Golf shoes with aligned traction members

Information

  • Patent Grant
  • 6354022
  • Patent Number
    6,354,022
  • Date Filed
    Monday, March 26, 2001
    23 years ago
  • Date Issued
    Tuesday, March 12, 2002
    22 years ago
Abstract
An improved golf shoe and sole is provided. In a preferred embodiment, a pair of golf shoes comprising a right shoe and a left shoe, the right shoe having a different arrangement of traction elements on the sole thereof than the left shoe. For right-handed golfers, the sole of the right shoe has a greater number of axial traction members which are aligned with an edge of the sole than transverse traction members which are positioned transverse to the edge of the sole. The right shoe accordingly resists pivotal motion. The left shoe has a greater number of transverse traction members than axial traction members so as to allow pivotal motion. The golf shoes accordingly allow the golfer to make a fuller back swing and to follow through more completely on the power stroke. The relative number of axial and transverse traction members on the left an right shoes may be reversed for left-handed golfers.
Description




TECHNICAL FIELD




The present invention is directed to an improved pair of golf shoes and golf shoe soles.




BACKGROUND OF THE INVENTION




Golfers typically wear specially designed golf shoes while playing on turf golf courses. The golf shoes are designed to fit comfortably on the golfer's feet and provide good traction to prevent the golfer from losing his or her balance on the potentially slick surface of the course. Accordingly, the soles of the golf shoes may be provided with spaced apart cleats which project downwardly therefrom to provide solid traction with the turf even if the turf is wet. These cleats are typically made of metal or hard plastic and placed at various locations around the shoe sole.




One problem with conventional golf shoes is that the cleats may tend to resist pivotal motion of the golfer's feet. As a result, the golfer's foot motion, particularly during the back swing, may be inhibited or altered. The power and accuracy of the golfer's swing may be reduced, and the golfer's game may suffer accordingly. Another problem with conventional golf shoes is that the shoes may not provide the proper balance of traction and stability which would permit the same pair of shoes to be used on both wet turf and a more rigid surface, such as a solid floor.




SUMMARY OF THE INVENTION




In brief, the present invention provides a pair of golf shoes and golf shoe soles with improved performance and usability both on and off the golf course. In a preferred embodiment, a pair of golf shoes having traction members arranged differently on one sole than the other is provided. One of the soles accordingly tends to restrict pivotal motion of the golf shoe to which it is attached, while the other sole tends to allow pivotal motion.




In one embodiment, the pair of soles comprises first and second soles, each having a heel portion, a toe portion forward of the heel portion, a first edge extending between the heel and toe portions, and a second edge extending between the heel and toe portions opposite the first edge. The pair of soles further comprises a plurality of traction members, each elongated along a traction member axis. The plurality of traction members includes at least one first traction member connected to and depending from the first sole. The traction member axis of the first traction member is generally transverse to at least one of the first and second edges of the first sole. The first sole further includes at least two second traction members connected to and depending therefrom. The traction member axes of the second traction members are aligned generally parallel with at least one of the edges of the first sole and a number of second traction members is greater than a number of first traction members so as to resist pivotal motion of the first sole relative to the ground. The soles further include at least one third traction member connected to and depending from the second sole. The traction member axis of the third traction member is aligned generally parallel with at least one of the edges of the second sole. The second sole further includes at least two fourth traction members connected to and depending therefrom. The traction member axes of the fourth traction members are generally transverse to at least one of the first and second edges of the second sole and a number of fourth traction members is greater than a number of third traction members to allow pivotal motion of the second sole relative to the ground




In a further aspect of this embodiment, the traction members comprise a plurality of spaced apart traction elements, each traction element being elongated alone the traction member axis. In one embodiment, the traction members have a tapered cross-sectional shape when cut by a plane generally perpendicular to the traction member axis. The tapered shape includes a narrow portion spaced away from the sole to which the traction member is connected.




