The present disclosure relates to a training golf club. More particularly, the present disclosure relates to a golf swing training apparatus utilizing multiple removably attachable weights and an optional accelerometer.
Golf has been around for hundreds of years and has been enjoyed by many people. The game of golf has gained popularity in recent years and has advanced rapidly with technological developments improving golf equipment, such as golf ball design and golf club material. What was once a rudimentary game, has become a game of in-depth analysis where everything can be measured and calculated to get the most out of a golfer and their equipment.
Not only has the technology changed, but the approach to playing golf more efficiently has changed. The mechanics involved in a golf swing are complex and require skilled execution to complete a successful shot. A lot of time and effort has been placed on development of the golf swing due to the fact that a more powerful swing will produce a longer shot, which can be directly attributed to the head speed of a club when it strikes the ball. When a ball travels farther down the fairway, it means that the subsequent shots will be shorter to the hole, thereby potentially decreasing the number of strokes.
There are other training clubs that exist that claim to increase a golfer's hitting distance, accuracy, flexibility, and strength. Some of these training clubs use a variety of weight components to try and increase club head speed. Even though these training clubs seek to improve a golfer's club speed, they have many shortcomings. Specifically, the training clubs are only available in multiple club options, requiring a user to switch clubs for differing weights. This adds significantly to the cost of purchasing training clubs.
Further, carrying three or more extra clubs in a golf bag is burdensome and may be impossible. A typical golfer usually only has 14 clubs in their bag. Golf bags on the market often do not have room for more, making it cumbersome to carry more. Being limited to a certain number of clubs decreases the likelihood of a golfer carrying an additional practice club. In addition, a family could not use a single set of training clubs, because the weight of women's and senior's training clubs are typically different, so they must purchase their own training clubs. Further, other training clubs come in a single weight for all golfers. These clubs are usually heavily weighted to stretch out a golfer's muscles. Without the ability to adjust the club, it limits who can use the club.
Increasing speed is one of the most important outcomes of using a training club. However, it is difficult to know if the training has been effective. For example, without purchasing a separate measurement device that will measure the speed of the head of the training club, it may be difficult for a golfer to know if the training club has improved their swing. These measurement devices are expensive and measure only the speed of the training club as it goes past the measurement device.
Accordingly, there is a need for a golf training club that eliminates the necessity of having multiple clubs, can have an adjustable weight system, and, ideally, has a measurement device that measures the speed, acceleration, and swing path of a complete swing. The present disclosure seeks to solve these and other problems.
In one embodiment, a golf swing training apparatus (referred to herein as a “golf apparatus”) comprises a shaft, a housing with a top cap and a bottom cap, and a plurality of removable weighted discs. The shaft comprises a top portion and a bottom portion, wherein the top portion includes a handle, and the bottom portion includes the housing with the top and bottom cap, and the plurality of removable weighted discs. The housing may comprise tiered disc protrusion channels and a housing shaft in the center thereof. The housing shaft may comprise a disc securement mechanism. The plurality of removable weighted discs may comprise a first disc, a second disc, a third disc, a fourth disc, etc.
In one embodiment, a golf apparatus comprises a shaft, a housing with a top cap and a bottom cap coupleable thereto, and a plurality of removable weighted discs. The top cap may comprise a first disc receiver and a second disc receiver so as to receive the removable weighted discs.
In one embodiment, a golf apparatus comprises a club cap.
In one embodiment, a golf apparatus comprises an accelerometer.
In one embodiment, a golf apparatus comprises a transmitter to transmit information to a receiving device, such as a smartphone.
The following descriptions depict only example embodiments and are not to be considered limiting in scope. Any reference herein to “the invention” is not intended to restrict or limit the invention to exact features or steps of any one or more of the exemplary embodiments disclosed in the present specification. References to “one embodiment,” “an embodiment,” “various embodiments,” and the like, may indicate that the embodiment(s) so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an embodiment,” do not necessarily refer to the same embodiment, although they may.
Reference to the drawings is done throughout the disclosure using various numbers. The numbers used are for the convenience of the drafter only and the absence of numbers in an apparent sequence should not be considered limiting and does not imply that additional parts of that particular embodiment exist. Numbering patterns from one embodiment to the other need not imply that each embodiment has similar parts, although it may.
Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Unless otherwise expressly defined herein, such terms are intended to be given their broad, ordinary, and customary meaning not inconsistent with that applicable in the relevant industry and without restriction to any specific embodiment hereinafter described. As used herein, the article “a” is intended to include one or more items. When used herein to join a list of items, the term “or” denotes at least one of the items, but does not exclude a plurality of items of the list. For exemplary methods or processes, the sequence and/or arrangement of steps described herein are illustrative and not restrictive.
It should be understood that the steps of any such processes or methods are not limited to being carried out in any particular sequence, arrangement, or with any particular graphics or interface. Indeed, the steps of the disclosed processes or methods generally may be carried out in various sequences and arrangements while still falling within the scope of the present invention.
The term “coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
The terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including, but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes, but is not limited to,” etc.).
As previously discussed, there is a need for a golf training club that eliminates the necessity of having multiple clubs, can have an adjustable weight system, and that, ideally, has a measurement device that measures the speed, acceleration, and swing path of a complete swing. The golf swing training apparatus disclosed herein seeks to solve these and other problems.
A golf swing training apparatus (referred to herein as a “golf apparatus”) allows a golfer to have a single training club that can adjust to all of their needs. The golf apparatus resembles a typical golf club by having a shaft with a handle. However, the golf club head on the golf apparatus varies from a typical golf club and a typical golf training club found in the prior art. Specifically, the golf apparatus club head may generally have a head that comprises a housing design to allow for weighted discs to be inserted and removed as needed, depending on the user's size, strength, and goals. The adjustable weight system allows the golfer to have one club for all training, instead of numerous clubs to address every training procedure. To use the golf apparatus, a golfer determines at what weight they want to train. Once the weight has been chosen, a golfer secures a top cap in the open position and either places or removes the weighted discs to achieve the desired training weight. Using a locking mechanism, which may use springs, or other locking mechanisms, the individual locks the top cap in place to prevent the weighed disks from moving or being ejected during a possible impact of the club head.
As shown in
The club shaft 102 may be of varying lengths, such as a short shaft for a child's club or a longer shaft for an adult golf club. The club shaft 102 may be stainless steel; however, other materials may be used, such as graphite, chrome-plated steel, titanium, carbon fiber, etc. The top portion 112 of the club shaft 102 comprises the handle 116, wherein the handle 116 may be a rubber, synthetic rubber, leather, or other material known in the art. Further, the bottom portion 114 of the club shaft 102 comprises the housing 104 with the top cap 106 and the bottom cap 108, and a plurality of removable weighted discs 110 that allow a user to adjust the weight of the golf apparatus 100 by simply adding or removing one or more discs 110 from the housing 104. While weighted discs 110 may be shown, it will be appreciated that other forms of adding weight in the housing 104 may be used, such as liquids, pellets, other weighted shapes, etc.
As shown in
Referring to
The housing shaft 122 may be situated in the center of the housing 104, extending upwardly from the upper surface 132 of the base 128. The housing shaft 122 can be a tiered hollow shaft (cross-section shown in
The housing shaft 122 may comprise a disc securement mechanism, wherein the disc securement mechanism comprises a first shaft groove 144, a second shaft groove 146, a pin 148, a compression spring 150, and a spring set 151. The first and second shaft grooves 144, 146 may be inverted L-shaped grooves. The disc securement mechanism provides for adjustability and secures the plurality of removable weighted discs 110 (e.g., 166, 168, 170, 172). The disc securement mechanism may come in various sizes to accommodate for golfers of various ages and sizes.
Additionally, the top cap 106 aids in securing the plurality of removable weighted discs 110. As shown in
Referring to
As shown in
Further, the plurality of weighted discs 110 are positioned around the housing shaft 122 and received within the housing 104. The first disc 166 comprises a first set of disc protrusions 174 and a first shaft slot 176 extending to the center thereof. The first disc 166 may be placed in the housing 104 with the first shaft slot 176 receiving the housing shaft 122. The first disc 166 is positioned between the first and second walls of the housing 124, 126, with the first set of disc protrusions 174 resting in the first and second tiered disc protrusion channels 118, 120. It will be understood that other methods of adding varying weighted discs can be utilized and is not limited to being placed within the housing 104 or around the housing shaft 122.
