Golf simulation system

Information

  • Patent Grant
  • 10596442
  • Patent Number
    10,596,442
  • Date Filed
    Monday, August 13, 2018
    6 years ago
  • Date Issued
    Tuesday, March 24, 2020
    4 years ago
Abstract
An apparatus including a configurable golf green having a changeable contour is provided. The apparatus includes a flexible covering forming the golf green. The flexible covering is movable between a base condition and a contoured condition. The apparatus includes a covering support assembly configured to support the flexible covering in both conditions. The support assembly includes a plurality of movable positioning elements disposed in an array below the flexible covering. Each movable positioning element includes an upper end having an adjustable vertical position in contact with a portion of the flexible covering. The support assembly includes a movement actuator configured to independently move at least some of the positioning elements and to form a golf cup at a desired location on the flexible covering by lowering the adjustable vertical position of the upper end of at least one of the positioning elements compared to an immediately adjacent positioning element.
Description
BACKGROUND
FIELD

The present disclosure relates to golf simulation apparatus and more particularly pertains to a new golf simulation system for providing a more realistic and challenging contouring of the surface of a simulated green surface.


SUMMARY

In one aspect, the present disclosure relates to an apparatus having a configurable upper surface with a changeable contour. The apparatus may comprise a covering forming the upper surface, the covering being flexible such that the covering is movable between a base condition in which the upper surface has a substantially planar configuration and a contoured condition in which the upper surface has a contoured configuration. The apparatus may also comprise a covering support assembly configured to support the covering in the base condition and the contoured condition. The support assembly may comprise a plurality of movable positioning elements having the covering resting thereon, with the plurality of positioning elements being positioned in an array below the covering and each having an upper end contacting a portion of the covering. The positioning elements are movable to adjust a vertical position of the upper end of the positioning element contacting the covering. The support assembly may also include a movement actuator configured to move at least one of the positioning elements, with one of the movement actuators acting on at least one of the positioning elements such that the positioning elements are movable independently of other positioning elements.


In another aspect, the present disclosure relates to a golf simulation system may comprise a screen with a projection surface, a ball path analysis device configured to predict a path of a ball struck by a club of a user, and a green simulation apparatus having a configurable upper surface with a changeable contour. The apparatus may comprise a covering forming the upper surface and being flexible such that the covering is movable between a base condition in which the upper surface has a substantially planar configuration and a contoured condition in which the upper surface has a contoured configuration. The apparatus may also comprise a covering support assembly configured to support the covering, in the base condition and the contoured condition. The support assembly may comprise a plurality of movable positioning elements having the covering resting thereon, and the plurality of positioning elements may be positioned in an array below the covering. The positioning elements may each have an upper end contacting a portion of the covering, and the positioning elements may be movable to adjust a vertical position of the upper end of the positioning element contacting the covering. The support assembly, may also comprise a movement actuator configured to move at least one of the positioning elements, with one of the movement actuators acting on one of the positioning elements such that each of the positioning elements is movable independently of other positioning elements.


There has thus been outlined, rather broadly, some of the more important elements of the disclosure in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional elements of the disclosure that will be described hereinafter and which will form the subject matter of the claims appended hereto.


In this respect, before explaining at least one embodiment or implementation in greater detail, it is to be understood that the scope of the disclosure is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and implementations and is thus capable of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.


As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present disclosure. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present disclosure.


The advantages of the various embodiments of the present disclosure, along with the various features of novelty that characterize the disclosure, are disclosed in the following descriptive matter and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be better understood and when consideration is given to the drawings and the detailed description which follows. Such description makes reference to the annexed drawings wherein:



FIG. 1 is a schematic perspective view of the green simulation apparatus of a new golf simulation system according to the present disclosure, with the covering in a base condition and the support assembly in a neutral position.



FIG. 2 is a schematic perspective view of the simulation apparatus with the covering in a contoured condition and the support assembly in a raised position.



FIG. 3 is a schematic perspective view of the support assembly with the covering removed to show detail of the positioning elements, the guide and the movement actuators in the neutral position.



