This disclosure relates to golf clubs and golf club heads. More particularly, this disclosure relates to golf club heads with shot improvement features.
In the golf industry, club design often takes into consideration many design factors, including weight, weight distribution, spin rate, coefficient of restitution, characteristic time, volume, face area, sound, materials, construction techniques, durability, and many other considerations. Historically, club designers have been faced with performance trade-offs between design features that enhance one aspect of club performance while reducing at least one other aspect of club performance. For example, lighter weight can often lead to faster club speed, which often leads to greater distance; however, clubs that are too light weight can become uncontrollable by the user. In another example, thinner club faces often lead to distance gains, but thinning faces reduces durability in manufacture. Yet another example, high-tech materials may be used in various club designs to achieve performance results, but the gains may not justify the added costs of material acquisition and processing. The challenges of engineering modern golf clubs center largely around maximizing performance benefits while minimizing design trade-offs.
A golf club head includes a golf club body including a sole, a crown connected to the sole by a skirt, and a hosel connected to at least one other feature of the golf club body; a face connected to the front end of the golf club body; and features allowing striking of a golf ball above the ideal strike location.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
Disclosed is a golf club including a golf club head and associated methods, systems, devices, and various apparatus. It would be understood by one of skill in the art that the disclosed golf club and golf club head are described in but a few exemplary embodiments among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
Modern golf club design has brought the advent of extraordinary distance gains. Just two decades ago, golf tee shots over 250 yards were considered very long shots—among the longest possible—and unachievable for most amateur golfers. The advent of the metal wood head brought great possibilities to the golf industry. Just two decades later, golf technology applied to driver-type golf club heads allows many amateur golfers to achieve tee shots of greater than 300 yards. Modern golf courses have been designed longer than previously needed to address the distance gains, and many older courses have been renovated to add length in an attempt to maintain some of the difficulty of the game. The United States Golf Association (USGA) limited the Coefficient of Restitution (COR) for all golf club heads to 0.830. COR is a measure of collision efficiency. COR is the ratio of the velocity of separation to the velocity of approach. In this model, therefore, COR is determined using the following formula:
COR=(νclub-post−νball-post)÷(νball-pre−νclub-pre)
where,
Modern drivers achieved 0.830 COR several years ago, as the size of most drivers (reaching up to 460 cubic centimeters by USGA limit) allows engineers and designers the ability to maximize the size of the face of driver-type heads. However, fairway wood type and hybrid type golf club heads are designed with shallower heads—smaller heights as measured from the sole of the golf club head to the top of the crown of the golf club head—for several reasons. First, golfers typically prefer a smaller fairway wood type or hybrid type golf club head because the club may be used to strike a ball lying on the ground, whereas a driver-type golf club head is used primarily for a ball on a tee. When used for balls on the ground, most golfers feel it is easier to make consistent contact with a shallower golf club head than a driver-type golf club head. Second, the shallower profile of the golf club head helps keep the center of gravity of the golf club head low, which assists in lifting the ball off of the turf and producing a higher ball flight.
One drawback, however, is that the shallower height of the fairway wood type and hybrid type golf club heads often necessitates a smaller surface area of the face of the golf club head. Driver type golf club heads are able to reach the 0.830 COR limit primarily because the surface area of the face of modern driver type heads is relatively large. For fairway wood type and hybrid type golf club heads, the smaller surface area made design for distance difficult.
Relatively recent breakthroughs in golf club design—including the slot technology described in U.S. patent application Ser. No. 13/338,197, filed Dec. 27, 2011, entitled “Fairway Wood Center of Gravity Projection”—have allowed modern fairway wood type and hybrid type golf club heads to approach the 0.830 limit. Such advances have led to great distance gains for these types of clubs.
However, in addition to higher COR, it is now surprisingly understood that certain spin profile changes may occur as a result of the slot technology previously mentioned. Shots hit higher or lower on the golf club face may experience higher or lower spin rates relative to non-slotted versions of the same or similar golf club heads. Such spin variations can also affect the distance a ball travels off the golf club face. Finally, the placement of the weight in the golf club head can affect the launch angle—the angle at what the golf ball leaves the golf club head after impact—but launch angle may also be affected by the introduction of slot technology, and the placement of weight in the golf club head affects spin as well.
