The present invention relates to fuel injectors. More particularly, the present invention relates to hydraulically-actuated, electrically-controlled fuel injectors.
Hydraulically-actuated, electrically-controlled fuel injectors are known. Such injectors are typically referred to as HEUI injectors. There is a need in the industry to better control the injection profile produced by a HEUI type injector. The injection profile of the injector may be enhanced through rate shaping. Further, there is a need to minimize the mechanical noise produced by the injector at the end of an injection event when actuating fluid is being vented from the injector.
The present invention substantially meets the aforementioned needs of the industry. A governor plate apparatus of the present invention is disposed between the control valve and the intensifier of a HEUI injector. After initiation of the pulse width command, during the filling process, the governor plate apparatus manipulates the rate shaping through the central check valve of the governor plate apparatus to optimize the injection profile of the injector. Further, during the drain or venting process, the governor plate apparatus controls the damping of the intensifier piston through a certain orifice(s) to reduce the mechanical noise of the injector as the intensifier piston comes to rest on a mechanical stop.
The present invention is a flow controller assembly for use with a hydraulically-actuated, electrically-controlled fuel injector, including a flow controller fluidly disposable intermediate an injector control valve assembly and an injector intensifier assembly for controlling flow of actuating fluid to and from the intensifier assembly to effect rate shaping of an injectable quantity of fuel and to effect a reduction of noise generated by an intensifier piston. The present invention is further a fuel injector and a method of controlling an intensifier piston.
The injector of the present invention is shown generally at 10 in the figures. Injector 10 has three major components: control valve assembly 12, intensifier assembly 14, and needle valve assembly 16.
The first major component of the injector 10 is the control valve assembly 12. The control valve assembly 12 includes a control valve body 17. A spool valve 18 is translatably disposed within an aperture defined in the control valve body 17. A solenoid 20 is disposed at either end of the spool valve 18 for affecting shifting of the spool valve 18 between two opposed dispositions corresponding to an open disposition (actuating fluid being ported in) and a closed disposition (actuating fluid being vented).
The spool valve 18 is in fluid communication with an external source of actuating fluid under pressure. Additionally, the spool valve 18 is selectively in fluid communication with an actuating fluid reservoir at substantially ambient pressure of between 0 and 100 psi. An inlet passageway 22 is defined in the control valve body 17 and is in fluid communication with the spool valve 18. Additionally, a vent passageway 24 is defined in the control valve body 17 and is also in fluid communication with the spool valve 18. As will be seen, shifting of the spool valve 18 between the open and closed dispositions selectively communicates the external source of actuating fluid with the inlet passageway 22 and selectively communicates the external ambient reservoir with the vent passageway 24.
The second major component of the injector 10 is the intensifier assembly 14. The intensifier assembly 14 includes an intensifier body 26. An intensifier piston 28 is shiftably disposed in an aperture defined in the intensifier body 26. The upper margin of the intensifier piston 28 comprises an actuation surface 30. In prior art injectors, the actuation surface 30 is in direct and unrestricted fluid communication with both the inlet passageway 22 and the vent passageway 24. As will been seen below, such is not the case with the present invention.
The intensifier piston 28 is acted upon by a return spring 34. The bias of the return spring 34 acts in opposition to any fluid pressure acting on the actuation surface 30 and in fact generates fluid pressure during venting of actuation fluid. The intensifier piston 28 is operably coupled to a plunger 32. A variable volume pressure chamber 36 is defined proximate the lower margin of the plunger 32. The lower margin of the plunger 32 defines in part the pressure chamber 36. The pressure chamber 36 is selectively in communication with a source of fuel. A high-pressure fuel passage 38 is in fluid communication with the pressure chamber 36 and conveys high-pressure fuel from the pressure chamber 36 to the needle valve assembly 16.
The final major component of the injector 10 is the needle valve assembly 16. The needle valve assembly 16 includes an orifice or orifices 40 that are selectively in communication with a combustion chamber (not shown). The orifice 40 is opened and closed by a needle valve or check 42. The check 42 has a check surface 44. High-pressure fuel acting on the check surface 44 acts to shift the check 42 upward, opening the orifice 40. The upward shift of the check 42 acts in opposition to the bias exerted by the return spring 46. The absence of sufficient high-pressure acting on the check surface 44 causes the check 42 to be closed under the influence of the return spring 46.