The second disc 168 comprises a second set of disc protrusions 178 and a second shaft slot 180 extending to the center thereof, wherein the second set of disc protrusions 178 are wider than the first set of disc protrusions 174. Furthermore, the second shaft slot 180 at the center of the second disc 168 comprises a larger diameter so as to receive the tiered protrusion 160 on the bottom surface 154 of the top cap 106. The second disc 168 may be placed in the housing 104 with the second shaft slot 180 receiving the housing shaft 122. The second disc 168 is positioned between the first and second walls 124, 126 of the housing 104 and on the top of the first disc 168, with the second set of disc protrusions 178 resting in the first and second tiered disc protrusion channels 118, 120.
The third disc 170 comprises a third set of disc protrusions 182 and a third shaft slot 184 extending to the center thereof, wherein the third set of disc protrusions 182 are wider than the second set of disc protrusions 178. Furthermore, the third shaft slot 184 at the center of the third disc 170 comprises a larger diameter than the second disc 168 so as to receive the tiered protrusion 160 on the bottom surface 154 of the top cap 106. The third disc 170 may be placed in the housing 104 with the third shaft slot 184 receiving the housing shaft 122. The third disc 170 is positioned between the first and second walls 124, 126 of the housing 104 and on the top of the second disc 168, with the third set of disc protrusions 182 resting in the first and second tiered disc protrusion channels 118, 120.
The fourth disc 172 comprises a fourth set of disc protrusions 186 and a fourth shaft slot 188 extending to the center thereof, wherein the fourth set of disc protrusions 186 are wider than the third set of disc protrusions 182. Furthermore, the fourth shaft slot 188 at the center of the fourth disc 172 comprises a larger circular diameter that is recessed so as to receive the tiered protrusion 160 on the bottom surface 154 of the top cap 106. The fourth disc 172 may be placed with the fourth shaft slot 188 receiving the housing shaft 122. The fourth disc 172 is positioned between the first and second walls 124, 126 and on the top of the third disc 170, with the fourth set of disc protrusions 186 resting in the first and second tiered disc protrusion channels 118, 120. The fourth disc 172 has more depth and is heavier in weight than the first, second, and third discs, individually. Further, the fourth disc 172 may have a recessed edge in order to be positioned in the housing 104 that is narrower than the fourth disc 172. It will be appreciated that the disc protrusions assist a golfer in placing and removing the plurality of removable weighted discs 110. It will further be appreciated that in an alternate embodiment, the plurality of removable weighted discs 110 may not have a plurality of disc protrusions.
With the weighted discs in position, the top cap 106 may be twisted to release the pin 148 from the horizontal portions of the grooves 144, 146, allowing the spring 150 to extend and put pressure on the weighted discs 110, thereby securing them within the first and second walls 124, 126, thereby preventing unintended withdrawal while the golf apparatus 100 is in use. Further, it will be appreciated that the spring 150 and top cap 106 may extend to the bottom weight 166, should a user not desire to use all the weights provided. Accordingly, a user may use one or more weights 110 (e.g., 166, 168, 170, 172) individually or in combination.
The plurality of removable weighted discs 110 allow a golfer, whether child, woman, man, or senior, to practice with a single golf club at a variety of weights. It will be appreciated that a golfer will only need one club to perform all golf swing training, from swinging a lighter club to get the feel of a faster head speed, to swinging a club with all the weights that is heavier than a normal golf club to improve club swing speed. In addition, there is the option to add significantly more weight to stretch out muscles before practicing or playing. In contrast, the prior art lacks adjustability to change weight in a single club. Specifically, to practice with every weight necessary, and for each age and gender, a golfer would have to purchase numerous clubs. This can become very expensive for a golfer. Not only can purchasing numerous clubs be a burden, or perhaps even cost prohibitive, but carrying those clubs is also a burden. Further, having to remember and carry numerous clubs may prevent a golfer from ever using the training clubs or using them properly.