FIG. 4 is a schematic perspective view of the support assembly with the covering removed to show detail of the positioning elements, the guide and the movement actuators in the raised position.



FIG. 5 is a schematic side view of the support assembly with the covering removed to show detail of the support assembly in the neutral position.



FIG. 6 is a schematic side view of the support assembly with the covering removed to show detail of the support assembly in the raised position.



FIG. 7 is a schematic perspective view of the support assembly with the covering removed to show detail of the support assembly with the positioning elements in an optional arrangement.



FIG. 8 is a schematic diagram of the golf simulation system, according to an illustrative embodiment.



FIG. 9 is a schematic perspective view of an embodiment of the support assembly with the covering removed to show detail of the positioning elements, which defined a plurality of chambers for supporting the covering.



FIG. 10 is a schematic side view of one embodiment of a positioning element utilizing a cylinder and post arrangement, according to an illustrative embodiment.



FIG. 11 is a schematic diagram of an illustrative relationship between the covering and one of the positioning elements.



FIG. 12 is a schematic diagram of another illustrating relationship between the covering and one or more of the positioning elements.





DETAILED DESCRIPTION

With reference now to the drawings, and in particular to FIGS. 1 through 10 thereof, a new golf simulation system embodying the principles and concepts of the disclosed subject matter will be described.


Applicant has recognized the value of devices that provide a virtual experience that is close to the actual experience. One example is a golf simulation system that allows the user to practice his or her golf swing in a controlled environment that provides a screen on which an image of a golf course fairway is projected for the purpose of the user lining up a shot and taking the shot, with the system providing some indication of the movement of the ball after the swing has been taken and the ball has been struck. Typically these simulators utilize a path of simulated turf large enough only for the user to stand and address the ball in a normal golf stance.


Applicant has also recognized that the value of such conventional simulators for short game practice, especially putting, is very limited. Typically, putting practice has been conducted on the floor of a room or platform which presents a flat, level, and not very realistic environment for practice. Golf course greens are typically not completely flat and level, particularly if the course is intended to be challenging to the player. Applicant has developed a system that may be used to realistically simulate golf greens with a variety of changeable contours to provide a more realistic and challenging practice experience, and which may be used with more conventional golf simulators which only attempt to simulate the long game.


Broadly, the aspects of the disclosure may be used to contour a surface such as a surface located on a support or platform in a manner that is easily and quickly changeable from one contour to another contour. The contouring may be produced and reproduced from contour data that has been generated from actual landscapes or may be created with no real antecedent landscape basis for the contour.


In one aspect of the development, a golf simulation system 10 comprises a screen 12 that may have a projection surface 14 onto which various golf course representations may be projected. The projection surface 14 of the screen may be substantially vertically oriented, and may be curved to extend about the user to some degree. The system 10 may also include a ball path analysis device 16 that uses various parameters such as club path, club speed, ball spin, etc. to determine a path for movement of the image of a simulated ball on the projection screen. The particular technology used to determine ball path and other aspects of the long game is not critical to the system and is known to those skilled in the art and will not be further discussed here.


Another aspect of the disclosure is a green simulation apparatus 20 that may be used with the aforementioned elements of the system 10. Significantly, the green simulation apparatus 20 has a configurable upper surface 22 that is moveable to provide a changeable contour. The configurable upper surface 22 may have a periphery 24, and the periphery may have opposite lateral sides 26, 27 and opposite ends 28, 29. In some embodiments, the periphery 24 of the upper surface may be surrounded by a frame having a stationary upper surface.


In general, the apparatus may include a covering 30 that may extend between the sides 26, 27 and ends 28, 29 and a covering support assembly 40 that supports the cover and also causes the contouring of the covering. The covering may be continuous between the sides and ends, or may comprise pieces that are mounted on one or more of the movable positioning elements 42 of the support assembly 40.


The covering 30 may form the upper surface 22 of the apparatus 20. The covering 30 may have a base condition (see FIG. 1) in which the upper surface 22 has a substantially planar or flat configuration and may also be level, which may represent a flat and level green surface. The covering may also have a contoured condition. (see FIG. 2) in which the upper surface has a contoured configuration including portions of the surface that slope with peaks or ridges and valleys to simulate a green surface without an entirely flat and level orientation.


