ACPI (Advanced Configuration and Power Interface) is an open industry specification that defines a flexible and extensible interface for computer power management and related control operations. In general, the interface enables and supports power management through improved hardware and operating system coordination. ACPI allows the operating system to control the power states of many ACPI-supported hardware components, and/or to pass information to and from some hardware components.
The ACPI Specification describes how General Purpose Events (GPEs) can be used to inform the operating system that some event occurred, such as a laptop lid being closed or a thermal alert. For example, a hardware device can issue a notification to a hardware register, which in turn triggers a GPE event. The hardware register is represented to the operating system by an object commonly called a “GPE block.” A GPE block can be a logical construct that represents a set of GPE pins on the hardware register. The hardware signals that are connected to those pins are arbitrary in nature (within some guidelines outlined by the ACPI specification). The operating system sees the GPE block as containing two register sets: an enable register to control whether or not a particular pin is enabled, and a status register to determine if a particular pin is asserted. If the operating system detects that a pin is both enabled and asserted, then it runs an ACPI control method associated with the pin to handle the event. For example, a system control interrupt (SCI) signal can be generated that informs the operating system that a pin is enabled and asserted.
The current ACPI specification can describe up to two GPE register blocks in the Fixed ACPI Description Table (FADT) and an arbitrary amount of additional GPE blocks in the ACPI namespace. The GPE events are typically hardware events that require operating system attention, including but not limited to, Host Bus Adapter (HBA) slot doorbells, thermalerts, and chassis intrusion.
In partitionable computer systems, the system can be partitioned into multiple distinct computer systems, each running its own operating system. In a partitioned system, events may be associated with different partitions. In order for an event to be properly handled by its responsible partition, the event needs to be detected by the responsible partition, for example, by detecting an SCI signal. For example, an event corresponding to an HBA slot doorbell being pressed should be detected by the partition that controls the HBA in that slot. In prior systems, SCI signals from the GPE blocks were routed to a single partition. The operating system of the partition had to be modified to recognize events for other partitions and forward the associated SCI signals to the appropriate partition. Modifying an operating system to handle a custom configuration can be difficult, time consuming, and can introduce errors.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate various example systems, methods, and other example embodiments of various aspects of the invention. It will be appreciated that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that one element may be designed as multiple elements or that multiple elements may be designed as one element. An element shown as an internal component of another element may be implemented as an external component and vice versa. Furthermore, elements may not be drawn to scale.
Example systems, methods, media and other embodiments are described herein that are associated with general purpose event (GPE) register blocks. In one example system, a reconfigurable general purpose event register block logic can be configured to provide distinct GPE register blocks with separate system control interrupt (SCI) signal outputs. GPE events can be associated with selected SCI signals that can then be routed to a computer system partition which is to handle the resource causing the event. In one example, operating systems running on separate partitions do not need to be modified in order to handle general purpose events for other operating systems since system control interrupts for events can be selectively mapped and directly routed to a designated partition. In another example, the GPE register block logic can be reconfigured to provide different mappings of events to SCI signals and/or to provide new routings of SCI signals to selected operating systems.
The following includes definitions of selected terms employed herein. The definitions include various examples and/or forms of components that fall within the scope of a term and that may be used for implementation. The examples are not intended to be limiting. Both singular and plural forms of terms may be within the definitions.
“Computer-readable medium”, as used herein, refers to a medium that participates in directly or indirectly providing signals, instructions and/or data. A computer-readable medium may take forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media may include, for example, optical or magnetic disks and so on. Volatile media may include, for example, optical or magnetic disks, dynamic memory and the like. Transmission media may include coaxial cables, copper wire, fiber optic cables, and the like. Transmission media can also take the form of electromagnetic radiation, like that generated during radio-wave and infra-red data communications, or take the form of one or more groups of signals. Common forms of a computer-readable medium include, but are not limited to, a floppy disk, a flexible disk, a hard disk, a magnetic tape, other magnetic medium, a CD-ROM, other optical medium, punch cards, paper tape, other physical medium with patterns of holes, a RAM, a ROM, an EPROM, a FLASH-EPROM, or other memory chip or card, a memory stick, a carrier wave/pulse, and other media from which a computer, a processor or other electronic device can read. Signals used to propagate instructions or other software over a network, like the Internet, can be considered a “computer-readable medium.”
“Data store”, as used herein, refers to a physical and/or logical entity that can store data. A data store may be, for example, a database, a table, a file, a list, a queue, a heap, a memory, a register, and so on. A data store may reside in one logical and/or physical entity and/or may be distributed between two or more logical and/or physical entities.