In another embodiment of the invention, the heel portion of the sole includes two spaced apart traction elements, each traction element being elongated along an axis which is generally aligned with one of the edges of the heel portion. The heel portion further includes cleat members intermediate the traction elements. In a further aspect of this embodiment, the cleat members have a generally rounded cross-sectional shape when cut by a plane generally perpendicular to the heel portion.




The invention further provides a method for controlling motion of a golfer's feet. In one embodiment, the method comprises coupling at least one first elongated traction member to a first foot of the golfer. The first elongated traction member is elongated generally transverse to an edge of the first foot. The method further comprises coupling a number of second elongated traction members to the first foot of the golfer, the second elongated traction members being elongated generally parallel with an edge of the first foot and the number of second elongated traction members being greater than a number of first elongated traction members. The method further comprises coupling at least one third elongated traction member to a second foot of the golfer, the third elongated traction member being elongated generally parallel with an edge of the second foot, and coupling a number of fourth elongated traction members to the second foot, the fourth elongated traction members being elongated generally transverse to an edge of the second foot, the number of fourth elongated traction members being greater than a number of third elongated traction members. The method still further includes engaging the elongated traction members with the ground when the golfer swings a golf club, to resist pivotal motion of the first foot and allow pivotal motion of the second foot.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a top isometric view of a right golf shoe in accordance with an embodiment of the invention.





FIG. 1B

is a top isometric view of a left golf shoe in accordance with an embodiment of the invention.





FIG. 2A

is a top plan view of a right sole for a golf shoe in accordance with an embodiment of the invention.





FIG. 2B

is a top plan view of a left sole for a golf shoe in accordance with an embodiment of the invention.





FIG. 3A

is an isometric view of a lower surface of the right sole shown in FIG.


2


A.





FIG. 3B

is an isometric view of a lower surface of the left sole shown in FIG.


2


B.





FIG. 4A

is a bottom plan view of the lower surface of the right sole shown in FIG.


3


A.





FIG. 4B

is a bottom plan view of the lower surface of the left sole shown in FIG.


3


B.





FIG. 5A

is an enlarged isometric view of a portion of a sole having traction elements in accordance with an embodiment of the invention.





FIG. 5B

is a cross-sectional view of one of the traction elements shown in FIG.


5


A.





FIG. 5C

is a cross-sectional view of a traction element in accordance with an alternate embodiment of the invention.





FIG. 6A

is a bottom plan view of the lower surface of a right sole in accordance with another embodiment of the invention.





FIG. 6B

is a bottom plan view of the lower surface of a left sole in accordance with another embodiment of the invention.





FIG. 7A

is a bottom plan view of the lower surface of a sole in accordance with still another embodiment of the invention.





FIG. 7B

is a bottom plan view of the lower surface of a sole in accordance with still another embodiment of the invention.





FIG. 8A

is an enlarged isometric view of a portion of a sole having flat cleat members in accordance with an embodiment of the invention.





FIG. 8B

is an enlarged isometric view of another embodiment of the flat cleat members shown in FIG.


8


A.





FIG. 8C

is an isometric view of yet another embodiment of the flat cleat members shown in FIG.


8


A.





FIG. 8D

is an isometric view of a portion of a sole having rounded cleat members in accordance with an embodiment of the invention.











DETAILED DESCRIPTION OF THE INVENTION




As discussed above, the present invention is directed toward improved golf shoe shoes and soles. In a preferred embodiment, a pair of golf shoes, and more specifically a pair of golf shoe soles, enhances the ability of a golfer to pivot one foot while maintaining the other foot in a generally stationary position. As shown in

FIGS. 1A and 1B

, a pair of golf shoes in accordance with an embodiment of the invention includes a right shoe


12


and a left shoe


14


. Each shoe generally includes an upper


16


attached to a sole


18


. The soles


18


include a right sole


18




a


attached to the upper


16


of the right shoe


12


and a left sole


18




b


attached to the upper


16


of the left shoe


14


. The right sole


18




a


and left sole


18




b


each include traction members


22


and cleat members


24


which project downwardly from the soles to enhance the pivotability and stability of the shoes, as will be discussed in greater detail below.





