The invention generally relates to footwear for golf, and particularly to a footwear system for improved athletic performance.
When a golfer takes a shot, he or she hits a golf ball with a golf club and propels the ball forward. The golfer typically hopes that the shot will send the ball to a certain place. Golfers know that a successful shot depends on both club choice and skill. Unfortunately, some golfers—even when using the best clubs—do not make the shots that they desire. Even the most skilled golfers sometimes make disappointing shots.
What is particularly bedeviling is that results can be inconsistent. When a golfer makes a shot that is, for all purposes, the same as a shot they made earlier in the same day, the ball sometimes travels a different distance or a different direction. Even where the golfer knows that they are repeating the same physical motions—the same muscle contractions with the same club in the same weather on the same day—the behavior of the golf ball is unpredictable. As a result, scores suffer. Not only are the poor scores a source of frustration and displeasure to golfers, but the unpredictability itself can be very vexing.
The fact that golfers experience such vexatious and frustrating phenomena is a significant problem facing golfers.
The invention provides a footwear system for golfers in which shoes contain elements for padding and traction and socks contain elements for padding and traction, and those elements interact to prevent fatigue as well as slippage between a golfer and the ground. Padding and traction elements are arranged according to precision measurements of maximal stresses that occur between the sole of the feet and the ground at different moments throughout a golfer's swing. Sock and shoe elements interact to provide traction that opposes lateral stresses while providing cushioning that relieves discomfort associated with compressive stresses. Since discomfort is relieved at just those spots in which a golfer experience maximal compressive stresses, the golfer does not make continuous or subconscious adjustments of their foot positioning throughout the day. Since the padding and traction elements are positioned precisely according to measurements of stress during a golf swing, a golfer experiences maximal comfort by repeatedly positioning their feet consistently in the same way continually shot-after-shot and day-after-day. By providing a system that incorporates interacting elements into both socks and shoes, lateral motions between the foot and the ground are prevented. Since lateral motions between the foot and the ground are prevented just at those spots of maximal stress, the golfer plus the Earth form a single mass transferring momentum to the golf ball, giving much more predictable, consistent results than a golfer that slips, relative to the Earth. Using a system of the invention, a golfer avoids unpredictable slippage during each shot and also positions their feet consistently shot-after-shot, with the result that ball travel is commensurate with club choice and physical abilities. Thus the golfer enjoys the rewarding experience that, as their athletic abilities improve, their scores improve. Their experiences on the course are predictable and pleasurable and golfers can focus on getting the best performance from their clubs.
The invention includes the insight that stress between a golfer's feet and the ground can be dynamic and asymmetrical and influenced by the golfer's choice of footwear. The invention includes models of compressive and shear stresses as distributed across both of a golfer's feet during a shot. The invention provides templates for footwear systems that incorporate the stress models. A template of stress patterns can be used to provide a sock with cushioning elements, a shoe with cushioning elements, a shoe insole with cushioning elements, or a combination thereof. Because compressive and shear stresses may be non-uniformly distributed across the sole of a foot and asymmetrically distributed between a pair of feet, a template and footwear made accordingly avoids the positioning of non-useful elements in spots where they would not provide benefit and could instead increase discomfort, provide adverse biofeedback incentives, decrease tactile information specificity, or interfere with other material functions such as stretching or breathing. Accordingly, the invention provides golf footwear systems in which a sock and a shoe or an insole interact generally, as well as systems that specifically incorporate patterns of maximal stress. To maximize a consumer's ability to tune their footwear to their needs, the invention provides whole-footwear systems as well as shoes, socks, or shoe insoles that can be obtained separately and mixed-and-matched according to a golfer's judgment.