“Logic”, as used herein, includes but is not limited to hardware, firmware, software and/or combinations of each to perform a function(s) or an action(s), and/or to cause a function or action from another logic, method, and/or system. For example, based on a desired application or needs, logic may include a software controlled microprocessor, discrete logic like an application specific integrated circuit (ASIC), an analog circuit, a digital circuit, a programmable logic device, a memory device containing instructions, or the like. Logic may include one or more gates, combinations of gates, or other circuit components. Logic may also be fully embodied as software. Where multiple logical logics are described, it may be possible to incorporate the multiple logical logics into one physical logic. Similarly, where a single logical logic is described, it may be possible to distribute that single logical logic between multiple physical logics.
An “operable connection”, or a connection by which entities are “operably connected”, is one in which signals, physical communications, and/or logical communications may be sent and/or received. Typically, an operable connection includes a physical interface, an electrical interface, and/or a data interface, but it is to be noted that an operable connection may include differing combinations of these or other types of connections sufficient to allow operable control. For example, two entities can be operably connected by being able to communicate signals to each other directly or through one or more intermediate entities like a processor, operating system, a logic, software, or other entity. Logical and/or physical communication channels can be used to create an operable connection.
“Signal”, as used herein, includes but is not limited to one or more electrical or optical signals, analog or digital signals, data, one or more computer or processor instructions, messages, a bit or bit stream, or other means that can be received, transmitted and/or detected.
“Software”, as used herein, includes but is not limited to, one or more computer or processor instructions that can be read, interpreted, compiled, and/or executed and that cause a computer, processor, or other electronic device to perform functions, actions and/or behave in a desired manner. The instructions may be embodied in various forms like routines, algorithms, modules, methods, threads, and/or programs including separate applications or code from dynamically linked libraries. Software may also be implemented in a variety of executable and/or loadable forms including, but not limited to, a stand-alone program, a function call (local and/or remote), a servelet, an applet, instructions stored in a memory, part of an operating system or other types of executable instructions. It will be appreciated by one of ordinary skill in the art that the form of software may be dependent on, for example, requirements of a desired application, the environment in which it runs, and/or the desires of a designer/programmer or the like. It will also be appreciated that computer-readable and/or executable instructions can be located in one logic and/or distributed between two or more communicating, co-operating, and/or parallel processing logics and thus can be loaded and/or executed in serial, parallel, massively parallel and other manners.
Suitable software for implementing the various components of the example systems and methods described herein include programming languages and tools like Java, Pascal, C#, C++, C, CGI, Perl, SQL, APIs, SDKs, assembly, firmware, microcode, and/or other languages and tools. Software, whether an entire system or a component of a system, may be embodied as an article of manufacture and maintained or provided as part of a computer-readable medium as defined previously. Another form of the software may include signals that transmit program code of the software to a recipient over a network or other communication medium. Thus, in one example, a computer-readable medium has a form of signals that represent the software/firmware as it is downloaded from a web server to a user. In another example, the computer-readable medium has a form of the software/firmware as it is maintained on the web server. Other forms may also be used.
“User”, as used herein, includes but is not limited to one or more persons, software, computers or other devices, or combinations of these.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a memory. These algorithmic descriptions and representations are the means used by those skilled in the art to convey the substance of their work to others. An algorithm is here, and generally, conceived to be a sequence of operations that produce a result. The operations may include physical manipulations of physical quantities. Usually, though not necessarily, the physical quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a logic and the like.
It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise, it is appreciated that throughout the description, terms like processing, directing, configuring, designing, selecting, causing, displaying, or the like, refer to actions and processes of a computer system, logic, processor, or similar electronic device that manipulates and transforms data represented as physical (electronic) quantities.
In a partitioned computer system, multiple partitions can be defined where each partition runs its own operating system. Furthermore, different operating systems may be responsible for handling various general purpose events. As part of the partitioned system, the GPE register block logic 200 can be configured to route selected SCI signals 205 to the appropriate operating system. In this manner, each operating system can directly receive system control interrupts triggered by selected general purpose event signals 210 that the operating system is responsible for handling, rather than having the SCI signal be processed through an intermediate operating system.
It will be appreciated that the SCI signals 205 can be transmitted to a selected operating system through an operable connection using intermediate components, as described by the ACPI specification, before reaching the operating system. For example, the SCI signals 205 can be connected to a system interrupt controller that routes interrupts from the GPE register block logic 200 to a processor's local advanced programmable interrupt controller (APIC). The system interrupt controller can be an I/O streamlined advanced programmable interrupt controller (SAPIC).
In one example the GPE register block logic 200 may include a programmable logic device like a field programmable gate array (FPGA) or other programmable device. Using an FPGA, the GPE register block logic 200 can be configurable to allow a user to map and remap selected event signals 210 to selected SCI signals 205. For example, the FPGA can be configured to define distinct register blocks that provide separate SCI signals. The separate SCI signals can then be routed or otherwise transmitted to a selected operating system.