FIGS. 2A and 2B

are top plan views of the right sole


18




a


and left sole


18




b


, respectively. The soles


18


each include a base portion


26


which may comprise a plastic, rubber, or other suitable material or combination of materials that is sufficiently flexible to be comfortable to the golfer (not shown), and sufficiently rigid to provide support for the golfer's feet. A lip


28


extends upwardly from the base portion


26


around an outer periphery of the base portion. The lip


28


is sized to fit around the upper


16


(

FIGS. 1A-B

) when the upper is attached to the sole


18


. The base portion


26


further includes support ridges


30


which project upwardly from an interior region of the base portion


26


. The support ridges


30


support the upper


16


and may be sized to elevate a heel portion of the upper relative to a toe portion of the upper. The support ridges


30


are separated by wells


32


which are provided to reduce the overall weight of the soles


18


. Mounting apertures


34


are provided around the periphery of the base portion


26


interior to the lip


28


for mounting the uppers


16


to the soles


18


.




The soles


18


each have a lower surface


36


, as shown in isometric view in

FIGS. 3A-B

and in plan view in

FIGS. 4A-B

. The lower surface


36


includes a toe portion


38


positioned forward of a heel portion


40


. An outside edge


42


extends between the toe portion


38


and heel portion


40


along the outside of the soles


18


. An inside edge


44


extends between the toe and heel portions


38


and


40


along the inside of the soles


18


, opposite the outside edge


42


. A rear edge


41


extends between the outside edge


42


and the inside edge


44


at the heel portion


40


and a forward edge


39


extends between the outside and inside edges of the toe portion


38


.




The lower surface


36


further includes the traction members


22


and cleat members


24


. The traction members


22


and cleat members


24


are preferably rigidly attached to the lower surface


36


and extend in a generally normal direction away from the lower surface so as to engage the ground and provide stability and/or pivotability to the soles


18


, as discussed in greater detail below. The traction members


22


and cleat members


24


are preferably formed from a flexible, resilient material such as rubber, plastic, or other similar materials which are sufficiently rigid to provide support to the soles and sufficiently flexible in a lateral direction and compressible in the normal direction to be comfortable and to disengage from the ground when the golfer lifts his or her feet. In a preferred embodiment, the traction members


22


and cleat members


24


may comprise 3K Soft, a rubber compound having an abrasion level of 3000 NBS. 3K Soft is available from Jones & Vining of Nedham, Mass. The remainder of the soles


18


may comprise a rubber compound having an abrasion level of 90-110 NBS. The two rubber compounds may be integrally formed together in a single mold to provide a sole


18


which is generally rigid, and has traction members


22


and cleat members


24


which have a desired level of flexibility.




The traction members


22


may comprise a plurality of spaced apart traction elements


46


as shown in

FIGS. 3A-B

and


4


A-B, and as discussed in greater detail below with reference to

FIGS. 5A-C

. The traction members


22


may also comprise continuous members, as discussed in greater detail below with reference to

FIGS. 6A-B

. In either case, the traction members


22


include axial traction members


22




a


and transverse traction members


22




b


. Each axial traction member


22




a


is elongated along an axial traction member axis


48




a


, shown schematically in dashed lines in

FIGS. 3A-B

and


4


A-B. The axial traction member axis


48




a


may be aligned with the outside edge


42


or the inside edge


44


of the soles


18


. The axial traction members


22




a


tend to resist lateral motion of the sole


18


transverse to the edges


42


and


44


when the axial traction members engage the ground. The axial traction members


22




a


also tend to resist pivotal motion of the soles


18


about an axis normal to the plane of the soles. Accordingly, the axial traction members


22




a


tend to enhance the stability of the sole


18


from which they depend.




Each transverse traction member


22




b


is elongated along a transverse traction member axis


48




b


which may be aligned transverse to the inside and/or outside edges


42


and


44


. The transverse traction members


22




b


tend to allow transverse or pivotal motion of the soles


18


. Accordingly, the axial traction members


22




a


and transverse traction members


22




b


may be used in combination to either restrict or permit pivotal motion of the sole


18


to which they are attached.