In certain aspects, the invention provides a golf footwear system that includes a shoe and a sock. The shoe has an insole with a plurality of features for padding and traction. The sock—generally including a cuff, a leg, an instep, a toe, a heel flap, and a sock sole, the sock sole having a ball-of-foot portion, an inner arch portion, an outer arch portion, and a heel portion—has a plurality of elements for padding and traction disposed on the sock sole in an arrangement corresponding to the arrangement of the plurality of features of the insole of the shoe. The arrangement may correspond to a template provided by measurements of stress exhibited by a golfer's foot during a swing. According to certain measured stress templates, the ball-of-foot portion, the outer arch portion, and the heel portion of the sole of the sock each have at least one padding element. Some templates may provide multiple elements for padding and traction (e.g., 2, 3, 4, many) for the ball-of-foot portion, the outer arch portion, or both. The elements may all be of uniform size. In some embodiments, an element on the heel is largest and an element on the outer arch portion is smallest. The sock sole may optionally include elements to correspond to an underside of a toe of a golfer. Elements for padding and traction may be located strictly on the downward facing area of the sock, or they may extend around up to the side of the sock.
Each of the elements on the sock sole may include an elastomer such as thermoplastic polyurethane (TPU), as may the features on the insole of the shoe. The elements may be a plurality of discrete elements of material adhered to the fabric of the sock, or may be singular areas of material.
In some embodiments, the elements on the sock and the features on the shoe each have a cross-sectional profile designed to interlock with the other to prevent relative lateral motion between the sock sole and the shoe in at least one direction, and optionally more than one, when the system is worn by a person.
In a related aspect, the invention provides a method of preventing fatigue while playing golf by dressing in a sock in which a sole of the sock has a plurality of elements for padding and traction and wearing a shoe having an insole with a plurality of features for padding and traction arranged to correspond to the elements. By hitting a golf ball with a golf club while wearing the footwear, consistent shooting is encouraged, in part because the elements of the sock may interlock with the features of the shoe insole to prevent the sock from slipping within the shoe.
Aspects of the invention also include a golf sock defining a cuff, a leg, an instep, a toe, a heel flap, and a sole. The sole includes a ball-of-foot portion, an inner arch portion, an outer arch portion, and a heel portion. The sole may further include one or more elements for padding and traction located according to a measured pattern of stress exhibited by a golfer's foot during a shot. For example, in some embodiments, the ball-of-foot portion includes a first element for padding and traction, the outer arch portion includes a second such element, and the heel portion includes a third such element. The elements may be of uniform size or the first element have a larger area than the second element while the third element has a larger area than the first element. In certain embodiments, the plurality of elements for padding and traction is disposed on the sole in an arrangement corresponding to a known arrangement of features on an insole of a pre-determined shoe.
In other aspects, the invention provides methods of making socks. Methods of the invention include receiving a template that shows a pattern corresponding to regions of maximal stress experienced on the sole of a golfer's foot during a golf swing and adding elements for padding and traction to the sole of a fabric sock according to the pattern. The method may further include making the sock for example, by knitting it. The elements may be added by screen-printing onto the fabric of the sock. An elastomer such as TPU or other material may be screen printed.
Ground reaction forces and center of pressure patterns for a golfer's feet during a swing have previously been studied. See Williams, R
The physics of momentum transfer from golfer to ball is dependent on the relationship between the golfer and the ground. The stress/strain relationship between golfer and ground is mediated through at least three primary surface interfaces: the sole of the foot and the insole of a sock; the outsole of a sock and the insole of a shoe; and the outsole of the shoe and the ground. Before turning to phenomenon within the shoe, address first the shoe/ground relationship.
Horizontal (Fy) and vertical (Fz) forces are measured as the force is applied until slip occurs. A traction score, T, is calculated as the peak horizontal force, at the instant a shoe slips, divided by vertical force.
When a variety of shoes were tested, a baseline Tmin is established using a smooth-sole non golf shoe and is used with a Tmax from the best shoe among the set to calculate a relative traction for the ith shoe based on the traction score Ti for the ith shoe.
Relative traction (%)=((Ti−Tmin)×100/(Tmax−Ti) (Eq. 1)
In a test of leading brands of golf shoes, a shoe with 6 mm spikes gave Tmax, a Puma Tour gave the next best relative traction (99.7). The poorest, other than the smooth-soled shoe, was 74.2. Accordingly, a first step to minimizing variability or unpredictability of golf shots includes wearing a shoe with a good relative traction score. Once a golfer maximizes the relative traction between shoe and ground, for example, by wearing a Puma Tour shoe, methods of improving golf performance include optimizing interactions between the shoe and foot. Golf shoes are discussed in U.S. Pat. No. 6,817,117; U.S. Pat. No. 5,987,783; U.S. Pat. No. 5,761,833; and U.S. Pub. 2009/0100718, the contents of each of which are incorporated by reference.