The FPGA, or other selected programmable logic device, can also be reconfigured after a previous register block configuration. In this manner, when a partitioned computer system is reconfigured to define it's partitions differently, the GPE register block logic can also be reconfigured to remap the event signals 210 to the SCI signals 205, which can then be routed to the appropriate partition.
Optionally, a logic interface 215 can be provided that is configured to allow a user to configure and reconfigure the GPE register block logic 200. The interface logic 215 can be and/or provide a graphical user interface for configuring the programmable logic device of the GPE register block logic 200. Depending on the selected programmable device, the logic interface 215 can be provided to allow user selections to define the register block logic 200 and to make associations between the event signals 210 and the SCI signals 205. The associations can be used, for example, to define a hardware description language (HDL) using appropriate software that corresponds to the selected programmable logic device. The register block logic 200 can then be configured in accordance with the associations made by the user. The programming of an FPGA or other programmable logic device is known in the art and will not be described in further detail.
In another example, the GPE register block logic 205 can include an application specific integrated circuit (ASIC) that is configured to provide separate SCI signals 205. The ASIC can also be configured with selected associations between the event signals 210 and the SCI signals 205.
Illustrated in
In one example, if one or more general purpose events are to be handled by the operating system OS 0 of partition 0, those events need to be detected by the OS 0. The detecting can be performed by detecting one or more SCI signals that are directed to partition 0. For example, one or more partition 0 events are shown that can be selectively combined within the register block logic 205 to generate one or more system control interrupt signals (e.g. SCI 0). The SCI 0 signal can then be routed to the operating system 0. Similarly, events associated with partition 1 and 2 can be combined within the register block logic 305 to create one or more system control interrupt signals (e.g. SCI 1 and SCI 2, respectively) that are directed to the appropriate operating system. A system interrupt controller (not shown) can be used transfer the SCI signals to an operating system.
In this manner, a partition, and its operating system, can directly receive system control interrupts (SCIs) from general purpose events that the partition is to handle. For example, if partition 0 is to control a host bus adapter slot doorbell, then when the doorbell is activated, the corresponding system control interrupt (e.g. SCI 0) can be directed to partition 0 by configuring the register block logic 305 appropriately. If the partitions should change, for example by reconfiguring the partitions, removing partitions, adding partitions, and the like, the register block logic 305 can also be reconfigured to define new GPE register blocks, remap selected events and/or system control interrupt signals. As previously described, the register block logic 305 can be implemented using a field programmable gate array (FPGA) or other programmable logic, that can be reprogrammed to define and/or reroute selected SCI signals to appropriate partitions.
In another example, the system 300 can include a logic interface (not shown) that is configured to allow a user to configure the register block logic 305, and to make associations between the GPE signals and the SCI signals. The logic interface can be similarly implemented as described with the logic interface 215 of
As previously described, the partition events 0-2 are associated with GPE signals that relate to hardware events configured to cause an action by an operating system that is responsible for handling the event. For example, an ACPI control method can be executed in response to a system control interrupt. The hardware events can include, for example, one or more of: a host bus adapter slot doorbell, a thermalert, a chassis intrusion, or other defined hardware event.
In one example, the register block logic 305 can be configured in accordance with the ACPI specification. With reference to
In the example configuration, GPE event signals 0 and 1 are configured to generate the signal SCI 0, and GPE event signals 2 and 3 are configured to generate the signal SCI 1. As shown, partition 0 will be responsible for handling events 0 and 1, while partition 1 will handle events 2 and 3. The events 0-3 are latched into the status register 405, which is defined into separate register blocks. Based on the ACPI specification, the status register 405 enumerates its entries using the format GPE0_STSx where “x” starts at value “0” then “1” and so on. This is represented in
With further reference to
Using a programmable logic device, the register block logic 400 can be programmatically defined to associate the events to selected SCI signals. Of course, many different combinations of signal input and outputs can be programmed using a programmable logic device other than the configuration illustrated. Furthermore a programmable logic device such as an FPGA allows the register block logic 400 to be reconfigured so that different associations between GPE events and system control interrupt signals can be created. Different amounts of SCI signals can also be provided. With the example register block logics 200 or 305, greater flexibility can be provided in designing and/or reconfiguring partitioned computer systems.
Example methods may be better appreciated with reference to flow diagrams. While for purposes of simplicity of explanation, the illustrated methodologies are shown and described as a series of blocks, it is to be appreciated that the methodologies are not limited by the order of the blocks, as some blocks can occur in different orders and/or concurrently with other blocks from that shown and described. Moreover, less than all the illustrated blocks may be required to implement an example methodology. Blocks may be combined or separated into multiple components. Furthermore, additional and/or alternative methodologies can employ additional, not illustrated blocks. While the figures illustrate various actions occurring in serial, it is to be appreciated that various actions could occur concurrently, substantially in parallel, and/or at substantially different points in time.