As shown in

FIGS. 3A and 4A

, the toe portion


38


of the right sole


18




a


has two axial traction members


22




a


and a single transverse traction member


22




b


. Because the number of axial traction members


22




a


exceeds the number of transverse traction members


22




b


, the right sole


18




a


tends to restrict pivotal motion of the right shoe


12


. Conversely, as shown in

FIGS. 3B and 4B

, the toe portion


38


of the left sole


18




b


has a single axial traction member


22




a


and three transverse traction members


22




b


. Because the number of transverse traction members


22




b


exceeds the number of axial traction members


22




a


, the left sole


18




b


tends to allow pivotal motion of the left shoe


14


. In other embodiments, different absolute numbers of axial traction members


22




a


and transverse traction members


22




b


are used, as discussed below with reference to

FIGS. 7A-B

, so long as a greater number of axial traction members are used where pivotal motion is to be restricted and a greater number of transverse traction members are used where pivotal motion is to be unrestricted.




One advantage of the soles


18




a


and


18




b


shown in

FIGS. 1A-B

,


3


A-B, and


4


A-B is that the traction members


22


are arranged to promote stability of the right shoe


12


and pivotability of the left shoe


14


. This is advantageous because it allows a right-handed golfer to more easily pivot his left shoe


14


as he swings his or her golf club backward in a back swing motion, prior to striking a golf ball. At the same time, the golfer's right shoe


12


resists pivotal motion and stabilizes the golfer's right foot as he or she pivots off the left foot. This is advantageous because a typical golfer may shift 90% of his or her weight to the right foot during the backswing. As a result, the golfer's back swing may be less restricted, allowing the golfer to more completely extend the back swing and deliver a more powerful forward stroke. It is believed that the golfer's forward stroke may be made even more powerful and accurate because the golfer's right foot remains stable as he or she enters the forward stroke. The golfer accordingly has a more stable base from which to pivot as the golfer's weight is shifted in a forward direction during the course of the swing.




A further advantage of the golf shoe soles


18


shown in

FIGS. 3A-B

and

FIGS. 4A-B

is that, while each sole emphasizes either stability or pivotability, both soles have traction members


22


positioned to provide at least some degree of stability and at least some degree of potability. Accordingly, the right sole


18




a


, includes a transverse traction member


22




b


and does not completely restrict pivotal motion. Similarly, the left sole


18




b


includes an axial member


22




a


to provide a degree of stability. This feature is advantageous because, while the golfer may wish to emphasize pivotal motion in one foot and stability in the other, both feet may require a level of both stability and pivotability during different phases of the golfer's back swing and forward stroke.




As shown in

FIGS. 3A-B

and


4


A-B, the right sole


18




a


and left sole


18




b


have traction members


22


configured for a right-handed golfer. In another embodiment, the configurations of the traction members


22


on the right sole


18




a


and the left sole


18




b


may be interchanged This alternate embodiment may be desirable for left-handed golfers who wish to have a more stable left shoe


14


and a more pivotable right shoe


12


. Accordingly, a further advantage of the golf shoe soles


18


shown in

FIGS. 3A-B

and


4


A-B is that the soles may be designed to aid either a right-handed or left-handed golfer.




As discussed above, the traction members


22


may comprise elongated traction elements


46


, which are shown in greater detail in FIG.


5


A. The traction elements


46


are each elongated along an element axis


50


. The traction elements


46


preferably have an overall length of approximately one inch and an overall width of approximately 0.20 inch. The traction elements


46


may have other lengths, as shown in

FIGS. 4A-B

. Depending upon the particular location of the individual traction element. Traction elements


46


which form a transverse traction member


22




b


are preferably positioned such that the element axis


50


of each traction element


46


coincides with the transverse traction member axis


48




b


, as shown in FIG.


5


A. The element axes


50


of traction elements


46


forming an axial traction member


22




a


preferably coincide with the axial traction member axis


48




a


(FIGS.