The result of these changes on golf club design cannot be overstated. The combination of spin, launch angle, and ball speed is determinative of many characteristics of the golf shot, including carry distance (the distance the ball flies in the air before landing), roll distance (the distance the ball continues to travel after landing), total distance (carry distance plus roll distance), and trajectory (the path the ball takes in the air), among many other characteristics of the shot.
Although distance gains were seen with the slot technology previously described, it was unclear exactly how those distance gains were achieved. Although COR was increased, the effect of the slot technology on launch angle and spin rates was not previously well understood.
For many players, the ability to hit a repeatable and consistent golf shot is paramount to scoring, even at the relatively long distances seen in fairway wood type and hybrid type golf club heads. The ability to hit a fairway wood type golf club head large distances is beneficial, but the reduction in distance for poor shots often obviates the benefit of such distance gains. As pertinent to the current disclosure, a common error amongst golfers across a variety of skill levels is mishits high on the face. Especially with respect to wood-type and hybrid-type golf club heads, poor shots struck high on the face of the golf club head contact the joint between the face and the crown, leading to so-called “sky balls,” often leaving marks in the paint of the golf club head referred to as “sky marks.”
Certain benefits can be seen by locating the center of gravity (CG) of the golf club head proximal to the face of the golf club head and low. It has been desirous to locate the CG low in the golf club head, particularly in fairway wood type golf clubs. Such low and forward CG technology is described in detail with reference to U.S. patent application Ser. No. 13/839,727, filed Mar. 15, 2013, entitled “Golf Club with Coefficient of Restitution Feature,” which is incorporated by reference herein in its entirety and which also described coefficient of restitution features in greater detail. In certain types of heads, it may still be the most desirable design to locate the CG of the golf club head as low as possible regardless of its location within the golf club head. However, it has unexpectedly been determined that a low and forward CG location may provide some benefits not seen in prior designs or in comparable designs without a low and forward CG.
For reference, within this disclosure, reference to a “fairway wood type golf club head” means any wood type golf club head intended to be used with or without a tee. For reference, “driver type golf club head” means any wood type golf club head intended to be used primarily with a tee. In general, fairway wood type golf club heads have lofts of 13 degrees or greater, and, more usually, 15 degrees or greater. In general, driver type golf club heads have lofts of 12 degrees or less, and, more usually, of 10.5 degrees or less. In general, fairway wood type golf club heads have a length from leading edge to trailing edge of 73-97 mm. Various definitions distinguish a fairway wood type golf club head form a hybrid type golf club head, which tends to resemble a fairway wood type golf club head but be of smaller length from leading edge to trailing edge. In general, hybrid type golf club heads are 38-73 mm in length from leading edge to trailing edge. Hybrid type golf club heads may also be distinguished from fairway wood type golf club heads by weight, by lie angle, by volume, and/or by shaft length. Fairway wood type golf club heads of the current disclosure are 16 degrees of loft. In various embodiments, fairway wood type golf club heads of the current disclosure may be from 15-19.5 degrees. In various embodiments, fairway wood type golf club heads of the current disclosure may be from 13-17 degrees. In various embodiments, fairway wood type golf club heads of the current disclosure may be from 13-19.5 degrees. In various embodiments, fairway wood type golf club heads of the current disclosure may be from 13-26 degrees. Driver type golf club heads of the current disclosure may be 12 degrees or less in various embodiments or 10.5 degrees or less in various embodiments.
Golf club heads of the current disclosure include features designed to allow low placement of the CG relative to impact point while including features to promote consistent impact. In various embodiments, the golf club heads of the current disclosure include much shallower profiles than prior designs while maintaining a face height to improve player confidence and reduce the likelihood of poor contact or “sky balls.”
In further iterations, implementation of slot technology may allow spin reduction or increase on certain shots to address the desired flight and result. For example, a ball struck particularly low on the golf club face will generally begin its flight with a low launch angle, particularly if the golf club head includes a roll radius at the face portion. As such, it may be advantageous to provide increased spin rates for shots struck low on the golf club face to maintain carry distance. In another example, a ball struck particularly high on the golf club face will generally begin its flight with a higher launch angle. As such, it may be advantageous in some situations to provide decreased spin rates, or it may be advantageous to provide increased spin rates to prevent “flyer” shots—those that travel particularly long distances because of the inability of the golfer to spin the ball from a particular lie, such as in the rough.
Devices and systems of the current disclosure may achieve altered COR profile across the face through variable face thickness (VFT) technology while achieving greater COR and greater distance gains than prior fairway wood type and hybrid type golf club heads through the use of slot technology.