Having now established a pattern of shoe/ground interaction and, more particularly, a test thereof that can be performed for any shoe, shoe/foot interactions are addressed. Any particular mechanism for affecting shoe/foot interactions may look to force patterns exhibited between the feet and the Earth during a swing.
Even with the best shoe (e.g., a Puma Tour), a golfer's foot will be pushed, relative to the insole of the shoe, according to the pattern of shear force vectors and center of pressure locations described in
An insight of the invention is that, while socks participate in two of the three body/ground interface surfaces, the fabric of socks can be exploited to attenuate body/ground slippage associated with shear forces as well as, simultaneously, discomfort associated with compressive forces. A footwear system with direct contact between elements on the outsole of a sock and an insole of a shoe may provide traction at both the interface between the sock outsole and shoe insole and the interface between the foot and the sock insole (e.g., due to the fabric pliability of the sock). Accordingly, the invention provides footwear systems, including individual socks, with one or more elements on the outsoles of socks that have an arrangement corresponding to a location of one or more of a maximum stress between a foot and the ground during a golf swing. Systems and articles of the invention generally include at least one sock.
Sock 101 can be made from any suitable material and by any suitable method. Sock 101 can be manufactured by a machine, such as an industrial fabricator or a home knitting machine. Sock 101 may be made by sewing pieces of fabric together. In certain embodiments, sock 101 is knit using a circular knitting machine. The machine uses needles on a cylinder or double cylinder. As the cylinder rotates, the needles knit the yarn, creating a tube of sock with an open toe, which is then closed. A separate toe piece can be sewn on, or the toe can be sewn closed. The socks are optionally dyed or decorated or shaped on fiberboard forms. Methods for making socks are provided in U.S. Pat. No. 7,878,029; U.S. Pat. No. 7,047,767; U.S. Pat. No. 6,289,701; and U.S. Pub. 2012/0024014, the contents of which are incorporated by reference for all purposes.
In some embodiments, socks are obtained in which a fabric portion is pre-made substantially as shown in
A sock of the invention can be any suitable size, style, or material. Socks can be made of cotton, wool, acrylic, or any other natural or synthetic fiber. Socks can include nylon, polyester, rayon, or a combination of any of these materials. Socks can be foot-shaped or tube socks, and can have any thickness of material, overall length, or other dimensions. A sock can include a gusset at the area where heel flap, leg, and instep come together. Socks may extend above the knee, or at least cover the ankle, or not.
The dashed lines in
The invention provides socks and footwear systems in which a sole of a sock includes a padding element. A padding element is an element on a sole of a sock that affects the interplay between the foot and the insole of a shoe. Padding can mean cushioning, in one of its familiar senses. However, padding can be taken to have meanings that include the provision of displacement, as from a shim, or the provision of a foundation or support (e.g., analogous to the pouring of a concrete pad in construction). Padding may be taken to mean the provision of shape (e.g., as in a shoulder pad in a jacket), the provision of a feature for human contact (e.g., as in a keypad), the provision of a material for compressive impact or energy displacement (e.g., as in a drum pad), or a combination of any of the foregoing. For example, a pad may comprise a plurality of hard plastic areas, as does a keypad. In some embodiments, a pad includes or consists of a foam material (e.g., foam rubber) or an area in which a fabric is provided more thickly than in surrounding areas. In certain embodiments, a pad includes one or a plurality of areas of a polymer on the fabric of a sock. Pads can include one or more of a rubber, fabric, polymer, plastic, leather, wax, thread, fiber, paper, cardboard, or other material, in any combination.
A pad (e.g., polymer) may be infused into, or adhered onto, the fabric of a sock. A polymer may be so affixed only by its own material properties, or through the use of an adhesive or stitching. A polymer may be attached to fabric by any suitable method including gluing, stitching, printing, molding, melting, fusing, others, or a combination thereof. Any suitable polymer may be used including, for example, a polyurethane such as thermoplastic polyurethane. Methods of adding pads are discussed in U.S. Pat. No. 6,708,342; U.S. Pub. 2011/00233215; U.S. Pub. 2007/0204482; U.S. Pub. 2007/0028365; and U.S. Pub. 2005/0241186, the contents of which are incorporated by reference for all purposes. In general, at least one padding element will typically be included in sole 137 disposed, for example, at or near a location of maximal stress during a golf swing.