4


A-B).




Each traction element


46


has a ridge


51


which is preferably pointed so as to easily engage with and grip the golf course terrain, providing traction and stability. In a preferred embodiment, the ridge


51


is positioned approximately 0.20 inch from the lower surface


36


of the sole


18


such that the overall height of the traction elements is 0.20 inch. In other embodiments, the ridge


51


may be positioned a greater or lesser distance from the lower surface


36


to achieve the desired level of traction.




Each traction element


46


further includes a first end portion


52


and a second end portion


54


opposite the first end portion. The first and second end portions


52


and


54


of adjacent traction elements


46


are preferably canted away from each other as they extend away from the lower surface


36


of the sole


18


. The end portions


52


and


54


accordingly resist the tendency to trap dirt and other particles between adjacent traction elements


46


because dirt or other particles will tend to fall away from the gaps between the traction elements as the sole


18


is moved away from the ground. Where the first end portion


52


is adjacent another traction element


46


, it may be flat so as to further reduce any tendency for dirt to become trapped between adjacent traction elements


46


. Where the second end portion


54


is not adjacent another traction element


46


, it may have an end ridge line


56


, as shown in

FIG. 5A

, to further improve traction.




Each traction element


46


includes two elongated side surfaces


58


which are generally parallel to the element axis


50


. The side surfaces


58


may be longer or shorter than shown in

FIG. 5A

, as discussed above, so long as a side surface area of each traction element


46


tends to impede the motion of the sole transverse to the element axis


50


when the traction element is engaged with the ground. In one embodiment, the side surfaces


58


may be flat and canted toward each other as they extend away from the lower surface


36


. Accordingly, the traction elements


46


have a flat-sided triangular cross-sectional shape, as shown in

FIG. 5B

, which may further reduce the tendency for dirt to become trapped against the traction elements. In another embodiment, shown in

FIG. 5C

, the side surfaces


58




a


may have a curved shape. As shown in

FIG. 5C

, the curved side surfaces


58




a


are canted toward each other as they extend away from the lower surface


36


to prevent dirt from becoming entrapped against the traction elements


46


, as discussed above with reference to FIG.


5


B.





FIGS. 6A-B

are plan views of a right sole


18




a


and left sole


18




b


, respectively, having continuous traction members


122




a


and


122




b


in accordance with another embodiment of the invention. As shown in

FIGS. 6A-B

, the traction members


122




a


and


122




b


are oriented generally as shown in

FIGS. 3A-B

but comprise single, continuous elements rather than a plurality of discrete elements. An advantage of the continuous traction members


122




a


and


122




b


when compared to traction members


22


comprising discrete traction elements


46


is that the traction members


122




a


and


122




b


may provide a greater degree of stability and resistance to motion transverse to the respective traction member axes


48




a


and


48




b


. Conversely, an advantage of the traction elements


46


shown in

FIGS. 5A-5C

is that the first and second end portions


52


and


54


of the traction elements may provide a greater degree of surface area with which to engage the golf course terrain and may accordingly provide better traction.




As shown in

FIG. 6B

, the axial traction member


122




a


on the left sole


18




b


may be positioned adjacent to the outside edge


42


rather than the inside edge


44


, as was shown in

FIG. 4B

, without significantly affecting the performance of the left sole. In other embodiments, the traction members


122




a


and


122




b


may have other locations on the lower surfaces


36


of the soles


18


, so long as they provide the desired level of stability and pivotability, respectively.