The covering 30 may have an upwardly-oriented top face 32 which forms the upper surface 22. The top face may be substantially continuous in character between the sides 26, 27 and ends 28, 29 of the periphery. The top face may also be configured in a manner that simulates the surface of a golf green, such as by the inclusion of a simulated turf material, although this is not critical to the system 10. The covering 30 may also have a bottom face positioned opposite of the top face and oriented downwardly.


Significantly, the covering 30 may be flexible, and may also be stretchable. The material forming the covering may be relatively incapable of supporting the weight of a user absent the covering support assembly described below. Materials having elastomeric properties may be highly suitable.


The covering support assembly 40 may support the covering in the various conditions, such as the base condition and the contoured condition. As the covering may not have any natural shape, or only a flat shape, the support assembly may form contours in the upper surface of the covering varying the vertical level of support provided to different portions of the covering.


The support assembly 40 may comprise a plurality of movable positioning elements 42 that have the covering resting thereon such that the elements may control the vertical position of the portion of the covering, that is located above the element. The plurality of positioning elements may be positioned in an array, and the array may have each of the positioning elements 42 positioned in a first line and a second line. In some embodiments, the first and second lines may be substantially perpendicular to each other (see FIG. 3 and in other embodiments the first and second lines may be at an oblique angle with respect to each other (see FIG. 7).


The positioning elements 42 may each have an upper end 44 for contacting a portion of the covering for moving the covering in a generally upward and downward direction. The positioning elements 42 may be substantially vertically movable to adjust the position of the upper end and thereby the position of the portion of the covering 30 being contacted by the upper end 44. The positioning elements 42 may be elongated in shape with a longitudinal axis 46, which may be substantially vertically oriented. The upper ends 44 may be moveable with respect to a reference plane, represented by reference number 48 in FIG. 5. The reference plane 48 may be defined by the upper ends 44 of the positioning elements when those elements are in a neutral position (see FIG. 5). The neutral position may be the lowermost positioning of the vertical travel of the positioning elements, but this is not required. The base condition of the covering 30 may generally correspond with the positioning elements 42 being in the neutral position. The positioning elements 42 may have a plurality of raised positions that are located vertically higher than the neutral position, and in some embodiments the positions of the elements, and the upper ends thereof, may be infinitely variable between the neutral position and a position of maximum vertical elevation of the upper end. The vertical positions of a positioning element may generally be independent of the other positioning elements. Suitable ranges of the distance of vertical movement may vary from 0 inches to approximately 24 inches, although greater or lesser ranges may be utilized, including ranges of 0 inches to 48 inches, 72 inches or even more. In some embodiments, a range of movement of 0 inches to approximately 12 inches may be employed.


In the illustrative embodiments, each positioning element 42 may comprise a pin 50 which has a top end 52 and a bottom end 54, and the pin may have a length between the top and bottom ends. The pin may have a maximum width which may be measured perpendicular to the longitudinal axis 46 of the element 42. In some of the most preferred embodiments, the outer surface of the pin may be substantially cylindrical in shape, although cross sectional shapes other than circular may be employed, particularly where resistance to rotation of the pin is desired.


Each positioning element 42 may also comprise a head 56 that is mounted on the pin 50. The head may be located on the top end 52 of the pin, and the head may define at least a portion of the upper end 44 of the positioning element. In some of the most preferred embodiments, the head 56 of a positioning element is unconnected to the heads of the adjacent positioning elements such that the positioning elements are able to move substantially independently of each other, although attachment to the covering (if employed) may produce some degree of constraint. In some of the most preferred embodiments, the head may have a substantially circular perimeter shape when viewed from above, any rounded shape may be employed, including oval shapes. Other perimeter shapes, including polygonal shapes when viewed from above may also be used.


