shaft 10, thus improving fixing strength of the head 5. An example of a configuration and an arrangement of the prepreg sheets and the reinforcement sheet wound on the mandrel will be mentioned later.
In the present invention, an FRP shaft mounted to a head is configured to have characteristics described below. Here, prior to describing a configuration of a shaft according to this embodiment, a description is specifically given of characteristics of a shaft forming a basic principle of the present invention.
Rigidity of a shaft largely affects a feeling given to a golfer when he/she swings, and the golfer can intuitively grasp bending rigidity and torsional rigidity upon swinging and hitting a ball (grasp a rigidity feeling given by the shaft).
The higher bending rigidity of the shaft is, the less likely it is that the shaft bows (the larger so-called tension of the shaft is), and thus a shaft having high rigidity has characteristics suited for a golfer having a high swing speed. On the other hand, a shaft having low rigidity allows its bowing to be used to hit a ball and thus has characteristics suited for a golfer having a low swing speed. Such bowing can be intuitively perceived by a golfer upon swinging, and even by simply holding a grip and swinging the shaft in an up-down direction, rigidity of the shaft can be visually grasped.
Furthermore, torsional rigidity of the shaft affects an operational feeling in a rotational direction, and a golfer can intuitively grasp the torsional rigidity as resistance or reactivity in a torsional direction at a grip portion. That is, a shaft having high torsional rigidity gives such a sensation that a feeling of torsion at a grip is directly transmitted to a head, while a shaft having low torsional rigidity gives such a sensation that a feeling of torsion at a grip is transmitted to a head with a slight margin (degree of freedom).
Since a golfer can intuitively grasp the above-described bending rigidity and torsional rigidity during a time between swinging and hitting a ball, it can be said that, preferably, in a shaft, characteristics of bending rigidity and torsional rigidity agree with each other over an entire length thereof. To be more specific, a shaft having the bending rigidity distribution shown in
Accordingly, in a golf club equipped with a shaft having such characteristics, when the shaft is considered over an entire length thereof, a gap has occurred between a bending rigidity feeling and a torsional rigidity feeling, and thus a golfer intuitively senses a difference in feeling of bowing and feeling of torsion (is given a sense of discomfort). That is, conceivably, in a case where a bending rigidity distribution curve and a torsional rigidity distribution curve substantially agree in shape with each other, no gap occurs between a bending rigidity feeling and a torsional rigidity feeling, and thus a golf club providing excellent feelings can be obtained.
Specifically, in a shaft having rigidity distribution curves as shown in
A steel shaft is made of metal and thus has isotropy, so that over an entire length of the shaft, respective distributions of bending rigidity and torsional rigidity become substantially the same, and a ratio between the bending rigidity and the torsional rigidity becomes substantially uniform (forms a substantially straight-line graph over the entire length of the shaft, with a variation of substantially zero). Thus, there can be obtained a golf club, though being increased in weight as a golf club, providing excellent feelings because no gap has occurred between a bending rigidity feeling and a torsional rigidity feeling.
As described above, an FRP shaft is affected by an orientation of reinforcing fibers in prepreg sheets wound thereon and thus is characterized by having anisotropy. Therefore, although in distribution characteristics as shown in
The present invention is characterized in that, over an entire length of an FRP shaft, a ratio between bending rigidity and torsional rigidity (GIp/EI) is made uniform (a variation (a fluctuation width) thereof is minimized as much as possible), and the ratio is set not to be displaced (the variation is set to 0) over the entire length or the variation is made approximate to 0 so that feelings provided by the shaft are made approximate to those provided by a steel shaft.
Next, with reference to
In
In this case, bending rigidity (EI) and torsional rigidity (GIp) are derived by a calculation method below. Regarding the bending rigidity (EI), a Young's modulus (a longitudinal elastic modulus) E can be determined by a calculation based on a configuration (a material) of prepreg sheets as a component of a shaft and an arrangement mode (a laminated structure) thereof, and I (a cross-sectional secondary moment) can be derived by I=π(D24−D14)/64 (Expression 1). Furthermore, regarding the torsional rigidity (GIp), a shear elastic modulus (a transverse elastic modulus) G can be determined, similarly to the above, by a calculation based on a configuration (a material) of prepreg sheets as a component of a shaft and an arrangement mode (a laminated structure) thereof, and Ip (a cross-sectional torsional moment) can be derived by Ip=π(D24−D14)/32 (Expression 2). In (Expression 1) and (Expression 2) above, D2 indicates an outer diameter of a shaft and D1 indicates an inner diameter of the shaft. Furthermore, since an FRP shaft is formed by winding a plurality of sheets of materials thereon, numerical values regarding the shaft as a whole are determined by adding up values determined for respective layers thereof.
Bending rigidity (EI) of an actually molded FRP shaft can be derived by a technique in which the shaft is laid horizontally and supported at two points a distance (L/2) away from a measurement point thereon, and a deflection amount (6) of the shaft when a force (P) is applied from above to a position of the middle measurement point is measured. Specifically, the bending rigidity (EI) can be derived from a calculation expression EI=(L3/48)×(P/δ). A maximum load P is 20 Kgf, and a distance L between portions thus supported is 200 mm. By the above-described technique, EI at the middle position measurement point between the two-point supported portions can be determined, and by shifting positions of the supported portions, it becomes possible to continuously determine numerical values of EI.