One embodiment of a golf club head 100 is disclosed and described in with reference to
A three dimensional reference coordinate system 200 is shown. An origin 205 of the coordinate system 200 is located at the geometric center of the face (CF) of the golf club head 100. See U.S.G.A. “Procedure for Measuring the Flexibility of a Golf Clubhead,” Revision 2.0, Mar. 25, 2005, for the methodology to measure the geometric center of the striking face of a golf club. The coordinate system 200 includes a z-axis 206, a y-axis 207, and an x-axis 208 (shown in
As seen with reference to
The top view seen in
Referring back to
The golf club head 100 has an effective face height 163 that is a height of the face 110 as measured parallel to the z-axis 206. The effective face height 163 measures from a highest point on the face 110 to a lowest point on the face 110 proximate the leading edge 170. In most golf club heads, a transition exists between the crown 120 and the face 110 such that the highest point on the face 110 may be slightly variant from one embodiment to another. For most golf club heads, the highest point on the face 110 and the lowest point on the face 110 are points at which the curvature of the face 110 deviates substantially from a roll radius. For some golf club heads, the deviation characterizing such point may be a 10% change in the radius of curvature.
In the current embodiment, the face height 163 includes an extended face feature (EFF) 1000. The extended face feature 1000 provides additional face area for impact with a golf ball that may occur at a heightened location on the face 110 of the golf club head 100. With the extended face feature 1000, the effective face height 163 is about 31.5 mm. In various embodiments, the effective face height 163 may be greater or less than 31.5 mm. An effective face position height 164 is a height from the GP to the lowest point on the face 110 as measured in the direction of the z-axis 206. In the current embodiment, the effective face position height 164 is about 4 mm. In various embodiments, the effective face position height 164 may be 2-6 mm. In various embodiments, the effective face position height 164 may be 0-10 mm. In various embodiments, a combination of the effective face height 163 and the effective face position height 164 may be as little as 5 mm less than the crown height 162 or as many as 5 mm greater than the crown height 162 as a result of the inclusion of the extended face feature 1000. In various embodiments, the effective face height 163 in combination with the effective face position height 164 may be about the same as the crown height 162. For the current embodiment, the combination of the effective fact position height 164 and the effective face height 163 is 35.5 mm, where the crown height is 35.2 mm. In various embodiments, the combination of effective face height 163 and effective face position height 164 may change as the crown height 162 changes. In various embodiments, the combined effective face height 163 and effective face position height 164 may be within ±10% of the crown height. In various embodiments, the EFF 1000 extends above the portion of the crown 120 that is directly adjacent to the EFF 1000. As with the current embodiment, the EFF 1000 may extend about 3 mm above the crown 120 in the region directly proximate the face 110. In various embodiments, the extension may be 2-4 mm in various embodiments, the extension may be more than 3 mm. In various embodiments, the extension may be more than 1 mm and less than 10 mm. In various embodiments, the extension may be as much as 12.5 mm. In various embodiments, the crown height 162 may be 30-40 mm. A length 177 of the golf club head 177 as measured in the direction of the y-axis 207 is seen as well with reference to
The EFF 1000 of the current embodiment is a protrusion from the joint of the crown 120 and the face 110. The extended face feature 1000 extends about tangent to the face 110 such that the hitting area of the face 110 is expanded, creating more hitting area in the direction of the positive z-axis 206. The EFF 1000 has a width 1002 as measured parallel to the x-axis 208. In the current embodiment, the width 1002 is about 60 mm, although in various embodiments the width 1002 may be larger or smaller. In various embodiments, the width 1002 is limited to the width of the face 110. In various embodiments, the width 1002 is limited to the width of the striking portion of the face. In various embodiments, the width 1002 may be 55-65 mm. In various embodiments, the width 1002 may be 52-62 mm. In various embodiments, the width 1002 may be up to 75 mm. In various embodiments, the width 1002 may be as little as 30 mm. In the current embodiment, the width 1002 is a mean width because the EFF 1000 is tapered along its ends. As seen with reference to
As seen with reference to
A tangent face plane (TFP) 1020 is seen in the view of
In various embodiments, the EFF 1000 and EFFs of various implementations provide increased surface area of the face 110 of the golf club head 100 without increasing the overall dimensions. As such, a golf club head in accord with the current disclosure can be made with a smaller crown height 162 as compared to golf club heads with the same effective face height 163 and the same effective face position height 164. Such an arrangement can provide a lower CG location in the golf club head 100 as compared to golf club heads with similar face size, making the golf club head 100 more effective than larger counterparts.
