The present invention relates generally to a golf putter having an adjustable counterbalance weight.
Putting is one of the most precise aspects of the game of golf. It requires a considerable amount of consistency to properly align and strike a ball so that it rolls on an intended line for a desired distance. To facilitate a consistent stroke, many golfers look favorably on a putter that provides smooth stroke, good glide, pure impact, and a bounce-less topspin ball launch.
One strategy to remove uncertainty in a putting stroke has been to anchor an extended length putter into the midsection of the golfer. Doing so reduces the total number of degrees of freedom that must be successfully controlled to provide a smooth, substantially planar stroke. Such a practice has been prohibited by rules established by the USGA and R&A rule making bodies. As such, club manufacturers have taken on a renewed interest in the design of the putter to fill the void left by the prohibition on anchored-style putters.
In one embodiment, a golf club includes a tubular shaft, a golf club head affixed to a first end of the tubular shaft, and a grip abutting a second end of the shaft. The golf club further includes an adjustable counterbalance that is insertable within a hollow recess of the grip. The adjustable counter balance includes an elongate member adapted to be secured to the tubular shaft, and a movable weight. The movable weight is selectively transitionable between a first, unlocked state that permits translation of the weight along the elongate member, and a second locked state that restrains the weight from free translation.
In another embodiment a golf club includes a tubular shaft that extends between a first end. The tubular shaft has an inner surface that defines a hollow recess and has a length of from about 35 inches to about 38 inches. A putter head is affixed to the first end of the tubular shaft, where the head has a loft angle of from about 0 degrees to about 6 degrees and a mass of from about 360 grams to about 390 grams. A movable weight is disposed within the hollow recess and is selectively repositionable throughout a translatable range of from about 250 mm to about 400 mm, where the translatable range extends from the second end of the tubular shaft toward the first end. Furthermore, the movable weight has a mass of from about 60 grams to about 80 grams, which together with the heavier than normal head, provides a smooth putter stroke that simulates that of an anchored putter.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numerals are used to identify like or identical components in the various views,
As shown in
In one configuration, the movable weight 42 may be generally annular in nature and may radially surround the elongate member 44. The weight 42 may be selectively affixed to the elongate member 44 to facilitate a semi-permanent placement of the weight 42. For example, the weight 42 may be transitionable between a first, unlocked state and a second, locked state at the urging of the user. When configured in a first, unlocked state, the annular weight 42 may be translatable throughout a translatable range (e.g., between a first end 46 and a second end 48 of the elongate member 44). Once the annular weight 42 is suitably positioned by a user, the weight 42 may be transitioned into a second, locked state, where it is then restrained from further translation.
In one embodiment, the annular weight 42 shown in
The desired holding force between the movable weight 42 and the elongate member 44 is preferably greater than about 8 lbf when in a locked configuration. In one configuration, the locked configuration may be characterized by a holding force of from about 8 lbf to about 20 lbf, or even from about 8 lbf to about 15 lbf. These ranges are intended to approximate the impact loading of the club being dropped or being aggressively placed into a golf bag. Conversely, while in the unlocked state, the holding force is preferably less than about 1 lbf, or even more preferably less than about 0.5 lbf. To accomplish the desired locked-holding force without requiring an excessively large locking torque (i.e., a torque larger than an average person can provide without a tool), particular attention must be given to the physical and material design of the grommet 68.
In general, the grommet 68 should be dimensioned to be in a close arrangement with a stationary locking surface when the weight 42 is in an unlocked state, and should be dimensioned to make forcible contact with the locking surface when in an unlocked state. In the embodiment shown in
It has been found that, in the present design, grommets formed from certain polymers can take a compression set that causes the grommet 68 to lose holding power. This durability issue has been overcome by forming the grommet from a material that is sufficiently resistant to taking a compression set, though still sufficiently soft to enable locking by hand. These properties have been obtained by annealing an otherwise suitable thermoplastic polyurethane grommet to improve the compression set resistance and long-term holding power. A suitable annealing process may involve maintaining the grommet in a 70 degree Celsius environment for 22 hours.
As noted above, the maximum torque required to secure the weight 42 in place should be low enough to perform by hand (preferably without the need for a tool). For example, in one configuration, the maximum required torque that is needed to lock the weight 42 in-place should be less than about 7.0 inch-pounds. To aid in the manual rotation, in one configuration, the outer surface of a portion of each section 62, 64 may be knurled or otherwise textured.
