The present invention relates generally to the field of excavation equipment. More specifically, the invention is in the subfield of boring equipment.
Infrastructure, commercial property, and residential property often require the laying of pipe underground for water, drainage, electric conduit, or other utilities. Prior to placing the pipe underground, a surface channel or underground bore must be excavated to allow for placement of the pipe or conduit. Digging of a channel is labor-intensive and time consuming and may not be possible or practicable for existing construction or when a bore must be placed under an existing structure.
Current boring equipment may allow for horizontal boring, but generally requires the use of tracks or other structures that are cumbersome, expensive, and that require large amounts of space that may not be available in the area where a bore is to be excavated. Furthermore, existing horizontal boring and excavation equipment is severely limited in both the diameter and depth of bore possible because current boring equipment tends to easily break augers and other boring tools, particularly when encountering rocks or other obstructions in the planned bore. As such, there is a need in the art for improved boring equipment that allows for wider and deeper bores to be excavated with less supporting equipment, without disturbing topsoil or surrounding material, and that prevents breakage of the excavation tool and bore string.
An aspect of an embodiment of the present invention provides a horizontal boring rig that may be used without tracks or other structural equipment, and allows for excavating larger, deeper bores while minimizing the risk of auger breakage. The horizontal boring rig may include a hydraulic motor or other rotational power source rotatably affixed to a base which rides along the grade to guide and align the bore. The horizontal boring rig also includes a drive mechanism with a universal joint and front guide to absorb deflection and shock from the auger during excavation. The drive mechanism allows for small misalignments and deflections of the auger without placing undue strain on the hydraulic motor output shaft, auger, or any other elements in the boring string. The horizontal boring rig may also include height adjustment components for aligning the bore relative to grade and may interface with standard equipment commonly used for construction and development of infrastructure.
The present invention horizontal boring rig may use the grade around and about the intended bore to align and direct the bore string into ground, soil, or other substrates. Because the horizontal boring rig does not require laying a track or other supporting equipment, the horizontal boring rig may be easily connected to equipment that is above or below the grade where the bore is to be excavated, including in pits or other confined areas.
The accompanying drawings, which are incorporated into and form a part of the instant specification, illustrate several aspects and embodiments of the present invention and, together with the description herein, serve to explain the principles of the invention. The drawings are provided only for the purpose of illustrating select embodiments of the invention and are not to be construed as limiting the invention.
Still referring to
When in use, the hydraulic motor 12 or other rotational power source may rotate the output shaft 22, which in turn may rotate an intermediary shaft with a universal joint and coupling (described below). It should be appreciated that in certain embodiments, the output shaft 22 may be integral with the hydraulic motor 12 or other rotational power source, or it may be a separate piece used in conjunction with the hydraulic motor 12 and intermediate shaft. This intermediary shaft may then be coupled with or otherwise in communication with an auger or other excavation tool. When the horizontal boring rig 10 is powered up, the horizontal boring machine 10 may be advanced into dirt, soil, or other material to excavate a bore. During excavation, the presence of rocks, materials of different density, or other obstructions in the bore path may cause deflection or shock to the auger. This deflection or shock may then cause the universal joint to deflect and absorb the shock transferred from the auger back towards the horizontal boring rig 10. The universal joint allows for deflection while the bore string continues to rotate, protecting the hydraulic motor 12, output shaft 22, auger, and intermediate shaft from breakage. The front guide 32 of the horizontal boring rig 10 functions to limit the deflection of the universal joint to prevent excessive misalignment of the bore string. As shown, the front guide 32 may have a general V-shape contour for controlling the deflection of the intermediate shaft and bore string. However, it should be appreciated that the front guide 32 may have any contour, including, but not limited to, circular, oval, elliptical, or any other shape as desired or required for a particular application. Furthermore, in certain embodiments, the front guide 32 may include an upper portion to partially or completely surround the intermediate shaft and provide deflection control in all directions about the intermediate shaft. Similarly, the pivot 20 at the rear of the hydraulic motor 12 allows for a degree of freedom for the hydraulic motor 12 when operating to absorb vibration, variations in drive power, motor torque reaction, or kickback from the bore string. This may help prevent damage to the hydraulic motor 12, bore string, or the horizontal boring rig 10 structure.
