Golf clubs and golf club sets

Abstract
A golf club set in which the attenuation rate of torque oscillation of club shafts is optimized for every individual club. The attenuation rate of torque oscillation of club shafts is controlled so as to be larger as the corresponding loft angles of the clubs increase.
Description




TECHNICAL FIELD




The present invention relates to golf clubs and golf club sets, and more particularly to golf club sets in which the attenuation rate of torque oscillation of club shafts is optimized for each individual club.




BACKGROUND ART




In recent years, golf clubs have been improved remarkably. In many cases, club heads are designed in order to broaden their sweet spots or to lower their centers of gravity. For the shafts of golf clubs, new materials are being used to control flexibility or strength against twist.




DISCLOSURE OF THE INVENTION




According to other features, characteristics, embodiments and alternatives of the present invention which will become apparent as the description thereof proceeds below, the present invention provides golf club sets in which the attenuation rate of torque oscillation of the club shafts is optimized for each individual club.




According to the present invention, golf clubs are designed so as to produce optimized or improved perform characteristics for each individual club for golfers of all levels of experience, from beginners or novice to professional golfers.




The present invention is applicable to both woods and irons.




According to a first aspect of the invention, in golf club sets, the attenuation rate of torque oscillation of individual club shafts is controlled so as to increase proportionally with correspondingly increasing loft angles.




According to a second aspect of the invention, golf clubs are characterized by controlling rate of torque oscillating attenuation of the club shafts.




Additional objects, advantages and novel features of the invention will be set forth in the description that follows, and will otherwise become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.











BRIEF DESCRIPTION OF DRAWINGS




The present invention will be described hereafter with reference to the attached drawings which are given as non-limiting examples only, in which:





FIG. 1

is a plan view illustrating an iron set designed according to one embodiment of the present invention.





FIG. 2

is a graph showing the attenuation rate of torque oscillation of a shaft relative to loft angle, according to one embodiment of the present invention.





FIG. 3

is a graph showing torque oscillation of a shaft that attenuates over time.





FIG. 4

is a table showing an example of the attenuation rate of torque oscillation according to an embodiment of the present invention.





FIG. 5

is a cross-sectional view showing the internal structure of a shaft according to one embodiment of the present invention.





FIG. 6

shows one manner of regulating the attenuation rate of torque oscillation according to the present invention, in which (A) is for a long club, (B) is for a medium length club, and (C) is for a short club.





FIG. 7

is a graph that shows torque angle of club shafts relative to corresponding loft angles according to one embodiment of the present invention.





FIG. 8

is a graph showing the attenuation rate of torque oscillation of club shafts relative to corresponding loft angles according to another embodiment of the present invention.











BEST MODE FOR CARRYING OUT THE INVENTION




In golf club sets, each individual club is required to have separate characteristics. That is, it is required, for long (less-lofted) clubs, such as drivers, to effect a long driving distance. On the other hand, shorter (more-lofted) clubs, such as a pitching wedge, are required to have accuracy both in direction and distance.





FIG. 1

shows a golf club set to which the present invention is applied. The golf club set includes a long iron


10


having a small loft angle of θa, a middle iron


20


having a medium loft angle of θb and a short iron


30


having a large loft angle of θc. The golf club set may include other clubs having different loft angles. In

FIG. 1

, a loft angle indicates the angle formed by the central line of a shaft and the face of a club head.




In

FIG. 1

, the long iron


10


includes a head


12


having a face with a loft angle θa, a grip


16


which a player grasps, and a shaft


14


which connects the head


12


and the grip


16


. In the same manner, the middle iron


20


includes a head


22


having a face with a loft angle θb, a grip


26


which a player grasps, and a shaft


24


which connects the head


22


and the grip


26


. The short iron


30


includes a head


32


having a face with a loft angle θc, a grip


36


which a player grasps, and a shaft


34


which connects the head


32


and the grip


36


. The present invention optimizes the attenuation rate of torque oscillation of shafts of golf clubs.





FIG. 2

is a graph showing the attenuation rate of torque oscillation of a shaft relative to loft angle, according to one embodiment of the present invention. In the graph shown in

FIG. 2

, the horizontal axis represents loft angles and the vertical axis represents the attenuation rate of torque oscillation. For purposes of the present application “torque oscillation” means oscillation that occurs when the shaft is twisted and released. “Attenuation rate of torque oscillation” means the natural return of the torque angle (twist angle) to the original state. Commensurate with these definitions, it can be understood that it is hard to recover a twist of a shaft when the attenuation rate of torque oscillation is small. On the other hand, it is easy to recover a twist of a shaft when the attenuation rate of torque oscillation is large.




As shown in

FIG. 2

, the attenuation rate of torque oscillation is smaller for longer clubs and is larger for shorter clubs.