Where element 201 has a shape of a polygon, it may be preferred to use a polygon or combination of polygons that tessellate or exhibit efficient packing. Packing of polygons may be taken to mean a ratio of area enclosed by a polygon to a ratio of total area when a pattern of polygons is arranged to maximize that ratio. Efficient packing may then refer to the minimizing of interstitial “space” between polygons. Fully tessellating regular polygons include isosceles triangles, rectangles, and hexagons. In some embodiments, a hexagon is used to have a fully tessellating form with edges in a desired number of directions. In alternative embodiments, it may be desired to optimize an edge to area ratio (e.g., to maximize it), and another form (e.g., isosceles triangle or square) may be used. Furthermore, a particular shape (e.g., such as a given overall shape) may be desired to optimize an aspect of a manufacturing process. For example, where elements 201 are manufactured separately from sock 201 and then adhered thereto, elements 201 may be manufactured in a sheet form, for example, as a material adhered to a paper substrate. Accordingly, it may be desired to use a shape with arbitrarily high packing efficiency or tessellation to minimize waste of the sheet. As shown in
As shown in
In certain aspects, the invention provides a footwear system in which a sock 101 has an element 201 on a sole of the sock and the system further includes an insole of a shoe with a feature in a corresponding location. Such a system provides the particular benefit of locking a golfer's foot to the foot-bed of their shoe. When used in conjunction with a shoe that scores acceptably on the stress test described above, excellent locking between a golfer's foot and the ground is achieved. Accordingly, the invention provides methods of improving one's game by using a sock with a padding element and a shoe with an insole with an interacting feature in a corresponding location. The elements on the sock and on the insole of the shoe interact for maximum comfort, grip, or both. Systems of the invention can include shoes that have features corresponding the elements 201 on sole 137 of sock 101. In certain embodiments, the invention provides insoles for shoes wherein the insoles have the features. Thus a golfer may procure functionalized shoes and socks, or functionalized insoles and socks, and insert the insoles into their golf shoes to obtain the benefits of the invention. Insoles may optionally include a mechanism for fixing them into the foot-bed of shoes such as, for example, an adhesive backing.
By providing insoles that interact with socks 101, systems and methods of the invention optimize a golfer's shot. The features on the insoles of the shoes can have a profile that complements elements 201 on socks 101. For example, elements 201 can be gripping dots, and the insoles can have pockets. In some embodiments, elements 201 are textured areas for high friction and the insoles feature complementary textured areas or rubber areas.
In certain embodiments, elements 201 include ridge-and-valley structures and the insoles are provided with corresponding ridge-and-valley structures. When the ridge-and-valley elements 201 of socks 101 mate with the structured insoles, shear motion perpendicular to the ridgelines is prevented. Moreover, by providing a padding element of a deformable material (e.g., polyurethane), a cushioning aspect is provided.
In certain embodiments, a padding element 201 (e.g., as shown in
According, in some embodiments,
An element 201 as depicted in any figure herein, or as discussed herein, may include an amount of relief. Relief, generally, is a measure of an amount of thickness added to fabric by virtue of a thickness of element 201. An element 201 may have 0 (zero) relief by being printed substantially smoothly on the fabric (as type is typically printed on a page). An element 201 may have uniform relief, indicating a generally planar surface with a contour that mimics the contour of a surface of sock 101 (and therefore a contour of a foot). An element 201 may have varying relief, such as is provided by a rippled, textured, sloped, beveled, or contoured surface. An amount of relief at any given point may be zero, or it may be between 0.001 mm and 1 cm. In certain embodiments, an amount of relief is between about 0.5 mm and about 3 mm (e.g., between about 0.7 mm and about 1.5 mm).
The invention includes methods of making socks for improved golfing by using information about ground stress. Ground stress information may be had by performing tests on a golfer, or by reference to available information. In the context of footwear systems of the invention, a pattern of ground stress information may be used as a template for making socks. Methods of the invention include receiving a template that shows a pattern corresponding to regions of maximal stress experienced on the sole of a golfer's foot during a golf swing and adding padding elements 201 to the sole of a fabric sock 101 according to the pattern.