In one particular design, such as shown in
The locking interface 74 may include, for example, threaded portions of the first and second sections 62, 64 that cooperate to cause a relative translation of the sections 62, 64. In another embodiment, such as shown in
In another design, the annular weight 42 may include two or more annular grommets 68 that are operative to selectively restrain translation of the weight 42 along the elongate member 44. For example, as shown in
Referring again to
A stabilizing grommet 92 may be disposed on the second end 48 of the elongate member 44, and may be used to stabilize the elongate member 44 within the hollow recess 38. This stabilizing grommet 92 has an external diameter that is dimensioned so that when the grommet 92 is inserted within the tubular body of the golf club shaft, it may apply a contact force against the inner surface 34 of the shaft 12. Additionally, one or more stabilizing grommets 92 may be disposed on the annular weight 42 for a similar, stabilizing purpose. For example, as shown in
In one configuration, an adjustable counterbalance 30 for a putter, may enable a mass of from about 30 g to about 100 g to be movable within a hollow recess 38 of the shaft 12 throughout a translatable range of from about 200 mm to about 500 mm. Said another way, in this embodiment, the movable weight 42 may have a mass (i.e. a “movable mass”) of from about 30 g to about 100 g, where the center of mass for the movable weight 42 is translatable along the elongate member 44 (and securable thereto) throughout a range of from about 200 mm to about 500 mm. In other configurations, the adjustable counterbalance 30 may enable a mass of from about 60 g to about 80 g to be movable within the hollow recess 38 throughout a range of from about 250 mm to about 400 mm. In one particular example, the adjustable counterbalance 30 may enable a mass of about 65 g to about 75 g to be movable within the hollow recess 38 throughout a range of about 250 to about 350 mm. In one configuration, the translatable range may extend from the second end 22 of the shaft 12 toward the first end 20. In this manner, all or most of the translatable range may be coincident with the grip 16. These movable mass and translation ranges have been found to provide the ideal amount of counterbalancing and adjustability to provide certain stabilizing effects found with an anchored putter.
The entire mass of the adjustable counterbalance 40 may be from about 50 g to about 120 g, which includes from about 30 g to about 100 g of movable mass, and about 20 g of fixed mass (i.e., mass of the elongate member 44 and other stationary components). In one configuration, the grip 16 may define a “grip portion” of the club. More specifically, the grip portion includes the entire portion of the golf club that is coincident with the grip 16. As noted above, the movable weight 42 may be selectively repositionable within the grip portion to provide the feel of an anchored putter. The grip portion may have a total fixed mass (i.e., the mass of the non-repositionable elements) that is from about 60 g to about 120 g. In another embodiment, the total fixed mass of the grip portion is from about 80 g to about 100. In one particular embodiment, the total fixed mass of the grip portion may be about 90 g.
To provide the most optimal feel and adjustability to a golfer, the amount of the movable mass may fall within certain proportions, such as expressed by the ratio of movable mass to head mass and/or to the fixed mass within the grip portion. In one configuration, the ratio of the head mass to the movable mass may be from about 3:1 to about 11:1, or from about 3:1 to about 8:1, or even from about 4:1 to about 6:1. In a particular example, the ratio of the head mass to the movable mass may be about 4.5:1 to about 5.5:1, which may provide a suitable amount of swingweight/inertia on the clubhead to provide a desirably smooth stroke while still affording sufficient counterbalancing adjustability. Likewise, the ratio of the fixed grip mass to the movable mass may be from about 0.5:1 to about 4:1, or from about 0.5:1 to about 2:1, or even from about 0.75:1 to about 2.0:1. In a particular example, the ratio of the fixed grip mass to the movable mass may be about 1.2:1, which may provide a suitable ability to re-locate the center of mass of the heavier-than-normal grip portion.
In one configuration, the elongate member 44 may be color coded, or may have other suitable visual markings, that may allow a user to quickly identify specific regions or weight configurations that may be desirable. For example, in one embodiment, there may be at least three colored regions along the length of the elongate member 44. These may correspond to high, mid, and low weight configurations.
While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
“A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the item is present; a plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; about or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range. Each value within a range and the endpoints of a range are hereby all disclosed as separate embodiment. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated items, but do not preclude the presence of other items. As used in this specification, the term “or” includes any and all combinations of one or more of the listed items. When the terms first, second, third, etc. are used to differentiate various items from each other, these designations are merely for convenience and do not limit the items.
This application is a continuation-in-part of and claims the benefit of priority from U.S. application Ser. No. 14/628,846, filed Feb. 23, 2015, which is a continuation-in-part of and claims the benefit of priority from U.S. application Ser. No. 14/493,397, filed Sep. 23, 2014, both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2051083 | Hart | Aug 1936 | A |
5269518 | Kobayashi et al. | Dec 1993 | A |
5460378 | Getts | Oct 1995 | A |
5465967 | Boeckenhaupt | Nov 1995 | A |
5494288 | Jimenez et al. | Feb 1996 | A |
5554078 | Hannon et al. | Sep 1996 | A |
5632691 | Hannon et al. | May 1997 | A |
5699632 | Stout et al. | Dec 1997 | A |
7704160 | Lindner | Apr 2010 | B2 |
7704161 | Lindner | Apr 2010 | B2 |
8177658 | Johnson | May 2012 | B1 |
8444502 | Karube | May 2013 | B2 |
8641551 | Johnson | Feb 2014 | B2 |
20050054459 | Oldenburg | Mar 2005 | A1 |
20060009303 | Prince et al. | Jan 2006 | A1 |
20100105498 | Johnson | Apr 2010 | A1 |
20130165249 | Margoles et al. | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160082329 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14628846 | Feb 2015 | US |
Child | 14961095 | US | |
Parent | 14493397 | Sep 2014 | US |
Child | 14628846 | US |