1. Field of the Invention
Embodiments of the present invention generally relate to lithium-ion battery cell components, and more specifically, to a method and a system for fabricating such components.
2. Description of the Related Art
High-capacity energy storage devices, such as lithium-ion (Li-ion) batteries, are used in a growing number of applications, including portable electronics, medical, transportation, grid-connected large energy storage, renewable energy storage, and uninterruptible power supply (UPS). In contemporary, secondary and rechargeable energy storage devices, the current collector component of the electrodes is generally made of a metal foil. Examples of materials for the positive current collector (the cathode) include aluminum, but stainless steel, and nickel may also be used. Examples of materials for the negative current collector (the anode) include copper (Cu), but stainless steel, and nickel (Ni) may also be used.
The active positive cathode electrode material of a Li-ion battery is typically selected from a wide range of lithium transition metal oxides. Examples include oxides with spinel structures (LiMn2O4 (LMO), LiNi0.5Mn1.5O4 (LMNO), etc.), layered structures (LiCoO2, nickel-manganese-cobalt (NMC), nickel-cobalt-aluminum (NCA), etc.), olivine structures (LiFePO4, etc.), and combinations thereof. The particles are mixed with conductive particles, such as nano-carbon (carbon black, etc.) and graphite, and a binding agent. Such positive electrode material is considered to be a lithium-intercalation compound, in which the quantity of conductive material is in the range from 0.1% to 30% by weight. Next generation cathode materials are under active research with the goal of increasing capacity, i.e., >1 Li+ per redox center, or higher voltage (>4.3V).
Currently, anode material is generally carbon based, either graphite or hard carbon, with particle sizes around 5-15 um. Silicon (Si) and tin (Sn)-based active materials are currently being developed as next generation anode materials. Both have significantly higher capacity than carbon based electrodes. Li15Si4 has a capacity of about 3,580 mAh/g, whereas graphite has a capacity less than 372 mAh/g. Sn-based anodes can achieve capacities over 900 mAh/g which are much higher than next generation cathode materials can achieve. Thus, it is expected that cathodes will continue to be thicker than anodes.
Currently, the active materials only account for <50 wt % of the overall components of battery cells. The ability to manufacture thicker electrodes containing more active materials would significantly reduce the production costs for battery cells by reducing the percentage contribution from inactive elements. However, the thickness of electrodes is currently limited by both the utilization and the mechanical properties of the materials currently used.
Accordingly, there is a need in the art for faster charging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a high production rate.
Embodiments described herein provide methods and systems for manufacturing faster charging/discharging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a higher production rate. In one embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first porous layer comprising a first cathodically active material having a first porosity formed on the conductive substrate, and a second porous layer comprising a second cathodically active material having a second porosity formed on the first porous layer. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.
In another embodiment, a method for forming a graded cathode structure is provided. The method comprises providing a conductive substrate, depositing a first porous layer comprising a first cathodically active material having a first porosity on the conductive substrate, and depositing a second porous layer comprising a second cathodically active material having a second porosity on the conductive substrate. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.
In yet another embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first layer comprising cathodically active particles having a first diameter formed on the conductive substrate, and a second layer comprising cathodically active particles having a second diameter formed on the first layer. In certain embodiments, the second diameter is greater than the first diameter. In certain embodiments, the second diameter is less than the first diameter. In certain embodiments, the particles are mirco-particles. In certain embodiments, the particles are nano-particles.
In yet another embodiment, a method for forming a graded cathode structure is provided. The method comprises providing a conductive substrate, depositing a first layer comprising cathodically active mircoparticles having a first diameter formed on the conductive substrate, and depositing a second layer comprising cathodically active microparticles having a second diameter formed on the first layer. In certain embodiments, the second diameter is greater than the first diameter. In certain embodiments, the second diameter is less than the first diameter.
In yet another embodiment, the first layer has different binder-conductive additive-active materials than the second layer. In yet another embodiment, the current collector comprises Al or Ni mesh, wires, or three-dimensional Al. In yet another embodiment, the three-dimensional Al is formed using a punch-through process, electrochemical etching or imprint lithography process.