One of skill in the art will recognize that a processor may be provided by one or more processors including, for example, one or more of a single core or multi-core processor (e.g., AMD Phenom II X2, Intel Core Duo, AMD Phenom II X4, Intel Core i5, Intel Core i& Extreme Edition 980X, or Intel Xeon E7-2820). In certain embodiments, any of consumer computer 401, provider computer 481, production computer 461 may be a notebook or desktop computer sold by Apple (Cupertino, Calif.) or a desktop, laptop, or similar PC-compatible computer such as a Dell Latitude E6520 PC laptop available from Dell Inc. (Round Rock, Tex.). Such a computer will typically include a suitable operating system such as, for example, Windows 7, Windows 8, Windows XP, all from Microsoft (Redmond, Wash.), OS X from Apple (Cupertino, Calif.), or Ubuntu Linux from Canonical Group Limited (London, UK). In some embodiments, any of consumer computer 401, provider computer 481, production computer 461 may be a tablet or smart-phone form factor device and processor 481 can be provided by, for example, an ARM-based system-on-a-chip (SoC) processor such as the 1.2 GHz dual-core Exynos SoC processor from Samsung Electronics (Samsung Town, Seoul, South Korea).
In some embodiments, either of sales server 441 or production server 421 can be a Hitachi Compute Blade 500 computer device sold by Hitachi Data Systems (Santa Clara, Calif.). Either of processor 449 or processor 429 can be, for example, a E5-2600 processor sold under the trademark Xeon by Intel Corporation (Santa Clara, Calif.).
Input-output devices generally includes one or a combination of monitor, keyboard, mouse, data jack (e.g., Ethernet port, modem jack, HDMI port, mini-HDMI port, USB port), Wi-Fi card, touchscreen (e.g., CRT, LCD, LED, AMOLED, Super AMOLED), pointing device, trackpad, microphone, speaker, light (e.g., LED), or light/image projection device.
In certain embodiments, a template is received via a consumer's use of consumer computer 401 or via a designer's use of provider computer 481 and the selection is received at sales server 441 and stored in memory 447. Sales server 441 may use a network card for input/output 445 to received data. Sales server 441 may provide an order database 443 which may include accounts 444 where consumer information is stored (e.g., for payment and delivery information).
After orders are received and ready for production, one or more templates, other order information, or a combination thereof can be transferred via input/output 445 from sales server 441 to production server 421 via input/output 425, which may also be a network card or other data transfer mechanism. Order information (e.g., orders 439) is stored in production database 435 in memory 427. Processor 429 executes computer program instructions stored in memory 427 to initiate production.
A production facility may be equipped with a production computer 461 which either automatically coordinates the operation of machines or provides information to production employees, e.g., via input/output 465, which could include, for example, a monitor or laser printer.
Many of the steps and functions described herein can be planned or coordinated by a provider personnel using provider computer 481. For example, engineers or sales personnel can prepare and upload information (e.g., one or more template, digital files such as in a comma-separated values (CSV) format). That is, in certain embodiments, provider personnel use provider computer 481 to design or plan production of particular socks or footwear systems.
A memory generally refers to one or more storage devices for storing data or carrying information, e.g., semiconductor, magnetic, magneto-optical disks, or optical disks. In certain embodiments, a storage device of the invention includes a tangible, non-transitory computer readable medium for memory. Exemplary devices for use as memory include semiconductor memory devices, (e.g., EPROM, EEPROM, solid state drive (SSD), and flash memory devices e.g., SD, micro SD, SDXC, SDIO, SDHC cards); magnetic disks, (e.g., internal hard disks or removable disks); magneto-optical disks; and optical disks (e.g., CD and DVD disks). The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
Footwear systems and articles of the invention may be made with reference to particular portions of a sole of a foot, sock, or insole.
In certain embodiments, a pair of socks of the invention includes elements 201 at locations corresponding to the origins of one or more of the vectors depicted in
As used herein, the word “or” means “and or or”, sometimes seen or referred to as “and/or”, unless indicated otherwise.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.