Furthermore, torsional rigidity (GIp) of the actually molded FRP shaft can be derived by a technique in which the shaft is laid horizontally with one end portion thereof secured, and retained at a position L mm away from that secured portion, and a torsional angle A (radian) when a torque Tr is applied to that retained portion is measured. Specifically, the torsional rigidity (GIp) can be derived from a calculation expression GIp=L×Tr/A. The toque Tr is 139 (Kgf·mm), and a distance L between the secured portion and the retained portion on the shaft is 200 mm. By the above-described technique, GIp at a middle position between the secured portion and the retained portion of the shaft can be determined, and by shifting the positions, it becomes possible to continuously determine numerical values of GIp.
As mentioned above, a steel shaft has isotropy, and thus the ratio GIp/EI is made uniform over an entire length of the shaft, a value of which, however, slightly varies depending on a Poisson's ratio (ν) of a constituent material of the shaft. When iron is considered to be a principal component of the shaft, a Poisson's ratio of the shaft is about 0.3, and thus it is conceived that the ratio GIp/EI has a value of about 0.87 based on a relationship E=2(1+ν). For this reason, in an actual steel shaft, it is conceived that the ratio GIp/EI has a value falling within a range of 0.85±0.1, though it depends on a constituent material of the steel shaft (0.85 in
On the other hand, Comparative Example X is set so that a variation of the ratio is 0.368, Comparative Example Y is a shaft whose variation of the ratio is set to 0.784, and Comparative Example Z is set so that a variation of the ratio is made approximate to 0.2, having a value of 0.230. As described above, when a variation of the ratio is increased, feelings are deteriorated, and the more approximate the variation is to 0, the more improved the feeling are. Herein, as a result of prior study in the form of a simulation, it was predictable to some extent that when a variation of the ratio is within 0.2 or less, an improvement in feelings can be expected. Based on this, in an actual sensory test, shafts set to have a variation in a neighborhood of 0.2 were prepared (Example D has a value of 0.194 and Comparative Example Z has a value of 0.2030), and an actual examination thereof was performed.
The following describes how the sensory test was performed and a result thereof. In the sensory test, the seven golf clubs shown in
As shown in the assessment result above, Example C having a variation of 0.104, Example B having a variation of 0.132, and Example A having a variation of 0.168 were assessed as excellent or within a tolerable range and thus can be assessed as being golf clubs providing excellent feelings.
In contrast, Comparative Example X having a variation of 0.368 and Comparative Example Y having a variation of 0.784 were assessed by many of the golfers as being so poor that the shafts should be improved. Furthermore, as for Example D having a variation of 0.194 and Example Z having a variation of 0.230, although results of the assessment thereof slightly varies, as a result of considering results of the assessment of Examples A, B, and C and results of the assessment of Comparative Examples X and Y, in the present invention, it was determined that a variation of 0.2 is practically a limit value up to which excellent feelings can be obtained (for example, when ∘, Δ, and x are converted into scores of 2 points, 1 point, and 0 points, respectively, Example D has 12 points and Comparative Example Z has 10 points, and thus in the present invention, a limit value of a variation was determined to be 0.2).
As in the present invention, when made of FRP, a golf club shaft can achieve a weight reduction and thus provides ease of swinging. Further, the shaft is formed so that a variation of the ratio between torsional rigidity and bending rigidity (GIp/EI) is 0.2 or less over an entire length thereof and thus provides a feeling of torsion and a feeling of bowing approximate to each other, so that it becomes possible to achieve a stable shot and to stabilize directional accuracy. Furthermore, in a case where a golf club equipped with such a shaft is included in a golf club set together with a golf club equipped with a steel shaft, even when these both types of golf clubs are used in a round of golf, there occurs no significant sense of discomfort, and it becomes possible to achieve a stable shot between uses of the both types of golf clubs.
Next, with reference to
In this configuration example, it is intended to make a torsional rigidity distribution as shown in
As the body sheets, a plurality of body sheets are wound to constitute the entire length (form a body layer) of the shaft, and among the plurality of body sheets, a body sheet 31 constituting an inner most layer is formed by overlaying a first diagonally oriented sheet and a second diagonally oriented sheet on each other, the first diagonally oriented sheet including reinforcing fibers oriented in a +45° direction with respect to an axial direction, the second diagonally oriented sheet including reinforcing fibers oriented in a −45° direction with respect to the axial direction, and cutting a thus obtained overlaid body so that, for example, it is wound 3.6 plies at the distal end and 1.2 plies at a proximal end. Each of body sheets 32 and 33 wound over the body sheet 31 includes reinforcing fibers arranged regularly in the axial direction and cut, for example, so as to be wound one ply at the distal end to form an over ply and wound one ply at the proximal end to form an over ply. A body sheet 34 wound over the body sheets 32 and 33 includes reinforcing fibers arranged regularly in a circumferential direction and cut, for example, so as to be wound one ply at the distal end to form an over ply and wound one ply at the proximal end to form an over ply. A body sheet 35 wound over the body sheet 34 includes reinforcing fibers arranged regularly in the axial direction and cut, for example, so as to be wound one ply at the distal end to form an over ply and wound one ply at the proximal end to form an over ply.