The horizontal boring rig 10 may be in communication with an equipment mount 46, which may be affixed or otherwise attached to the top of the drive box 24. The drive box 24 provides structure and support to the equipment mount 46 so that the horizontal boring rig 10 may be coupled to excavation or other construction equipment, such as a backhoe or excavator. The drive box 24 may be configured or otherwise structured to accept any number of equipment mounts 46 to allow for coupling the horizontal boring rig 10 to any available construction or excavation equipment. It should be appreciated that the horizontal boring rig 10 may receive hydraulic, electric, or other power sources from the construction or excavation equipment that it couples with. Once coupled, the construction or excavation equipment may be used to move, position, power, and control the rotational speed, direction, and positioning of the horizontal boring rig 10 when excavating a bore.
As shown, the horizontal boring rig 10 may be placed on a grade 100 separate from the excavator 102 that is coupled with the horizontal boring rig 10 and controlling the bore excavation. The horizontal boring rig 10 may ride along the grade 100 on one or more skids 34, which allow an operator to direct and control the excavation of the bore. The horizontal boring rig 10 may then operate in an enclosed space or on a grade 100 below (as shown) or above other equipment without the need for tracks or other guiding devices.
For use with bores of smaller diameter or shallower bores, the horizontal boring rig 10 may omit the presence of the front guide, an inspection box, and other features which support the use of excavation tools for larger diameter and deeper bores and the higher torque associated therewith. This smaller, lighter horizontal boring rig 10 may then be used in more confined spaces and with smaller, less powerful equipment. However, operation of the horizontal boring rig 10 is substantially similar, including attachment to a variety of equipment that may provide hydraulic, electric, or other types of power, and the use of skids 34 to guide the excavation of a bore relative to a grade. It should be appreciated that the universal joint 44 of the intermediate shaft 42 allows for deflection and absorption of kickback, vibration, and other forces encountered by the auger or other excavation tool to prevent breakage of the bore string, hydraulic motor 12, or other parts of the horizontal boring rig 10. In certain embodiments, the support frame 52 may be configured, shaped, or otherwise adapted to provide a function similar to a front guide. The support frame 52, particularly the angled front bars, may provide some limitation to the deflection of the universal joint 44 during use of the horizontal boring rig 10.
The horizontal boring rig 10 may include one or more skids 34 affixed or otherwise attached to the base plate 16. The one or more skids 34, which may be channel shaped to allow for directing spoil from the bore excavation under and beneath the base plate 16 of the boring rig 10, may include a skid foot 38 for riding along the grade used to direct and align the horizontal boring rig 10 to the desired bore location.
Still referring to
One or more adjustment plates 58 may be moveably affixed or attached to the horizontal boring rig 10 to allow for the adjustment plate 58 to be moved vertically relative to the base plate 16 of the horizontal boring rig 10. The adjustment plate 58 may then further comprise an adjustment plate foot 60 adapted for riding along a grade to allow for alignment and positioning of the horizontal boring rig 10 and, subsequently, the auger or other excavation tool and the excavated bore. As shown, the adjustment plate foot 60 may be directed towards the outside of the horizontal boring rig 10. However, it should be appreciated that the adjustment plate foot 60 may also be directed towards the inside of the horizontal boring rig 10 in the same direction of the skid foot 38. The skid foot 38 may then nest within the adjustment plate foot 60. In certain embodiments, the one or more adjustment plates 58 may replace the one or more skids 34 such that the adjustment plate foot 60 provides the riding surface for the horizontal boring rig 10 in all vertical positions of the adjustment plate 58.
The one or more adjustment plates 58 may be affixed or otherwise attached to the horizontal boring rig 10 through one or more plate supports 62 by a plurality of bolts 68, 72. As shown, the plate supports 62, which may include several different bosses 64 for accepting the plurality of bolts 68, 72 in different positions, may be in communication with the base plate 16 of the horizontal boring rig 10. The one or more adjustment plates 58 may include a plurality of holes 70, adjustment slots 66, or both. The one or more adjustment plates 58 may then be held in place against the plate supports 62 with a plurality of bolts 68, 72. As shown, one or more lock bolts 68 may be installed through holes 70 or apertures in the upper portion of the one or more adjustment plates 58 and into bosses 64 on the plate supports 62. These lock bolts 68 may then secure the one or more adjustment plates 58 into a fixed position for shipping, transport, lifting, or attachment to other construction or excavation equipment. Similarly, one or more adjustment bolts 72 may be installed through adjustment slots 66 in the adjustment plates 58 and into bosses 64 on the plate supports 62 or skids 34. It should be appreciated that while the adjustment slots 66 are illustrated below holes 70, the adjustment slots 66 and holes 70 may be located in any relation to one another across the adjustment plates 58 as necessary to fit a particular configuration of the skids 34, base plate 16, plate supports 62, or other attachment locations on the horizontal boring rig 10.