The governor plate apparatus of the present invention is shown generally at 50 in the figures. The governor plate apparatus 50 is disposed intermediate the respective inlet passageway 22 and vent passageway 24 of the control valve assembly 12 and the actuation surface 30 of the intensifier piston 28 of the intensifier assembly 14. Accordingly, the governor plate apparatus 50 is fluidly disposed between the control valve assembly 12 and the intensifier assembly 14. The governor plate apparatus 50 may include a top plate 52 and a bottom plate 54 that are mated together to substantially define the governor plate apparatus 50.
With reference to
The first component of the governor plate apparatus 50 is the top plate 52. The top plate 52 is spaced apart from the control valve body 17 to define a flow chamber 56. The flow chamber 56 is defined in part by the upper margin 58 of the top plate 52. The top plate 52 (and the bottom plate 54) are spaced apart from the intensifier body 26 to define an annular passage 60 around the governor plate apparatus 50. The annular passage 60 is in fluid communication with the flow chamber 56.
A check valve 61 includes a conical bore 62 is defined through the top plate 52. At a first end, the conical bore 62 is fluid communication with the flow chamber 56. The check valve 61 further includes a shiftable ball valve 64 is disposed within the conical bore 62. As depicted in
A horizontal cut 70 intersects the conical bore 62 proximate the lower margin of the conical bore 62. The horizontal cut 70 is offset from the center axis 71 of the governor plate apparatus 50. The horizontal cut 70 intersects and is open at the lower margin 75 of the top plate 52.
At least one additional flow passageway is defined through the top plate 52. Passageway 72 is a relatively small bore that is in fluid communication with the flow chamber 56 and is open at the lower margin 75. Passageway 72 includes a restriction defining a damping or throttling orifice 74. The flow area of the damping orifice 74 is substantially reduced with respect to the flow area of the passageway 72 and has a selected area to effect dampening of the return motion of the intensifier piston 28 as is described in greater detail below.
The second component of the governor plate apparatus 50 is the bottom plate 54, The bottom plate 54 includes a floor 76 that comprises in part the upper margin 77 of the bottom plate 54. When the bottom plate 54 is mated to the top plated 52, the floor 76 substantially underlies the conical bore 62 and acts to retain the ball valve 64 within the conical bore 62. A relatively large bore 78 is defined adjacent to the floor 76. When the bottom plate 54 and top plate 52 are mated, the bore 78 is at least partially in registry with the horizontal cut 70 and thereby comprises an extension of the flow passageway defined by the conical bore 62. The bore 78 opens into an even larger flow area 79 defined in the bottom plate 54. The flow area 79 is preferably circular in shape and concentric with the axis 71. Further, the aperture 80 is in registry with the passageway 72 and comprises an extension of the flow passageway 72 to actuation surface 30 of intensifier piston 28.
When the bottom plate 54 is mated with the top plate 52, the upper margin 77 of the bottom plate 54 is abutted to the lower margin 75 of the top plate 52. The bottom plate 54 and the top plate 52 may be fixably joined in the mated disposition.
The lower margin 82 of the bottom plate 54 includes a relatively large circular recess 84. The area of the recess 84 is significantly greater than the area of the flow area 79. The flow area 79 is in fluid communication with the recess 84. The recess 84 is defined by an annular lip 86. The annular lip 86 has a lip height 90, as depicted in
The governor plate apparatus 50 of the present invention is designed primarily for use with and being an integral component of a hydraulically-actuated fuel injector 10, as noted in
In operation, after initiation of the pulse width command and during the filling process when the high pressure actuating fluid is being ported through the inlet passageway 22 to the flow chamber 56, the governor plate apparatus 50 manipulates the rate shaping of the fuel injection pulse by means of the central check valve 61, primarily comprising the ball valve 64 disposed in the conical bore 62, to optimize the injection profile of the fuel injector 10. During the drain process when the vent passageway 24 is open to a low pressure reservoir, the governor plate apparatus 50 controls the damping of the intensifier piston 28 by means of controlling the flow of the venting actuating fluid through the damping orifice(s) 74 in order to reduce the mechanical noise generated by the fuel injector 10 as the intensifier piston 28 seats against the lower margin 82 of the governor plate apparatus 50, comprising the return stop of the intensifier piston 28.