Additionally, it will be appreciated that the housing 104, with all of its components (including weighted discs 110), may be sold separate from the club shaft 102 so that a golfer only needs to purchase the housing 104. This may allow golfers with extra clubs, or a desired shaft, to purchase the housing 104 and install it (e.g., bonding it to the shaft 122), which can keep costs down for the golfer.
In one embodiment, a golf apparatus 100, shown in
In one embodiment, as shown in
The club shaft 202 may be of varying lengths, such as a short shaft for a child's club or a longer shaft for an adult golf club. The club shaft 202 may be stainless steel; however, other materials may be used, such as graphite, chrome-plated steel, titanium, carbon fiber, etc. The top portion 212 of the club shaft 202 comprises the handle 216, which may be made of a rubber, synthetic rubber, leather, or other material known in the art. Further, the bottom portion 214 of the club shaft 202 comprises the housing 204 with the top cap 206 and the bottom cap 208, and a plurality of removable weighted discs 210 that allow a user to adjust the weight of the golf apparatus 200.
As shown in
Furthermore, referring to
Further, as shown in
Prior to securing the bottom cap 208, components, which were briefly mentioned above, may be coupled to the component ring 260. For example, the components may comprise a battery holder 270, a battery 272, and an accelerometer 274, which may be placed on or coupled to the component ring 260. The component ring 260 may also be, or comprise, a printed circuit board. Additional components may also be included, such as a wireless transmitter or transceiver to transmit data from the accelerometer. A microcontroller or other processor may also be provided, or, in the alternative, a user's phone or other smart device can be used to process the data received from the accelerometer and display the data to the user. The above described components are collectively referred to herein as “smart components.” It will be appreciated that, in some embodiments, the golf apparatus 200 does not require the smart components. Alternatively, in one embodiment, the smart components may be externally coupled to the golf apparatus 200 or any other standard golf club via, for example, clips, straps, screws, etc. In other words, a user could couple the accelerometer (and associated components) to a third-party golf club using straps so as to receive data about the swing speed, acceleration, etc. of the golf club. In other words, the accelerometer and associated components can be a separate device from the housing disclosed herein, which allows the user to use the accelerometer functions on the training club disclosed herein or on third-party golf clubs. It will be appreciated that the accelerometer 274 allows a golfer to measure swing speed, acceleration, path of the club head during a full swing, and measure club head alignment and position in various geometric planes, which allows the golfer to understand the mechanics of their swing and where adjustments can be made. Other sensors may also be utilized, such as a sensor on the golf club shaft that is capable of measuring bending/flexing along with other desirable data.
As shown in
The plurality of weighted discs 210 are positioned around the first and second disc receivers 232, 234 and received within the housing 204. In particular, the first disc 276 comprises a first slot 284 extending to the center thereof. The first disc 276 further comprises first slot protrusions 286 positioned in the first slot 284. Accordingly, the first disc 276 may be placed in the housing 204 with the first slot protrusions 286 positioned in the disc slots 250, and the coupler 248 may guide and secure the first disc 276. It will be understood that other methods of adding varying weighted discs can be utilized and is not limited to being placed within the housing 204. The second disc 278 comprises a second slot 288 extending to the center thereof. The second disc 278 further comprises second slot protrusions 290 positioned in the second slot 288. The second disc 278 may be placed in the housing 204 with the second slot protrusions 290 positioned in another set of disc slots 250, and the coupler 248 may guide and secure the second disc 278.
The third disc 280 comprises a third slot 292 extending to the center thereof. The third disc 280 further comprises third slot protrusions 294 positioned in the third slot 292. The third disc 280 may be placed in the housing 204 with the third slot protrusions 294 positioned in another set of disc slots 250, and the coupler 248 may guide and secure the second disc 280. The fourth disc 282 comprises a fourth slot 296 extending to the center thereof. The fourth disc 282 further comprises fourth slot protrusions 298 positioned in the fourth slot 296. The fourth disc 282 may be placed in the housing 204 with the fourth slot protrusions 298 positioned in the disc slots 250, and the coupler 248 may guide and secure the fourth disc 282. The fourth disc 282 has more depth and is heavier in weight than the first, second, and third discs 276, 278, 280, individually.