FIGS. 7A-B

illustrate yet another embodiment of the golf shoe soles


18


having a greater number of traction members


22


than are shown in

FIGS. 4A-B

. The right sole


18




a


shown in

FIG. 7A

has three axial traction members


22




a


and two transverse traction members


22




b


. Because the number of axial traction members


22




a


exceeds the number of transverse traction members


22




b


, the right sole


18




a


shown in

FIG. 7A

tends to resist pivotal motion of the right shoe


12


to which the right sole is attached. In a similar fashion, the left sole shown in

FIG. 7B

has two axial traction members


22




a


and four transverse traction members


22




b


. Because the number of transverse traction members


22




b


exceeds the number of axial traction members


22




a


, the left sole


20


shown in

FIG. 7B

tends to allow pivotal motion of the left shoe


14


to which the left sole is attached. In other embodiments, the right and left soles


18




a


and


18




b


may have a greater or lesser number of axial traction members


22




a


and transverse traction members


22




b


, so long as the number of axial traction members exceeds the number of transverse traction members for soles intended to provide resistance to pivotal motion, and the number of transverse traction members exceeds the number of axial traction members for soles intended to provide increased stability and less resistance to pivotal motion.




In still further embodiments, the number of axial traction members


22




a


need not exceed the number of transverse traction members


22




b


for a sole providing resistance to pivotal motion, so long as the surface area of the axial traction members


22




a


aligned with the axial traction member axes


48




a


is sufficient to resist pivotal motion of the sole to which the traction elements


46


are attached. In a similar fashion, the transverse traction members


22




b


need not outnumber the axial traction members


22




a


if the surface area of the axial traction members


22




a


aligned with the axial traction member axes


48




a


is sufficiently small so as not to impede the pivotal motion of a sole which is configured to allow pivotal motion.




As discussed previously with reference to

FIGS. 3A-B

and


4


A-B, the soles


18


include cleat members


24


which depend from the lower surface


36


of the soles. The cleat members


24


include flat cleat members


24




a


and rounded cleat members


24




b


. The flat cleat members


24




a


are generally provided to enhance the stability of the sole to which they are attached, and the rounded cleat members


24




b


are generally provided to enhance pivotability of the soles to which the are attached, as discussed below with reference to

FIGS. 8A-8D

.




Referring to

FIG. 8A

, the flat cleat members


24




a


have an end surface


60


which is generally parallel to the lower surface


36


of the sole. The end surface


60


may include roughness elements


62


which enhance the ability of the flat cleat members


24




a


to grip smooth surfaces. The flat cleat members


24




a


accordingly provide stability to the sole from which the flat cleat members depend, which may be particularly advantageous when the sole is used on flat smooth surfaces, such as hard floors. The flat cleat members


24




a


may also be positioned on portions of the sole which are preferably kept stable during the golfer's swing. Accordingly, the flat cleat members


24




a


may be concentrated in a central region


63


of the toe portion


38


of the left sole


18




b


, as shown in

FIG. 4B

, to stabilize the central region during a right-handed golfer's swing. Because a typical right-handed golfer may shift 90% of his or her weight to the outside of the left shoe


14


at the conclusion of the swing, the concentration of flat cleat members


24




b


in the central region


63


, and particularly near the outer edge


44


, may improve the support of the golfer's feet. The flat cleat members


24




a


may be concentrated on the right sole


18




a


in a similar manner for left-handed golfers.




The flat cleat member


24




a


further includes a side surface


64


which may be partially conical as shown in FIG.


8


A. The conical side surface


64


allows the flat cleat member


24




a


to penetrate some distance into the golf course terrain, providing for increased traction. The side surface


64


is canted in a manner similar to that discussed previously with respect to the traction elements


46


shown in

FIG. 5A

, so as to inhibit the tendency for the flat cleat members


24




a


to retain dirt, sod or other detritus.




In a preferred embodiment, the flat cleat members


24




b


have a generally circular cross-sectional shape which tapers from a diameter of approximately 0.40 near the lower surface


36


of the sole


18


to a diameter of approximately 0.25 inch near the end surface


60


. The overall height of the flat cleat members is approximately 0.15-0.20 inch, though cleat members having heights outside this range may be used in alternate embodiments.