Additionally, the EFF 1000 provides greater visual surface area at address for the golfer, which may cause the face of the golf club head 100 to appear to be of higher loft than it measures. Such a phenomenon may lead the golfer to feel more confident with the golf club head 100 as compared to a golf club head of the same general dimensions but without the EFF 1000, as higher-lofted golf club heads tend to inspire greater confidence in golfers across a broad range of skill levels. Finally, as stated previously, the EFF 1000 provides additional hitting area for the face 110, and, as such, allows shots struck high on the face 110 to be directed more toward the golfer's target than previous designs, which would tend to direct shots more upwardly into the air. For example, the golf club head 100 includes a volume of just 149 cc as compared to a golf club head with the same face area wherein the crown abuts the top of the face 110, wherein the volume is 163 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be 145-150 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be 140-155 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be 135-165 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be up to 220 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be up to 200 cc. In various embodiments of the current disclosure, volume of golf club head 100 may be greater than 120 cc.
As seen with reference to
As seen with reference to
A comparison of golf club head 100, golf club head 350, and a golf club head similar to golf club head 100 but without the EFF 1000 is seen in
The chart of
The robot utilized for testing is from Golf Laboratories, Inc., 2514 San Marcos Ave. San Diego, Calif. 92104. The head tracker utilized is GC2 Smart Tracker Camera System from Foresight Sports, 9965 Carroll Canyon Road, San Diego, Calif. 92131. Other robots or head tracker systems can also be used which can achieve these impact conditions. The golf ball utilized is the Taylor Made Lethal ball, but other equivalent thermoset urethane covered balls can also be used. The preferred landing surface for total distance measurement is a standard fairway condition. Also, the wind should be less than 4 mph average during the test to minimize shot to shot variability.
As can be seen, the measured distances of shot travel peaked between about 255 and 265 yards across all golf club heads. However, several advantages are notable between the various golf club heads shown in the chart of
As can be seen, the distance graph for golf club head 100 is much more consistent between 2.5 mm, 5 mm, and 7.5 mm above ideal strike location (16.5 mm) than for either golf club head 350 or the golf club head without EFF 1000. Additionally, as expected, the golf club head without EFF 1000 loses data for any shots greater than 10 mm above ideal strike location, as might be expected by the lower profile golf club head. Lost data is indicative that the resultant shot was too poor to record data. As such, the chart of
Further, as seen with reference to
In various embodiments, the EFF 1000 may include various cosmetic modifications or have a more blended shape to prevent visual distraction. In various embodiments, the EFF 1000 may be arranged such that it provides an additional alignment feature, giving the golfer a more clear top line than most typical wood-type golf club heads. In various embodiments, the EFF 1000 may be accentuated to provide additional contrast, such as including highlighting paint colors proximate the EFF 1000 or providing more visually appealing color combinations proximate the EFF 1000. In various embodiments, player preferences may be maximized based on the location and size of the EFF 1000. In various embodiments, various dimensions may be utilized to provide an EFF 1000 may change, and one of skill in the art would understand that golf club heads including EFFs may be embodied in a variety of methods, systems, and physical elements, and no single element or feature of the disclosure should be considered limiting on the scope of enablement herein.
As seen in
In the club head 2200b embodiment shown in
In the club head 2200d shown in
In the club head 2210e shown in
Additional golf club head embodiments are shown in
Turning to
The club head 2002 has a channel 2212 located in a forward position of the sole 2014, near or adjacent to the striking face 2018. The channel 2212 extends into the interior of the club head body 2010 and has an inverted “V” shape defined by a heel channel wall 2214, a toe channel wall 2216, a rear channel wall 2218, a front channel wall 2220, and an upper channel wall the embodiment shown, the upper channel wall 2222 is semi-circular in shape, defining an inner radius Rgi and outer radius Rgo, extending between and joining the rear channel wall 2218 and front channel wall 2220. In other embodiments, the upper channel wall 2222 may be square or another shape. In still other embodiments, the rear channel wall 2218 and front channel wall 2220 simply intersect in the absence of an upper channel wall 2222.