To modify the height of the horizontal boring rig 10 relative to the working grade, a user may remove the lock bolts 68 that hold the one or more adjustment plates 58 in a fixed position, loosen the adjustment bolts 72, and then move the one or more adjustment plates 58 vertically relative to the horizontal boring rig 10. When the one or more adjustment plates 58 are positioned as desired to achieve the correct height of the intermediate shaft 42 and auger or other excavation tool, the adjustment bolts 72 may be tightened down in the adjustment slots 66 again to secure the one or more adjustment plates 58 in position. The lock bolts 68 may then be set aside, returned to their bosses 64 for storage during use, or installed into other bosses 64 that may align with the adjustment slots 66 on the one or more adjustment plates 58 to more securely hold the one or more adjustment plates 58 into position.
Still referring to
Referring to
In summary, while the present invention has been described with respect to specific embodiments, many modifications, variations, alterations, substitutions, and equivalents will be apparent to those skilled in the art. The present invention is not to be limited in scope by any of the specific embodiments described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Accordingly, the invention is to be considered as limited only by the spirit and scope of the following claims, including all modifications and equivalents.
It should be appreciated that any element, part, section, subsection, or component described with reference to any specific embodiment above may be incorporated with, integrated into, or otherwise adapted for use with any other embodiment described herein unless specifically noted otherwise or if it should render the embodiment device non-functional. Likewise, any step described with reference to a particular method or process may be integrated, incorporated, or otherwise combined with other methods or processes described herein unless specifically stated otherwise or if it should render the embodiment method nonfunctional. Furthermore, multiple embodiment devices or embodiment methods may be combined, incorporated, or otherwise integrated into one another to construct or develop further embodiments of the invention described herein.
Still other embodiments will become readily apparent to those skilled in this art from reading the above-recited detailed description and drawings of certain exemplary embodiments. It should be understood that numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of this application. For example, regardless of the content of any portion (e.g., title, field, background, summary, abstract, drawing figure, etc.) of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim herein or of any application claiming priority hereto of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated. Further, any activity or element can be excluded, the sequence of activities can vary, and/or the interrelationship of elements can vary. Unless clearly specified to the contrary, there is no requirement for any particular described or illustrated activity or element, any particular sequence or such activities, any particular size, speed, material, dimension or frequency, or any particular interrelationship of such elements. Accordingly, the descriptions and drawings are to be regarded as illustrative in nature, and not as restrictive. Moreover, when any number or range is described herein, unless clearly stated otherwise, that number or range is approximate. When any range is described herein, unless clearly stated otherwise, that range includes all values therein and all sub ranges therein. Any information in any material (e.g., a United States/foreign patent, United States/foreign patent application, book, article, etc.) that has been incorporated by reference herein, is only incorporated by reference to the extent that no conflict exists between such information and the other statements and drawings set forth herein. In the event of such conflict, including a conflict that would render invalid any claim herein or seeking priority hereto, then any such conflicting information in such incorporated by reference material is specifically not incorporated by reference herein.
The present application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Application Ser. No. 63/301,015, filed Jan. 19, 2022, entitled “Horizontal Boring Rig,” the disclosure of which is hereby incorporated by reference herein in its entirety. The present application is related to PCT application with International Application No. PCT/US23/11188, filed Jan. 19, 2023, entitled “Grade Guided Trackless Horizontal Boring Rig,” the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1285712 | Hughes | Nov 1918 | A |
2684834 | Miller | Jul 1954 | A |
2752122 | Hyatt | Jun 1956 | A |
2950085 | Lizzadro | Aug 1960 | A |
3288229 | Chappuis | Nov 1966 | A |
3526285 | Adkins | Sep 1970 | A |
3870110 | Richmond | Mar 1975 | A |
4062196 | Yoshida | Dec 1977 | A |
4691788 | Yoshida | Sep 1987 | A |
5228525 | Denney | Jul 1993 | A |
5496095 | Scholl | Mar 1996 | A |
5507354 | Harleman | Apr 1996 | A |
6149349 | Nikiforuk | Nov 2000 | A |
6343663 | Hill | Feb 2002 | B1 |
7677336 | Gent | Mar 2010 | B2 |
20130068490 | Van Zee | Mar 2013 | A1 |
20210317740 | Zadel | Oct 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20230228154 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
63301015 | Jan 2022 | US |