Illustrated in
With reference to
In one example, the designing block 505 can include replacing an existing GPE register blocks with the register block logic that is reconfigurable. This may be involved in a system that is previously designed with a non-configurable GPE register block which can then be redesigned using a configurable logic such as an FPGA as described in previous examples. In another example, the register block logic can be initially designed by implementing a programmable logic device such as an FPGA, a complex programmable logic device (CPLD), other programmable logic device that allows the register blocks to be reconfigurable. In this manner, if the partitions of the system are reconfigured, GPE events can also be reconfigured to appropriate system control interrupts that can be routed to the corresponding partition. Of course, the reconfigurable register block logic can be implemented with other systems and have other uses in addition to a partitioned computer system.
In another example, the configuring block 510 can include providing a user interface that is configured to allow a user to graphically associate selected event signals with the selected SCI signal outputs. The user interface can be, for example, software like an executable program that provides displayed options to a user and allows the user to input designated selections and associations for configuring the register block logic. The software can also include tools that cause the programmable logic device to be programmed or otherwise reconfigured in accordance with the user's selections. It will be appreciated that such software tools are readily available and may be provided with a selected programmable logic device. It will be further appreciated that the methodology 500 can be implemented as a graphical user interface including processor executable instructions that are provided by a computer-readable medium and performs the methodology 500.
Illustrated in
With reference to
Generally describing an example configuration of the computer 700, the processor 702 can be a variety of various processors including dual microprocessor and other multi-processor architectures. The memory 704 can include volatile memory and/or non-volatile memory. The non-volatile memory can include, but is not limited to, ROM, PROM, EPROM, EEPROM, and the like. Volatile memory can include, for example, RAM, synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and direct RAM bus RAM (DRRAM).
A disk 706 may be operably connected to the computer 700 via, for example, an input/output interface (e.g., card, device) 718 and an input/output port 710. The disk 706 can include, but is not limited to, devices like a magnetic disk drive, a solid state disk drive, a floppy disk drive, a tape drive, a Zip drive, a flash memory card, and/or a memory stick. Furthermore, the disk 706 can include optical drives like a CD-ROM, a CD recordable drive (CD-R drive), a CD rewriteable drive (CD-RW drive), and/or a digital video ROM drive (DVD ROM). The memory 704 can store processes 714 and/or data 716, for example. The disk 706 and/or memory 704 can store an operating system that controls and allocates resources of the computer 700.
The bus 708 can be a single internal bus interconnect architecture and/or other bus or mesh architectures. While a single bus is illustrated, it is to be appreciated that computer 700 may communicate with various devices, logics, and peripherals using other busses that are not illustrated (e.g., PCIE, SATA, Infiniband, 1394, USB, Ethernet). The bus 708 can be of a variety of types including, but not limited to, a memory bus or memory controller, a peripheral bus or external bus, a crossbar switch, and/or a local bus. The local bus can be of varieties including, but not limited to, an industrial standard architecture (ISA) bus, a microchannel architecture (MSA) bus, an extended ISA (EISA) bus, a peripheral component interconnect (PCI) bus, a universal serial (USB) bus, and a small computer systems interface (SCSI) bus.
The computer 700 may interact with input/output devices via i/o interfaces 718 and input/output ports 710. Input/output devices can include, but are not limited to, a keyboard, a microphone, a pointing and selection device, cameras, video cards, displays, disk 706, network devices 720, and the like. The input/output ports 710 can include but are not limited to, serial ports, parallel ports, and USB ports.
The computer 700 can operate in a network environment and thus may be connected to network devices 720 via the i/o devices 718, and/or the i/o ports 710. Through the network devices 720, the computer 700 may interact with a network. Through the network, the computer 700 may be logically connected to remote computers. The networks with which the computer 700 may interact include, but are not limited to, a local area network (LAN), a wide area network (WAN), and other networks. The network devices 720 can connect to LAN technologies including, but not limited to, fiber distributed data interface (FDDI), copper distributed data interface (CDDI), Ethernet (IEEE 802.3), token ring (IEEE 802.5), wireless computer communication (IEEE 802.11), Bluetooth (IEEE 802.15.1), and the like. Similarly, the network devices 720 can connect to WAN technologies including, but not limited to, point to point links, circuit switching networks like integrated services digital networks (ISDN), packet switching networks, and digital subscriber lines (DSL).
While example systems, methods, and so on have been illustrated by describing examples, and while the examples have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the systems, methods, and so on described herein. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims. Furthermore, the preceding description is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined by the appended claims and their equivalents.
To the extent that the term “includes” or “including” is employed in the detailed description or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed in the detailed description or claims (e.g., A or B) it is intended to mean “A or B or both”. When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).