The channel 2212 has a length Lg along its heel-to-toe orientation, a width Wg defined by the distance between the rear channel wall 2218 and the front channel wall 2220, and a depth Dg defined by the distance from the outer surface of the sole portion 3014 at the mouth of the channel 2212 to the uppermost extent of the upper channel wall 2222. In the embodiment shown, the channel has a length Lg of from about 50 mm to about 90 mm, or about 60 mm to about 80 mm. Alternatively, the length Lg of the channel can be defined relative to the width of the striking surface Wss. For example, in some embodiments, the length of the channel Lg is from about 80% to about 120%, or about 90% to about 110%, or about 100% of the width of the striking surface Wss. In the embodiment shown, the channel width Wg at the mouth of the channel can be from about 3.5 mm to about 8.0 mm, such as from about 4.5 mm to about 6.5 mm, and the channel depth Dg can be from about 10 mm to about 13 mm.
The rear channel wall 2218 and front channel wall 2220 define a channel angle β therebetween. In some embodiments, the channel angle β can be between about 10° to about 30°, such as about 13° to about 28°, or about 13° to about 22°. In some embodiments, the rear channel wall 2218 extends substantially perpendicular to the ground plane when the club head 2002 is in the normal address position, i.e., substantially parallel to the z-axis 65. In still other embodiments, the front channel wall 2220 defines a surface that is substantially parallel to the striking face 2018, i.e., the front channel wall 2220 is inclined relative to a vector normal to the ground plane (when the club head 2002 is in the normal address position) by an angle that is within about ±5° of the loft angle, such as within about ±3° of the loft angle, or within about ±1° of the loft angle.
In the embodiment shown, the heel channel wall 2214, toe channel wall 2216, rear channel wall 2218, and front channel wall 2220 each have a thickness 2221 of from about 0.7 mm to about 1.5 mm, e.g., from about 0.8 mm to about 1.3 mm, or from about 0.9 mm to about 1.1 mm. Also, in the embodiment shown, the upper channel wall outer radius Rgo is from about 1.5 mm to about 2.5 mm, e.g., from about 1.8 mm to about 2.2 mm, and the upper channel wall inner radius Rgi is from about 0.8 mm to about 1.2 mm, e.g., from about 0.9 mm to about 1.1 mm.
A weight port 2040 is located on the sole portion 2014 of the golf club head 2002, and is located adjacent to and rearward of the channel 2212. As described previously in relation to
In the embodiment shown, the weight port 2040 is located adjacent to and rearward of the rear channel wall 2218. One or more mass pads may also be located in a forward position on the sole 2014 of the golf club head 2002, contiguous with both the rear channel wall 2218 and the weight port 2040, as shown. As discussed above, the configuration of the channel 2212 and its position near the face plate 2018 allows the face plate to undergo more deformation while striking a ball than a comparable club head without the channel 2212, thereby increasing both COR and the speed of golf balls struck by the golf club head. By positioning the mass pad 2210 rearward of the channel 2212, the deformation is localized in the area of the channel 2212, since the club head is much stiffer in the area of the mass pad 2210. As a result, the ball speed after impact is greater for the club head having the channel 2212 and mass pad 2210 than for a conventional club head, which results in a higher COR.
Turning next to
The club head 2002 has a channel 2212 located in a forward position of the sole 2014, near or adjacent to the striking face 2018. The channel 2212 extends into the interior of the club head body 2010 and has an inverted “V” shape defined by a heel channel wall 2214, a toe channel wall 2216, a rear channel wall 2218, a front channel wall 2220, and an upper channel wall 2222. In the embodiment shown, the upper channel wall 2222 is semi-circular in shape, defining an inner radius Rgi and outer radius Rgo, extending between and joining the rear channel wall 2218 and front channel wall 2220. In other embodiments, the upper channel wall 2222 may be square or another shape. In still other embodiments, the rear channel wall 2218 and front channel wall 2220 simply intersect in the absence of an upper channel wall 2222.
The channel 2212 has a length Lg along its heel-to-toe orientation, a width Wg defined by the distance between the rear channel wall 2218 and the front channel wall 2220, and a depth Dg defined by the distance from the outer surface of the sole portion 1014 at the mouth of the channel 2212 to the uppermost extent of the upper channel wall 2222. In the embodiment shown, the channel has a length Lg of from about 50 mm to about 90 mm, or about 60 mm to about 80 mm. Alternatively, the length Lg of the channel can be defined relative to the width of the striking surface Wss. For example, in some embodiments, the length of the channel Lg is from about 80% to about 120%, or about 90% to about 110%, or about 100% of the width of the striking surface Wss. In the embodiment shown, the channel width Wg at the mouth of the channel can be from about 3.5 mm to about 8.0 mm, such as from about 4.5 mm to about 6.5 mm, and the channel depth Dg can be from about 10 mm to about 13 mm.