Once the desired weighted discs 210 have been added, the user may depress the push-button lock 220, releasing the button protrusion 224 from the upper slot 230, allowing the top cap to slide downward toward the housing 204, inserting the weighted discs 210 therein. The button protrusion then engages lower slot 226, securing the top cap 206 to the housing 204, securing the weighted discs 210 therein. It will be appreciated that springs may be utilized to aid the action of the push-button lock 220 or to aid in maintaining the top cap 206 in a closed position, as described in earlier embodiments. The plurality of disc slots 250 ensure that the weighted discs 210, regardless of the number of discs inserted, remain in position when enclosed in the housing 204.
In one embodiment, a golf apparatus 100, 200 comprises a removably attachable accelerometer. The removably attachable accelerometer may be positioned on the housing, wherein the removably attachable accelerometer measures the speed, acceleration, and the path that the club head goes through as a golfer conducts an entire swing from start to finish. The removably attachable accelerometer includes components known in the art for functionality, including, but not limited to, a battery and means for transmitting data (e.g., radio transmitter/transceiver). It will be appreciated that by using an accelerometer, a golfer is able to know when maximum speed and/or acceleration is reached, along with measuring club head alignment and position in various geometric planes, allowing the golfer to adjust their swing. Also, the golfer does not have to purchase a separate swing speed measuring device or accelerometer. In the prior art, a golfer must determine whether there is improvement without the aid of a measurement device or must purchase a measuring device that is separate from their training clubs. In addition, the measurement device in the prior art is expensive and only measures the speed of the club head as it goes past the measurement device. In some embodiments, the removably attachable accelerometer may be coupled to existing golf clubs and be independent from the golf apparatus 100, 200. Accordingly, individuals may purchase the removably attachable accelerometer and place it on existing clubs, no matter the club type or size.
As mentioned, in one embodiment, a golf apparatus 100, 200 comprises a transmitter to connect to and transmit information to a smartphone or other device. The information may be transmitted via Bluetooth® or similar wireless technologies. The smartphone can process the signals from the accelerometer detailing not only the speed of each practice swing, but the swing speed at each phase of the swing, and the point of maximum acceleration. It can also measure the swing path and analyze it for swing improvement analysis. The smartphone may evaluate the progress of the golfer's swing speed through each swing. The smartphone can allow the golfer to visualize the data so that changes can be made to the golf swing, which may maximize swing efficiency. Further, the smartphone may keep track of the swing speeds and track progress over time. Accordingly, the golf apparatus 100, 200 disclosed herein solves many problems in the art.
It will also be appreciated that apparatus and methods according to certain embodiments of the present disclosure may include, incorporate, or otherwise comprise properties or features (e.g., components, members, elements, parts, and/or portions) described in other embodiments. Accordingly, the various features of certain embodiments can be compatible with, combined with, included in, and/or incorporated into other embodiments of the present disclosure. Thus, disclosure of certain features relative to a specific embodiment of the present disclosure should not be construed as limiting application or inclusion of said features to the specific embodiment unless so stated. Rather, it will be appreciated that other embodiments can also include said features, members, elements, parts, and/or portions without necessarily departing from the scope of the present disclosure.
Moreover, unless a feature is described as requiring another feature in combination therewith, any feature herein may be combined with any other feature of a same or different embodiment disclosed herein. Furthermore, various well-known aspects of illustrative systems, methods, apparatus, and the like are not described herein in particular detail in order to avoid obscuring aspects of the example embodiments. Such aspects are, however, also contemplated herein.
Exemplary embodiments are described above. No element, act, or instruction used in this description should be construed as important, necessary, critical, or essential unless explicitly described as such. Although only a few of the exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in these exemplary embodiments without materially departing from the novel teachings and advantages herein. Accordingly, all such modifications are intended to be included within the scope of this invention.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/101,123, filed Nov. 23, 2020, which claimed priority to U.S. Provisional Application Ser. No. 62/940,115, filed on Nov. 25, 2019, and U.S. Provisional Application Ser. No. 62/949,214, filed on Dec. 17, 2019, all of which are all incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62940115 | Nov 2019 | US | |
62949214 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17101123 | Nov 2020 | US |
Child | 17521684 | US |