In another embodiment shown in

FIG. 8B

, the flat cleat members


24




a


may include curved side surfaces


64




a


. The curved side surfaces


64




a


are canted in a manner similar to that discussed previously with reference to

FIG. 8A

so as to reduce the tendency for the flat cleat members


24




a


to retain dirt particles. In other embodiments the flat cleat members


24




a


may have side surfaces having other shapes which similarly tend to shed dirt particles. In yet another embodiment, shown in

FIG. 8C

, the flat cleat members


24




a


have conical side surfaces


64


and a smaller end surface


60




a


than is shown in FIG.


8


A. The flat cleat members


24




a


shown in

FIG. 8C

may accordingly provide a greater deal of penetration into the terrain while providing a lesser degree of stability. A greater number of flat cleat members


24




a


of the type shown in

FIG. 8C

may accordingly be used to provide the same level of stability as the flat cleat members shown in FIG.


8


C. In still other embodiments, the flat cleat members


24




a


may have other shapes which also provide for stability, traction, and a low affinity for dirt particles.




The rounded cleat members


24




b


are shown in greater detail in FIG.


8


D. The rounded cleat members


24




b


have flutes or grooves


66


formed therein which may have an arcuate shape, as shown in

FIG. 8D

or may have other shapes in other embodiments. The flutes or grooves


66


may enhance the traction provided by the rounded cleat members


24




b


by increasing the surface area of the rounded cleat members which is available to engage the terrain. The rounded cleats


24




b


have a diameter near the lower surface


36


of the sole


18


of approximately 0.5 inch and an overall height of approximately 0.20 inch. Accordingly, the heights of the traction elements


46


, flat cleat members


24




a


and rounded clear members


24




b


are approximately equal in a preferred embodiment, though variations are possible in other embodiments.




The overall shape of the rounded cleat members


24




b


is rounded or hemispherical in a preferred embodiment. In other embodiments, the rounded cleat members


24




b


may have other generally curved overall shapes. The golfer may accordingly roll the golfer's foot more easily off the rounded cleat members


24




b


than the flat cleat members


24




a


or the traction members


22


. In one embodiment, a greater number of rounded cleat members


24




b


may be provided near the inside edge


44


of the left sole


18




b


, as shown in

FIGS. 3B and 4B

. The concentration of rounded cleat members


24




b


in this region may allow a right-handed golfer to more easily rotate his or her weight toward the inside edge


44


of the left sole


18




b


while following through the swing. Similarly, the rounded cleat members


24




b


may be concentrated toward the outside edge


42


of a rear part


68


of the toe portion


38


of the left sole


18




b


to allow the golfer to more easily roll away from the outside edge and toward the inside edge


44


For left-handed golfers, the concentrations of rounded cleat members


24




b


discussed above may be provided on the right sole


18




a


rather than the left sole


18




b.






An advantage of the flat cleat members


24




a


is that they tend to stabilize the golf shoe to which they are attached. At the same time, the flat cleat members


24




a


may penetrate the surf slightly, providing for an increased degree of traction. An advantage of the rounded cleat members


24




b


is that they allow the golfer to more easily pivot or rotate his or her weight from one portion of the shoe to another. Such a rotational or pivotal motion is desirable during the golf swing so the golfer may more easily follow through during the swing, shifting his weight to impart more power to the ball.




In a manner similar to that discussed above with reference to the traction members


22




a


and


22




b


shown in

FIGS. 3A-B

and


4


A-B, the flat cleat members


24




a


and rounded cleat members


24




b


may be used in combination to provide a level of stability and pivotability in the same shoe. The flat cleat members


24




a


may concentrated in regions of the sole where stability is of increased importance and the rounded cleat members


24




b


may be concentrated in regions where pivotability is of increased importance. Furthermore, the flat cleat members


24




a


and rounded cleat members


24




b


may be arranged in combination with the axial traction members


22




a


and transverse traction members


22




b


, as shown in

FIGS. 3A-B

,


4


A-B,


6


A-B and


7


A-B. The foregoing components may be advantageously arranged to emphasize stability or pivotability, in a manner which may depend on the particular portion of the shoe to which the components are attached, and which may be tailored to account for the dexterity of the golfer.




From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.