FIG. 3

is a graph showing how torque oscillation of a shaft is attenuated. In the graph shown in

FIG. 3

, the horizontal axis represents time and a vertical axis represents torque angle (amplitude). When measuring the torque angle in

FIG. 3

, the shaft was fixed at its head-side end and 35 mm from the grip-side end. In this condition, a 1.4 kg load was applied to the shaft at a radial position 35 mm away from the head-side end. Then, change of a torque angle of the shaft was measured. The attenuation rate of torque oscillating (δ) was obtained by the following formula:






δ=({fraction (1/10)})


1


n (A


1


/A


10


)






where “A


1


” represents the peak of the initial vibration and “A


10


” represents the peak of the 10th oscillation (Vibration) from the initial vibration A


1


.




The attenuation rate of torque oscillation can be obtained not only by measuring peaks of oscillation but also by measuring a time between two points.




As shown in

FIG. 2

, a longer club having a small loft angle is provided with a shaft having an attenuation rate of torque oscillation which is small. The shaft of such a longer club feels soft to a player during a swing and may make long drive. A shorter club having a large loft angle is provided with a shaft in which the attenuation rate of torque oscillation is large. The shaft of such a shorter club feels hard or stiff and more sensitive to a player during a swing and the player may have a more delicate control of the ball.





FIG. 4

is a table showing an example of the attenuation rate of torque oscillation according to an embodiment of the present invention.

FIG. 4

shows an example of values of attenuation rate of torque oscillation. As shown in

FIG. 4

, for a club having a loft angle of 10 degrees, the attenuation rate of torque oscillation of a shaft is 0.04. As the loft angle increases by 5 degrees, the attenuation rate of torque oscillation increases by about 10% (0.004). For a club having a loft angle of 55 degrees, the attenuation rate of torque oscillation is 0.076. The values shown in

FIG. 4

are exemplary. In some cases the attenuation rate of torque oscillation may be non-linear. For example, two or more clubs, which have different loft angles, can have similar attenuation rates of torque oscillation.





FIG. 5

is a cross-sectional view showing the internal structure of a shaft according to one embodiment of the present invention.

FIG. 5

shows the inside of a shaft. The shaft


14


(


24


,


34


) includes a core


42


, and layers


44


,


46


,


48


and


50


, and a paint tunic


52


formed on the outer surface. Each of the layers


44


,


46


,


48


and


50


is formed to have a thickness of about 100-200 microns. The total thickness of these layers is about 500 microns or more. The layers


44


,


46


,


48


and


50


are made of a material of the poly-acrylonitrile (PAN) system. The materials from which layers


44


,


46


,


48


and


50


are formed can be prepared by adding thermosetting resin or epoxy resin to carbon fibers and then causing the material to half-set. Fibers forming the layers


44


and


46


are so-called straight layers. Fibers forming such straight layer can be applied to the shaft so that they extend longitudinally with respect to the shaft. The layer


48


can be a bias layer. Fibers forming the layer


48


are wound in a spiral manner around the shaft.




In order to regulate the attenuation rate of torque oscillation of the shafts, glass mats, aramid fibers (polyamide fibers), urethane films, etc. may be used. The attenuation rate of torque oscillation of the shafts can be controlled by regulating the bias layer


48


. The attenuation rate of torque oscillation of the shafts can also be controlled by the interfacial condition between adjacent layers, and the manufacturing conditions, including temperature and humidity.




In general, the attenuation rate of torque oscillation of boron fibers is small and the attenuation rate of torque oscillation of glass fibers is large. In order to increase the attenuation rate of torque oscillation for purposes of the present invention, the glass-fiber layer


50


is used and the boron-fiber layer


46


is not used. Conversely, in order to decrease the attenuation rate of torque oscillation for purposes of the present invention, the glass-fiber layer


50


is not used and the boron-fiber layer


46


is used. According to further embodiments of the present invention the attenuation rate of torque oscillation can be controlled by using both glass-fiber layer


50


and boron-fiber layer


46


and the respective thickness of each layer is controlled or adjusted. In some embodiments these layers can be applied so that their thicknesses increase or decrease along the length of a club shaft to effect a desired attenuation rate of torque oscillation. In addition, to control the attenuation rate of torque oscillation, the position and the area on which a glass-fiber layer is formed may be controlled, as indicated in FIG.


6


.





FIG. 6

shows one manner of regulating the attenuation rate of torque oscillation according to the present invention, in which (A) is for a long club, (B) is for a medium length club, and (C) is for a short club. As shown in

FIG. 6

(A), for a shaft of a longer club, a glass-fiber layer is formed over a core


26


only along a short length or portion


26




a


of the shaft from the grip-side end. As shown in

FIG. 6

(C), for a shaft of a shorter club, a glass-fiber layer is formed over a core


30


along the entire length


30




a


. As shown in

FIG. 6

(B), for a shaft of a medium length club, a glass-fiber layer is formed over a core


28


along a length or portion


28




a


of the shaft which extends from the grip side-end to about the center of the shaft. The core of a shaft may be of iron or other suitable metal.