The rear channel wall 2218 and front channel wall 2220 define a channel angle β therebetween. In some embodiments, the channel angle β can be between about 10° to about 40°, such as about 16° to about 34°, or about 16° to about 30°. In some embodiments, the rear channel wall 2218 extends substantially perpendicular to the ground plane when the club head 2002 is in the normal address position, i.e., substantially parallel to the z-axis. In other embodiments, such as shown in
A plurality of weight ports 2040—three are included in the embodiment shown—are located on the sole portion 2014 of the golf club head 2002, and are located adjacent to and rearward of the channel 2212. As described previously in relation to
In the embodiment shown, the weight ports 2040 are located adjacent to and rearward of the rear channel wall 2218. The weight ports 2040 are separated from the rear channel wall 2218 by a distance of approximately 1 mm to about 5 mm, such as about 1.5 mm to about 3 mm. As discussed above, the configuration of the channel 2212 and its position near the face plate 2018 allows the face plate to undergo more deformation while striking a ball than a comparable club head without the channel 2212, thereby increasing both COR and the speed of golf balls struck by the golf club head. As a result, the ball speed after impact is greater for the club head having the channel 2212 than for a conventional club head, which results in a higher COR.
In
In some embodiments, the slot 2312 has a substantially constant width Wg, and the slot 2312 is defined by a radius of curvature for each of the forward edge and rearward edge of the slot 2312. In some embodiments, the radius of curvature of the forward edge of the slot 2312 is substantially the same as the radius of curvature of the forward edge of the sole 2014. In other embodiments, the radius of curvature of each of the forward and rearward edges of the slot 2312 is from about 15 mm to about 90 mm, such as from about 20 mm to about 70 mm, such as from about 30 mm to about 60 mm. In still other embodiments, the slot width Wg changes at different locations along the length of the slot 2312.
The slot 2312 comprises an opening in the sole 2014 that provides access into the interior cavity of the body 2010 of the club head. As discussed above, the configuration of the slot 2312 and its position near the face plate 2018 allows the face plate to undergo more deformation while striking a ball than a comparable club head without the slot 2312, thereby increasing both COR and the speed of golf balls struck by the golf club head. In some embodiments, the slot 2312 may be covered or filled with a polymeric or other material to prevent grass, dirt, moisture, or other materials from entering the interior cavity of the body 2010 of the club head.
In the embodiment shown in
The slot 2312 formed in the sole of the club head embodiment shown in
In the embodiment shown in
A plurality of weight ports 2040—three are included in the embodiment shown—are located on the sole portion 2014 of the golf club head 2002. A center weight port is located between a toe-side weight port and a heel-side weight port and is located adjacent to and rearward of the channel 2312. As described previously in relation to
Three additional embodiments of golf club heads 2002 each having a slot 2312 formed on the sole 2014 near the face plate 2018 are shown in
A golf club head 3000 is shown with reference to
The embodiment shown in