The head 56 may have a top surface 58, and in some embodiments the top surface has a convex shape which may be advantageous, and may give the overall element a general mushroom-shape. The convexity of the top surface is not critical, as the top surface may also, for example, be substantially flat. The head 56 may have a maximum width which may be measured perpendicular to the longitudinal axis 46 of the element 42. The maximum width of the head may be uniform among all of the elements, although variation in dimension may be employed. The maximum width of the head may be greater than the maximum width of the pin such that the head is enlarged in width with respect to the pin, and presents a broader top surface than would the top end of the pin alone. The range of maximum widths for the heads may vary, and may range from approximately ¼ inch to approximately 6 inches which is believed to provide the greatest variability in the contour of the upper surface of the covering.


In the array of positioning elements, the head 56 of one positioning element may be spaced from the head of an adjacent positioning element such that there is some separation of the heads, which may be advantageous but is not critical. A closest distance of the spacing between the adjacent heads may be about equal to or somewhat less than the maximum width of the head. The size of the maximum width of the head 56 and the spacing distance between the heads may be varied independently of each other to provide a desirable degree of contourability while still a suitable degree of support for the covering and a user standing on the covering. The spacing distance between heads may range from approximately 1/32 inch to approximately 12 inches, although spacings greater than these may be employed.


In some embodiments, the covering 30 may be fixed or attached to some or all of the positioning elements 42 to cause the portion of the covering above an element 42 to move with the movement of the element 42. The covering may be secured to the element 42, such as the top surface 58 of the head 56, in any suitable manner, such as by bonding (using, for example, an adhesive as shown in FIG. 11) or by mechanical fastening (as shown in FIG. 12). Attachment of the covering to some of all of the heads may constrain the movement of adjacent positioning elements to some degree as the covering may not be able to conform to substantial differences in vertical elevation between adjacent positioning elements. The relative flexibility and stretchability or elasticity of the material forming the covering may have an effect on the maximum difference in vertical elevation between adjacent elements 42. In some embodiments, the covering 30 may not be physically attached to some or all of the positioning elements, and the weight of the covering may be sufficient to keep the portion of the covering above an element 42 in close proximity to, if not contact with, the top surface 58 of the head 56.


The support assembly 40 may further include a guide 60 that is configured to guide the positioning elements 42 as the elements move. In some embodiments, the guide 60 has a guide aperture 62 for receiving each of the positioning elements. The positioning element 42 may be movable, and in some cases slidable, through the guide aperture 62. The guide aperture 62 may have a substantially vertical axis, and the aperture may be shaped and sized for a somewhat snug relationship with the pin to facilitate vertical movement without undue lateral movement. The guide 60 may have a plurality of the guide apertures, and the apertures may be substantially uniformly spaced from adjacent guide apertures formed in the guide. In the illustrative embodiments, the guide 60 may comprise at least one guide plate 64 with the guide apertures being formed in the plate 64. Other suitable configurations of the guide may be employed, such as, for example, multiple plates in a substantially parallel relationship, or a plurality of sleeves that each receive the pin of one of the elements.


The support assembly 40 may also comprise a movement actuator 70 that is configured to move at least one of the positioning elements 42. In some embodiments, one of the movement actuators 70 acts on each positioning element such that each positioning element is movable independently of other positioning elements. The movement actuator 70 may be positioned below the reference plane, and may be located below the guide 60. The movement actuator 70 may act on the bottom end 54 of the pin 50, or a bottom portion of the pin. The movement actuator 70 may be any suitable actuator that is capable of moving a pin vertically. Examples of suitable technology may employ pneumatics, hydraulics, magnetics, or mechanical action. Structures employing these technologies include, for example, piston and cylinder structures and linear actuators. The activation of the movement actuators may be controlled manually by a user, or may be controlled by a computerized system that controls the movement actuators automatically to produce a contouring that has been programmed into the system.


A golf hole or cup may be provided for the apparatus 20 in various ways. In some embodiments, the cup may be formed by a depression in the upper surface of the covering by dropping the position of the movable positioning elements at the desired location of the cup. In some embodiments, a hole may be formed in the covering (optionally with a cup extending downwardly therefrom) at a location that is relatively fixed on the upper surface, and the upper surface may thus be contoured around the hole and cup.