Claims
  • 1. A sole for a golf shoe, comprising:a first base portion positioned to be below a front portion of a user's foot during use, and defining a first base portion plane; a first plurality of projections fixedly attached to the first base portion, the first plurality of projections depending from the first base portion and projecting in a first direction generally normal to the first base portion plane for engagement with the ground during use, the first plurality of projections including a plurality of first elongated traction members and a plurality of first non-elongated traction members, the plurality of first elongated traction members having varying lengths and extending along at least three separate first arcs oriented to facilitate proper movement of the golf shoe during use, each first arc containing at least two first elongated traction members, the plurality of second non-elongated traction members being positioned on opposing sides of each of the first arcs; a second base portion positioned to be below a heel portion of the user's foot during use, and defining a second base portion plane; and a second plurality of projections fixedly attached to the second base portion, the second plurality of projections depending from the second base portion and projecting in a second direction generally normal to the second base portion plane for engagement with the ground during use, the second plurality of projections including a plurality of second elongated traction members and a plurality of second non-elongated traction members, the plurality of second elongated traction members having varying lengths and extending along at least a portion of a perimeter of the second base portion, the plurality of second non-elongated traction members being positioned at or within the perimeter of the second base portion.
  • 2. The sole of claim 1 wherein the first arcs are aligned such that each of the first arcs intersects both of the other first arcs.
  • 3. The sole of claim 1 wherein two of the first arcs extend laterally across the sole in converging arcs and another of the first arcs extends longitudinally along the sole.
  • 4. The sole of claim 1 wherein three of the first arcs intersect in a generally triangular shaped pattern.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 09/374,069, filed Aug. 12, 1999 which is a continuation of U.S. patent application Ser. No. 08/914,287, filed Aug. 18, 1997, issued as U.S. Pat. No. 5,943,794 on Aug. 31, 1999.

US Referenced Citations (30)
Number Name Date Kind
1355827 Finneran Oct 1920 A
D61473 Mason Sep 1922 S
1594056 Floyd Jul 1926 A
1631741 Lazzari et al. Jun 1927 A
1634741 Lazzari et al. Jun 1927 A
1985775 Goldenberg Dec 1934 A
D160561 Steinhilber Oct 1950 S
3747237 Wilowski Jul 1973 A
D247692 Inohara Apr 1978 S
4367600 Cross, III et al. Jan 1983 A
D275147 Phillpott Aug 1984 S
D278382 Chen Apr 1985 S
4527345 Lopez Jul 1985 A
4667425 Effler et al. May 1987 A
4689901 Ihlenburg Sep 1987 A
4885851 Peterson Dec 1989 A
D310294 Peterson Sep 1990 S
D318946 Granatelli Aug 1991 S
5077915 Gross Jan 1992 A
5201126 Tanel Apr 1993 A
5259129 Deacon et al. Nov 1993 A
5367793 Deacon et al. Nov 1994 A
D371453 Deacon et al. Jul 1996 S
D372355 Deacon et al. Aug 1996 S
D373675 McMullin Sep 1996 S
D378013 McMullin Feb 1997 S
5623774 Abbey Apr 1997 A
D380076 McMullin Jun 1997 S
5711094 Grossman Jan 1998 A
5943794 Gelsomini Aug 1999 A
Foreign Referenced Citations (1)
Number Date Country
0768048 Apr 1997 EP
Non-Patent Literature Citations (3)
Entry
Catalog from Eurosport, 431 U.S. Highway 70A East, Hillsborough, NC 27278-9912, Fall vol. 2 1997, cover and pp. 10, 12, 13 and 18.
Catalog from Soccer World, 31055 Huntwood Avenue, Hatyward, California 94544, Summer 1997, cover and pp. 3 and 58.
Catalog from Acme Soccer & Widget Works, One Acme Plaza, P.O. Box 811, Carrboro, NC 27510-0811, Late Summer 1997, cover and p. 16.
Continuations (2)
Number Date Country
Parent 09/374069 Aug 1999 US
Child 09/818718 US
Parent 08/914287 Aug 1997 US
Child 09/374069 US