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/824,417, filed Nov. 28, 2017, which is a continuation of U.S. patent application Ser. No. 14/693,730, filed Apr. 22, 2015, now U.S. Pat. No. 9,839,817, which claims the benefit of U.S. Provisional Patent Application No. 61/983,208, filed Apr. 23, 2014. The prior applications are incorporated herein by reference in their entirety. This application incorporates by reference the following United States Patents and United States Patent Applications: U.S. Patent Application No. 62/027,692, filed on Jul. 22, 2014, and entitled “GOLF CLUB,” which is incorporated by reference herein in its entirety. This application references Application for U.S. patent Ser. No. 13/839,727, entitled “GOLF CLUB WITH COEFFICIENT OF RESTITUTION FEATURE,” filed Mar. 15, 2013, which is incorporated by reference herein in its entirety and with specific reference to discussion of center of gravity location and the resulting effects on club performance. This application also references U.S. Pat. No. 7,731,603, entitled “GOLF CLUB HEAD,” filed Sep. 27, 2007, which is incorporated by reference herein in its entirety and with specific reference to discussion of moment of inertia. This application also references U.S. Pat. No. 7,887,431, entitled “GOLF CLUB,” filed Dec. 30, 2008, which is incorporated by reference herein in its entirety and with specific reference to discussion of adjustable loft and lie technology described therein and with reference to removable shaft technology and hosel sleeve connection systems. This application also references Application for U.S. patent Ser. No. 14/144,105, entitled “GOLF CLUB,” filed Dec. 30, 2013, which is incorporated by reference herein in its entirety and with specific reference to discussion of moment of inertia, center of gravity placement, and the effect of center of gravity placement on mechanics of golf club heads. This Application also references Application for U.S. patent Ser. No. 12/813,442, entitled “GOLF CLUB,” filed Jun. 10, 2010, which is incorporated by reference herein in its entirety and with specific reference to discussion of variable face thickness. This Application references Application for U.S. patent Ser. No. 12/791,025, entitled “HOLLOW GOLF CLUB HEAD,” filed Jun. 1, 2010, and Application for U.S. patent Ser. No. 13/338,197, entitled “FAIRWAY WOOD CENTER OF GRAVITY PROJECTION,” filed Dec. 27, 2011, which are incorporated by reference herein in their entirety and with specific reference to slot technology and coefficient of restitution features. This Application also references U.S. Pat. No. 6,773,360, entitled “GOLF CLUB HEAD HAVING A REMOVABLE WEIGHT,” filed Nov. 8, 2002, which is incorporated by reference herein in its entirety and with specific reference to discussion of removable weight. This Application also references U.S. Pat. No. 7,166,040, entitled “REMOVABLE WEIGHT AND KIT FOR GOLF CLUB HEAD,” filed Feb. 23, 2004, which is a continuation-in-part of U.S. Pat. No. 6,773,360, entitled “GOLF CLUB HEAD HAVING A REMOVABLE WEIGHT,” and which is incorporated by reference herein in its entirety and with specific reference to removable weight technology.
Number | Name | Date | Kind |
---|---|---|---|
1319802 | Shea | Oct 1919 | A |
4077633 | Studen | Mar 1978 | A |
D257873 | MacDougall | Jan 1981 | S |
D277221 | Kobayashi | Jan 1985 | S |
4850593 | Nelson | Jul 1989 | A |
4900029 | Sinclair | Feb 1990 | A |
D316583 | Mahaffey et al. | Apr 1991 | S |
5092599 | Okumoto | Mar 1992 | A |
5193810 | Antonius | Mar 1993 | A |
5221086 | Antonius | Jun 1993 | A |
D338935 | Antonius | Aug 1993 | S |
D366682 | Antonius | Jan 1996 | S |
5482279 | Antonious | Jan 1996 | A |
5511786 | Antonius | Apr 1996 | A |
5518242 | Mahaffey et al. | May 1996 | A |
D375130 | Hlinka | Oct 1996 | S |
D378770 | Hlinka et al. | Apr 1997 | S |
5632695 | Hlinka | May 1997 | A |
5762567 | Antonious | Jun 1998 | A |
5766095 | Antonious | Jun 1998 | A |
5954595 | Antonious | Sep 1999 | A |
D418885 | Wanchena | Jan 2000 | S |