Using the disclosed green simulation apparatus, the user surface may be contoured in a manner that is able to produce an area of the upper surface that is raised to a vertical level that is relatively higher than areas of the upper surface that surround the raised area. This differentiates the apparatus of the disclosure from other apparatus that simply tilt the upper surface, or form a depressed “valley” between raised “ridges.” While the disclosed apparatus is capable of forming these relatively simpler types of contours in the upper surface, it is not limited to them and is also capable of forming more complex contours such as the aforementioned raised areas of the upper surface surrounded depressed areas that can more accurately represent real world green contours. Further, the contouring of the upper surface may be controlled, through actuation of the movement actuators in an individual manner, by a computerized system that may replicate the contours of greens of actual golf courses.


In some embodiments, the movable positioning elements may be formed of structures that include a female cylinder 76 or sleeve that includes the top end of the element, and defines a channel into which extends a male post 78 forming the bottom end of the element. In some embodiments (see FIG. 10), the exterior surface of the post 78 and interior surface of the channel in the cylinder 76 may be complementarily threaded so that the threads engage. The post may be mounted to permit rotation about a vertical axis, and the post may be rotated to cause raising and lowering of the sleeve, and the top end located thereon. The post may be rotated by a motor or by any suitable mechanical, hydraulic, pneumatic, or other, means. The motor may be operated or controlled to raise or lower the top end and the portion of the covering located above the positioning element. Optionally, other means may be employed to cause the cylinder to move with respect to the post.


In some further embodiments, the moveable positioning elements may comprise pins that are relatively free floating (within extreme limits that have lower ends that are exposed to contact a contoured substrate that correlates in some manner to the desired contour of the upper surface of the covering. The substrate may have a contoured upper face that is positioned below the lower ends of the pins, and movement of the substrate upwardly to contact the lower ends of the pins tends to raise the pins to a degree that varies with the contour of the upper face at the location that the lower end contacts the face. The pins may thus telegraph the contour of the upper face of the substrate to the covering, and the upper surface of the covering.


In some still further embodiments, the plurality of movable positioning elements may comprise a plurality of chambers 72 for receiving a fluid such as a liquid or a gas that is moved into and out of the chamber to expand or contract the volume of the chamber (see FIG. 9). The chamber may be defined by a flexible wall 74, such as a bag or balloon or sack that contains without leakage the fluid utilized which moves into and out of the chamber. The movement of the fluid into and out of the chambers may be individually controlled such that the chambers may be filled to different degrees to provide different levels of expansion and vertical lift of the covering positioned above the chamber.


In some optional embodiments, the covering 40 may be omitted and the upper end 44 of the positioning elements may collectively form the upper surface 22 of the apparatus, as if the upper end of each of the elements was a “pixel” of the upper surface.


It should be appreciated that in the foregoing description and appended claims, that the terms “substantially” and “approximately,” when used to modify another term, mean “for the most part” or “being largely but not wholly or completely that which is specified” by the modified term.


It should also be appreciated from the foregoing description that, except when mutually exclusive, the features of the various embodiments described herein may be combined with features of other embodiments as desired while remaining within the intended scope of the disclosure.


Further, those skilled in the art will appreciate that the steps shown in the drawing figures may be altered in a variety of ways. For example, the order of the steps may be rearranged, substeps may be performed in parallel, shown steps may be omitted, or other steps may be included, etc.


With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the disclosed embodiments and implementations, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art in light of the foregoing disclosure, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present disclosure.


Therefore, the foregoing is considered as illustrative only of the principles of the disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the disclosed subject matter to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to that fall within the scope of the claims.