In a manner which can be considered as symmetrical to the arrangement depicted in

FIG. 6

is possible to proceed according to the following setup when using a material with a small attenuation rate of torque oscillation. For the shaft of a longer club, a boron-fiber layer can be formed over the shaft core along the entire length of the club shaft. For a shaft of a shorter club, a boron-fiber layer can be formed over the shaft core along a short length or portion of the shaft from a grip-side end. For a shaft of a medium length club, a boron-fiber layer can be formed over the shaft core along a length or portion of the shaft from the grip-side end to near the center of the shaft.





FIG. 7

is a graph that shows torque angle of club shafts relative to corresponding loft angles according to one embodiment of the present invention.

FIG. 7

shows the characteristic of a torque angle (twist angle). As shown in

FIG. 7

, a golf club having a larger loft angle is equipped with a shaft with a smaller torque angle. A golf club having a smaller loft angle is equipped with a shaft with a larger torque angle.




When measuring the torque angle in

FIG. 7

, the shaft was fixed at the head-side end and 35 mm from the grip-side end. In this condition, a one ounce load was applied to at a radial position one foot away from the head-side end. A torque angle was measured when the shaft was completely twisted.




In order to measure a torque angle of a shaft, a laser sensor can be used. The laser sensor can measure torque angle, the attenuation rate of torque oscillation and attenuation time of torque oscillation without contacting the shaft. The use of a laser sensor allows the data to be measured precisely. In addition, a lighter load, such as one pound, can be used in order to avoid any chance of damaging the shaft. When the torque angles of shafts of clubs are controlled and verified by measurements as shown in

FIG. 7

, the attenuation rate of torque oscillation is controlled according to the present invention, as mentioned above.




That is, the shaft of longer club feels soft to a player during a swing and may make long drive. A shorter club having a larger loft angle is provided with a shaft in which the attenuation rate of torque oscillation is large. The shaft of such a shorter club feels hard or stiff and more sensitive to a player during a swing so that the ball can be controlled accurately both in direction and distance. The present invention enables the characteristics of each club having different loft angles to be improved by controlling both the attenuation rate of torque oscillation and torque angle.





FIG. 8

is a graph showing the attenuation rate of torque oscillation of club shafts relative to corresponding loft angles according to another embodiment of the present invention. In

FIG. 8

, as the attenuation rate of torque oscillation of the shafts is the same for all clubs in the set. However, a setup shown in

FIG. 7

should be adopted for the flow design of the torque angle of a shaft. It is expected that a setup shown in

FIG. 8

will be more suitable to low-handicappers and professionals who mainly think club feel is important.




Although the present invention has been described with reference to particular means, materials and embodiments, from the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the present invention and various changes and modifications may be made to adapt the various uses and characteristics without departing from the spirit and scope of the present invention as described by the claims which follow.



Claims
  • 1. A golf club set comprising a plurality of individual golf clubs having progressively increasing loft angles, wherein each golf club comprises a grip for grasping, a head for hitting a ball, and a shaft connected between the grip and head; andthe attenuation rate of torque oscillation of the shaft of each of the individual golf clubs increase as the corresponding loft angles of each of the individual golf clubs, a torque angle of the shaft of each of the individual golf clubs is proportional to the progression of the loft angles.
  • 2. A golf club set comprising a plurality of individual golf clubs having progressively increasing loft angles, wherein each golf club comprises a grip for grasping, a head for hitting a ball, and a shaft connected between the grip and head; andthe attenuation rate of torque oscillation of the shaft of each of the individual golf clubs increase as the corresponding loft angles of each of the individual golf clubs, the attenuation rate of torque oscillation of the shaft of the individual golf clubs increases by a unit of about ten percent for each five-degree increase of the loft angle.
Priority Claims (1)
Number Date Country Kind
10-078107 Mar 1998 JP
RELATED APPLICATION

This application claims the priority of Japanese Patent Application No. H10-78107, filed Mar. 25, 1998, the complete disclosure of which is expressly incorporated herein by reference.

US Referenced Citations (12)
Number Name Date Kind
3948042 Beardsley Apr 1976
4000896 Lauraitis Jan 1977
4070022 Braly Jan 1978
4135035 Branen Jan 1979
4563007 Bayliss Jan 1986
4600215 Kuroki Jul 1986
4682504 Kobayashi Jul 1987
4900025 Suganuma Feb 1990
5351951 Hodhetts Oct 1994
5547426 Wood Aug 1996
5591091 Hackman Jan 1997
5731524 Matsumoto Mar 1998
Foreign Referenced Citations (1)
Number Date Country
9-164225 Jun 1997 JP