Among the above-described plurality of body sheets wound, ones which include reinforcing fibers arranged regularly in the axial direction contribute to an improvement in bending rigidity, and one of them which includes reinforcing fibers oriented in crossed directions contributes to an improvement in torsional rigidity. In this case, although a body sheet including reinforcing fibers oriented at ±45° most effectively contributes to an improvement in torsional rigidity, there is no limitation on an angle of orientation. Furthermore, one of them which includes reinforcing fibers arranged regularly in the circumferential direction contributes to an improvement in strength against crush.
The reinforcement sheet is wound on the distal end region (the distal end to which a head is mounted) of the shaft. The reinforcement sheet is wound in an area extending up to 250 mm from the distal end and has a first reinforcement sheet 50 and a second reinforcement sheet 51 including reinforcing fibers oriented in the axial direction. The first reinforcement sheet 50 is formed by overlaying a first diagonally oriented sheet and a second diagonally oriented sheet on each other, the first diagonally oriented sheet including reinforcing fibers oriented in a +45° direction with respect to the axial direction, the second diagonally oriented sheet including reinforcing fibers oriented in a −45° direction with respect to the axial direction.
In this case, although the first reinforcement sheet 50 and the second reinforcement sheet 51 may be wound discontinuously in a circumferential direction (part of the body sheets may be interposed therebetween), it is preferable that, as shown in
It is preferable that the first and second diagonally oriented sheets constituting the first reinforcement sheet 50 have a thickness of 0.1 mm or less (0.2 mm or less in a state of being laminated to each other), and it is preferable that the first and second reinforcement sheets 50 and 51 be configured so that a thickness of each of the first and second diagonally oriented sheets <a thickness of the second reinforcement sheet 51<a thickness of the first reinforcement sheet (in a state where the first and second diagonally oriented sheets are laminated to each other) 50. This is because an increase in thickness makes it likely that the first reinforcement sheet 50 wound on an inner side and the second reinforcement sheet 51 wound on an outer side are positionally shifted from each other, ending up forming a large step between a winding start position and a winding end position, so that it becomes difficult for them to carry out a function as an outer diameter adjuster.
The first reinforcement sheet 50 is configured by laminating a sheet cut in one direction, for example, at a fiber angle of +45° so as to be wound 2 plies at a distal end position and 0 plies at a proximal end position (a position 250 mm from the distal end) to a sheet cut at a fiber angle of −45° so as to have the same dimensions as those of the above-described sheet. Furthermore, the second reinforcement sheet 51 is cut so as to be wound 5.21 plies at the distal end position and 0 plies at the proximal end position (a position 250 mm from the distal end). As described above, the first reinforcement sheet 50 and the second reinforcement sheet 51 are wound so that their respective end portions on a grip side are aligned with each other, and thus their respective positions of an inflection point agree with each other, so that it is possible to prevent the ratio between bending rigidity and torsional rigidity (GIp/EI) from being largely displaced.
In the above-described configuration, it is only required that the ratio between bending rigidity and torsional rigidity (GIp/EI) be set to 0.2 or less, and a configuration of the first and second reinforcement sheets 50 and 51 can be modified as appropriate. Depending on a size of the first and second reinforcement sheets 50 and 51, however, a variation of the ratio can no longer fall within 0.2 or less, so that attention should be given to a type or a size of a material thereof. For example, while, in a configuration shown in
The foregoing has described the embodiment of the present invention. The present invention, however, is not limited to the above-described embodiment, and various modifications can be made thereto. In the present invention, it is only required that the shaft be formed so that a variation of the ratio between torsional rigidity and bending rigidity (GIp/EI) is 0.2 or less over an entire length thereof, and configurations of the first and second reinforcement sheets 50 and 51 and the body sheets 31 to 35 can be modified as appropriate as long as such a condition is satisfied. For example, the above-described numbers of plies of the sheets are presented merely as one example, and in the pattern diagram shown in
Furthermore, a numerical value of the ratio between torsional rigidity and bending rigidity (GIp/EI) can also be modified as appropriate. While, in the graph shown in
Number | Date | Country | Kind |
---|---|---|---|
2017-015554 | Jan 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5437450 | Akatsuka | Aug 1995 | A |
6056648 | Kusumoto et al. | May 2000 | A |
6106413 | Kusumoto | Aug 2000 | A |
8057617 | Fujimoto | Nov 2011 | B2 |
8845452 | Sato | Sep 2014 | B2 |
20090264216 | Kato | Oct 2009 | A1 |
20120309558 | Nakano | Dec 2012 | A1 |
20130143688 | Sato | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2012-245309 | Dec 2012 | JP |
Entry |
---|
First Office Action dated Apr. 30, 2019 issued in corresponding Chinese Patent Application No. 201711457373.1 with English translation. |
Number | Date | Country | |
---|---|---|---|
20180214751 A1 | Aug 2018 | US |