Claims
  • 1. An apparatus including a configurable golf green having a changeable contour, the apparatus comprising: a flexible covering forming the golf green, the flexible covering being movable between a base condition in which the golf green has a substantially planar configuration and a contoured condition in which the golf green has a contoured configuration; anda covering support assembly configured to support the flexible covering in the base condition and in the contoured condition, the support assembly comprising: a plurality of movable positioning elements disposed in an array below the flexible covering, each of the movable positioning elements comprising an upper end having an adjustable vertical position in contact with a portion of the flexible covering; anda movement actuator configured to independently move at least some of the positioning elements, wherein the movement actuator is further configured to form a golf cup at a desired location on the flexible covering by lowering the adjustable vertical position of the upper end of at least one of the positioning elements as compared to at least one immediately adjacent positioning element.
  • 2. The apparatus of claim 1, wherein the upper ends of the plurality of positioning elements are attached to the flexible covering.
  • 3. The apparatus of claim 1, wherein the upper ends of the plurality of positioning elements are unattached to the flexible covering.
  • 4. The apparatus of claim 1, wherein the flexible covering is elastomerically stretchable.
  • 5. The apparatus of claim 1, wherein each of the plurality of positioning elements comprises: a pin having a top end and a bottom end; anda head mounted on the pin, the head being located on the top end of the pin and defining at least a portion of the upper end of the positioning element.
  • 6. The apparatus of claim 5, wherein the head of one positioning element is unconnected to the heads of adjacent positioning elements.
  • 7. The apparatus of claim 5, wherein the head of one positioning element is spaced from the head of an adjacent one of the positioning elements.
  • 8. The apparatus of claim 5, wherein the head has a top surface with a convex shape.
  • 9. The apparatus of claim 1, wherein the head has a maximum width greater than a maximum width of the pin.
  • 10. The apparatus of claim 1, wherein the positioning elements are elongated along a substantially vertically-oriented longitudinal axis.
  • 11. The apparatus of claim 1, wherein the upper ends of the positioning elements are moveable with respect to a reference plane, the reference plane being defined by upper ends of the positioning elements in a neutral position, the positioning elements having a plurality of raised positions located vertically higher than the neutral position.
  • 12. The apparatus of claim 1, wherein the covering support assembly includes a guide configured to guide the positioning elements as the positioning elements move.
  • 13. A golf simulation system comprising: a screen comprising a projection surface;a ball path analysis device configured to predict a path of a ball struck by a club of a user; anda green simulation apparatus including a configurable golf green having a changeable contour, the apparatus comprising: a flexible covering forming the golf green, the flexible covering being movable between a base condition in which the golf green has a substantially planar configuration and a contoured condition in which the golf green has a contoured configuration; anda covering support assembly configured to support the flexible covering in the base condition and in the contoured condition, the support assembly comprising: a plurality of movable positioning elements disposed in an array below the flexible covering, each of the movable positioning elements comprising an upper end having an adjustable vertical position in contact with a portion of the flexible covering; anda movement actuator configured to independently move at least some of the positioning elements, wherein the movement actuator is further configured to form a golf cup at a desired location on the flexible covering by lowering the adjustable vertical position of the upper end of at least one of the positioning elements as compared to at least one immediately adjacent positioning element.
  • 14. The system of claim 13, wherein the upper ends of the plurality of positioning elements are unattached to the flexible covering.
  • 15. The system of claim 13, wherein each of the plurality of positioning elements comprises: a pin having a top end and a bottom end; anda head mounted on the pin, the head being located on the top end of the pin and defining at least a portion of the upper end of the positioning element.
  • 16. The system of claim 15, wherein the head of one positioning element is unconnected to the heads of adjacent positioning elements.
  • 17. The system of claim 15, wherein the head of one positioning element is spaced from the head of an adjacent one of the positioning elements.
  • 18. The system of claim 15, wherein the head has a maximum width greater than a maximum width of the pin.
  • 19. The system of claim 13, wherein the upper ends of the positioning elements are moveable with respect to a reference plane, the reference plane being defined by upper ends of the positioning elements in a neutral position, the positioning elements having a plurality of raised positions located vertically higher than the neutral position.
  • 20. An apparatus including a configurable golf green having a changeable contour, the apparatus comprising: a flexible covering forming the golf green, the flexible covering being movable between a base condition in which the golf green has a substantially planar configuration and a contoured condition in which the golf green has a contoured configuration; anda covering support assembly configured to support the flexible covering in the base condition and in the contoured condition, the support assembly comprising: a plurality of movable positioning elements disposed in an array below the flexible covering, each of the movable positioning elements comprising: an upper end having an adjustable vertical position in contact with a portion of the flexible covering, anda chamber comprising a flexible wall and being configured to receive a fluid, an amount of the fluid received by the chamber determining the adjustable vertical position of the upper end; anda movement actuator configured to independently provide the fluid to the plurality of moveable positioning elements, thereby moving at least some of the positioning elements to form a golf cup at a desired location on the flexible covering by lowering the adjustable vertical position of the upper end of at least one of the positioning elements as compared to at least one immediately adjacent positioning element.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/709,834, filed on May 12, 2015, which is a continuation of U.S. patent application Ser. No. 14/093,963, filed on Dec. 2, 2013, which issued as a U.S. Pat. No. 9,028,335 on May 12, 2015, which is a continuation of U.S. patent application Ser. No. 12/917,896, filed Jun. 14, 2013, which issued as U.S. Pat. No. 8,616,988 on Dec. 31, 2013, and the disclosure of each of the aforementioned applications is incorporated by reference in its entirety.