Referring to
When injection begins through opening (leftward shifting) of the spool valve 18, a relatively restricted flow of actuating fluid flows into the conical bore 62 forcing the ball valve 64 to its lowest disposition. The actuating fluid flows past the flow aperture 68 to bear on a relatively small portion of the actuation surface 30 of the intensifier piston 28, as indicated by arrows A, A1. The very small incidental quantity of actuation fluid flows through the passageway 72 as indicated by the arrow A11. No actuation fluid flows through the annular passages 60 since the slots 88 are effectively sealed off by the piston 28 residing in the recess 84.
As compared to HEUI fuel injector 10 without the governor plate apparatus 50, the initial injection pressure of the fuel being acted upon by the intensifier piston is relatively low due to the relatively small fluid pressure area on the intensifier piston 28 underlying flow area 79 that is initially exposed to actuating fluid. This limited pressure area is exposed to actuating fluid pressure when the actuation surface 30 of the intensifier piston 28 is in contact with the lower margin 82 of the bottom plate 54. Initial motion of the intensifier piston 28 is retarded due to the relatively low force generated of the actuation surface 30 by the actuating fluid.
After the intensifier piston 28 moves downward slightly, the actuation fluid flows outward in the recess 84 exposing a much greater area of the actuation surface 30 to actuation fluid pressure. Nonetheless, the motion of the intensifier piston 28 is still retarded due to the fact that the flow rate through the flow aperture 68 around the ball valve 64 is relatively small. During this phase of the injection invent, rate shaping occurs due to the restraining effects of the check valve 61 of the governor plate apparatus 50 in porting high pressure actuating fluid to the intensifier piston 28. The check 42 opens slightly during this phase of the injection event and injection through the orifice 40 gradually rises in accordance with the rate shaping feature of the present invention.
Referring to
The intensifier piston 28 continues downward to its fully extended disposition as depicted in
As noted above, once the slots 88 are sealed off during the upward translation of the intensifier piston 28, the damping stage begins. Since the slots 88 are sealed off and the ball valve 64 is seated against the seat 66, the only path for the venting actuation fluid is through passageway 72 opposite to the direction of flow indicated by the arrow A11 and through the damping orifice 74. The rate of upward translation of the intensifier piston 28 is greatly reduced by the throttling effect of the damping orifice 74. The result is that the actuation surface 30 of the intensifier piston 28 comes gently to rest in contact with the lower margin 82 of the bottom plate 54. This gentle, dampened stopping of the upward translation of the intensifier piston 28 greatly reduces the volume and intensity of noise generated by the stopping of the intensifier piston 28.
The governor plate apparatus 50 of the present invention includes the following as some of its unique features as compared to existing fuel injectors not incorporating the governor plate apparatus 50:
(a) The size of the check valve 61 comprising in part the conical bore 62 and the ball valve 64, influences the rate shaping.
(b) The clearance between the intensifier body 26 and the governor plate apparatus 50 comprising the annular passage 60 forms the drain passage.
(c) The distance from the slots 88 to the lower margin 82 of the bottom plate 54 comprising lip height 90 influences the damping of the return motion of the intensifier piston 28.
(d) At least one dampening orifice 74 may be included but more dampening orifices 74 may be included as needed.
It will be obvious to those skilled in the art that other embodiments in addition to the ones described herein are indicated to be within the scope and breadth of the present application. Accordingly, the applicant intends to be limited only by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5720318 | Nagarajan et al. | Feb 1998 | A |
5826562 | Chen et al. | Oct 1998 | A |
6085992 | Chockley et al. | Jul 2000 | A |
6354270 | Shafer | Mar 2002 | B1 |
6364282 | Ausman et al. | Apr 2002 | B1 |
6412705 | Desai et al. | Jul 2002 | B1 |
6568602 | Bram et al. | May 2003 | B1 |
6715694 | Gebhardt | Apr 2004 | B2 |
20030127539 | Braun et al. | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030141380 A1 | Jul 2003 | US |