6139446 | Wanchena | Oct 2000 | A |
6224494 | Patsky | May 2001 | B1 |
6248026 | Wanchena | Jun 2001 | B1 |
6254494 | Hasebe | Jul 2001 | B1 |
6299549 | Shieh | Oct 2001 | B1 |
D463516 | Antonious | Sep 2002 | S |
6530847 | Antonious | Mar 2003 | B1 |
D473604 | Antonius | Apr 2003 | S |
D481087 | Antonius | Oct 2003 | S |
6773360 | Willett et al. | Aug 2004 | B2 |
D501903 | Tanaka | Feb 2005 | S |
6855068 | Antonious | Feb 2005 | B2 |
7108612 | Nakahara | Sep 2006 | B2 |
7166040 | Chao | Jan 2007 | B2 |
D561284 | Nagai et al. | Feb 2008 | S |
7351163 | Shimazaki | Apr 2008 | B2 |
D579507 | Llewellyn et al. | Oct 2008 | S |
7455600 | Imamoto | Nov 2008 | B2 |
7500926 | Rae et al. | Mar 2009 | B2 |
7553241 | Park et al. | Jun 2009 | B2 |
7563178 | Rae et al. | Jul 2009 | B2 |
7651414 | Rae et al. | Jan 2010 | B2 |
7670234 | Kellerman | Mar 2010 | B1 |
7699717 | Morris | Apr 2010 | B2 |
7731603 | Beach et al. | Jun 2010 | B2 |
7758440 | Llewellyn et al. | Jul 2010 | B2 |
7762905 | Park et al. | Jul 2010 | B2 |
7789773 | Rae et al. | Sep 2010 | B2 |
7789774 | Rae et al. | Sep 2010 | B2 |
7815524 | Bamber | Oct 2010 | B2 |
7854666 | Horacek et al. | Dec 2010 | B2 |
7887431 | Beach et al. | Feb 2011 | B2 |
7938736 | Park et al. | May 2011 | B2 |
7959523 | Rae et al. | Jun 2011 | B2 |
8187119 | Rae et al. | May 2012 | B2 |
8192304 | Rae et al. | Jun 2012 | B2 |
8235844 | Albertsen et al. | Aug 2012 | B2 |
8337323 | Kuan et al. | Dec 2012 | B2 |
8357056 | Horacek et al. | Jan 2013 | B2 |
8529369 | Rae et al. | Sep 2013 | B2 |
8608587 | Henrikson | Dec 2013 | B2 |
8641557 | Kuan et al. | Feb 2014 | B2 |
D706885 | North et al. | Jun 2014 | S |
8740723 | Kuan et al. | Jun 2014 | B2 |
8753229 | Rae et al. | Jun 2014 | B2 |
8777773 | Burnett | Jul 2014 | B2 |
8801541 | Beach et al. | Aug 2014 | B2 |
8827834 | Horacek et al. | Sep 2014 | B2 |
8845453 | Ehlers | Sep 2014 | B1 |
8864601 | Ehlers | Oct 2014 | B1 |
8900069 | Beach et al. | Dec 2014 | B2 |
8932149 | Oldknow | Jan 2015 | B2 |
8961332 | Galvan et al. | Feb 2015 | B2 |
8986131 | Stites et al. | Mar 2015 | B2 |
9079079 | Fossum | Jul 2015 | B2 |
9144721 | Golden et al. | Sep 2015 | B2 |
9162117 | Ehlers | Oct 2015 | B2 |
9168432 | Henrikson et al. | Oct 2015 | B2 |
D757872 | Takagi et al. | May 2016 | S |
9492720 | Kuan et al. | Nov 2016 | B2 |
9555294 | Henrikson et al. | Jan 2017 | B2 |
9561405 | Rae et al. | Feb 2017 | B2 |
9597559 | Golden et al. | Mar 2017 | B2 |
9776054 | Horacek et al. | Oct 2017 | B2 |
9839817 | Johnson et al. | Dec 2017 | B1 |
D827073 | Seagram et al. | Aug 2018 | S |
10232232 | Henrikson | Mar 2019 | B2 |
10300349 | Henrikson | May 2019 | B2 |
10328319 | Nakamura | Jun 2019 | B2 |
20020119828 | Toulon | Aug 2002 | A1 |
20020183134 | Allen et al. | Dec 2002 | A1 |
20030125127 | Nakahara | Jul 2003 | A1 |
20030220154 | Anelli | Nov 2003 | A1 |
20040018891 | Antonious | Jan 2004 | A1 |
20050009622 | Antonius | Jan 2005 | A1 |
20120149494 | Takahashi et al. | Jun 2012 | A1 |
20120202615 | Beach et al. | Aug 2012 | A1 |
20140274457 | Beach et al. | Sep 2014 | A1 |
20150148149 | Beach et al. | May 2015 | A1 |
20160114226 | Ferguson | Apr 2016 | A1 |
20170312591 | Saso | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2 782 650 | Mar 2000 | FR |
324620 | Jan 1930 | GB |
2009000281 | Jan 2009 | JP |
2014090852 | May 2014 | JP |
2015029576 | Feb 2015 | JP |
2016116842 | Jun 2016 | JP |
2016221170 | Dec 2016 | JP |
2017023375 | Feb 2017 | JP |
WO 2006044631 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20190240547 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61983208 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15824417 | Nov 2017 | US |
Child | 16269500 | US | |
Parent | 14693730 | Apr 2015 | US |
Child | 15824417 | US |