US Referenced Citations (50)
Number Name Date Kind
1080972 Jackson Dec 1913 A
1612291 Jackson Dec 1926 A
1612292 Jackson Dec 1926 A
2678823 Hugman May 1954 A
3170694 Dolce Feb 1965 A
3595581 Anderson et al. Jul 1971 A
3601406 Giusti Aug 1971 A
3658343 Rogers et al. Apr 1972 A
3892412 Koo Jul 1975 A
4009881 Potter Mar 1977 A
4160942 Lynch et al. Jul 1979 A
4222568 Russo Sep 1980 A
4611809 Gettelfinger Sep 1986 A
4749169 Pickles Jun 1988 A
4790538 Gettelfinger Dec 1988 A
4943034 Wagnon Jul 1990 A
5031916 Boswell Jul 1991 A
5056791 Poillon et al. Oct 1991 A
5087045 Kim Feb 1992 A
5094569 Fleming Mar 1992 A
5100145 Kim Mar 1992 A
5172914 Primerano Dec 1992 A
5221082 Curshod Jun 1993 A
5333874 Floyd et al. Aug 1994 A
5390926 Hanson et al. Feb 1995 A
5390927 Angelos Feb 1995 A
5657964 Yoshida Aug 1997 A
5855522 Bevan Jan 1999 A
5950990 Castillo Sep 1999 A
6056645 Servatius May 2000 A
6179721 Bevan Jan 2001 B1
6338682 Torchia et al. Jan 2002 B1
6695289 Mickael Feb 2004 B1
6746338 Keaton Jun 2004 B1
6769993 Lasalandra Aug 2004 B1
6805638 Chang Oct 2004 B2
6913541 Chen Jul 2005 B2
6964615 Lee Nov 2005 B2
8616988 Coffman Dec 2013 B1
9028335 Coffman May 2015 B1
9308429 Coffman Apr 2016 B1
9731183 Coffman Aug 2017 B2
9987543 Coffman Jun 2018 B2
10137351 Coffman Nov 2018 B2
20010003103 Bevan Jun 2001 A1
20050153788 Saldana Jul 2005 A1
20110192069 Potterfield et al. Aug 2011 A1
20110192096 Koberinski et al. Aug 2011 A1
20140073445 Flammer Mar 2014 A1
20150231479 Coffman Aug 2015 A1
Non-Patent Literature Citations (1)
Entry
Ralphs, Matthew, “Re-Configurable Putting Green”, Thesis; 64 pages, Utah State University, Undergraduate Honors Theses, Paper 110, Logan, Utah, http://digitalcommons_usu_edu/honors/110.
Related Publications (1)
Number Date Country
20180345111 A1 Dec 2018 US
Continuations (3)
Number Date Country
Parent 14709834 May 2015 US
Child 16102085 US
Parent 14093963 Dec 2013 US
Child 14709834 US
Parent 13917896 Jun 2013 US
Child 14093963 US