In yet another embodiment, a substrate processing system for processing a vertically oriented flexible conductive substrate is provided. The substrate processing system comprises a first spray coating chamber configured to deposit cathodically active particles over the vertically oriented flexible conductive substrate, a drying chamber disposed adjacent the first spray coating chamber configured to expose the vertically oriented flexible conductive substrate to a drying process, a second spray coating chamber disposed adjacent to the drying chamber configured to deposit cathodically active particles over the vertically oriented flexible conductive substrate, a compression chamber disposed adjacent to the second spray coating chamber configured to expose the vertically oriented flexible conductive substrate to a calendaring process to compress the deposited particles to a desired net-density, and a substrate transfer mechanism configured to transfer the vertically oriented flexible conductive substrate among the chambers, wherein each of the chambers comprises a processing volume, a feed roll disposed out side the processing volume and configured to retain a portion of the vertically oriented flexible conductive substrate, and a take up roll disposed out side the processing volume and configured to retain a portion of the vertically oriented flexible conductive substrate, wherein the substrate transfer mechanism is configured to activate the feed rolls and the take up rolls to move the vertically oriented flexible conductive substrate in and out of each chamber, and hold the one or more flexible conductive substrates in the processing volume of each chamber. In certain embodiments, the substrate processing system further comprises a three-dimensional Al formation module for shaping the vertically oriented flexible conductive substrate into a three-dimensional vertically oriented conductive substrate positioned prior to the first spray coating chamber.
In another embodiment, an integrated separator is formed onto the electrode to reduce separator material cost and simplify manufacturing.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, wherever possible, to designate identical elements that are common to the figures. It is contemplated that elements and/or process steps of one embodiment may be beneficially incorporated in other embodiments without additional recitation.
Embodiments described herein contemplate methods and related apparatus for forming an electrochemical device, such as a battery or supercapacitor, and components thereof using thin-film deposition processes and other methods for forming the same. Certain embodiments described herein include the manufacturing of thick cathode electrodes having an increased capacity for active material by modifying various properties of the cathode electrodes. In certain embodiments, the cathode electrodes have graded properties, such as, porosity, conductivity, particle size, and combinations thereof that vary throughout the cathode electrode structure. In certain embodiments, it is desirable to modify the properties of the cathode electrode through the inclusion of additives such as conductive additives and/or binding agents. In certain embodiments, the graded properties of the cathode electrode may be further modified during the manufacturing process through the use of such techniques as calendaring, annealing, and various drying processes.
In certain embodiments, the cathode electrodes have a graded porosity such that the porosity varies throughout the structure of the cathode electrode. In certain embodiments, the graded porosity provides for a higher porosity adjacent to the current collector and a lower porosity as the distance from the current collector increases. The higher porosity adjacent to the current collector increases the active surface area of the electrode providing for higher power performance but yielding a lower voltage electrode whereas the lower porosity provides for a higher voltage electrode with slower power performance. In certain embodiments, the graded porosity provides for a lower porosity adjacent to the current collector and a higher porosity as the distance from the current collector increases.
In certain embodiments, the cathode electrodes have a graded particle size throughout the cathode electrode structure. In one embodiment, the smaller particles positioned adjacent to the current collector provide for higher power performance but yield a lower voltage electrode and the larger particles which are positioned at a greater distance from the current collector provide for a higher voltage electrode but decreased power performance.
In certain embodiments, the cathode electrodes comprise a multi-layer structure where the layers comprise cathodically active materials having different properties. In one embodiment, the active material deposited over the current collector provides higher power performance but a lower voltage electrode and the active material deposited at a distance from the current collector provides for a higher voltage electrode with slower power performance.
While the particular apparatus in which the embodiments described herein can be practiced is not limited, it is particularly beneficial to practice the embodiments on a web-based roll-to-roll system sold by Applied Materials, Inc., Santa Clara, Calif. Exemplary roll-to-roll and discrete substrate systems on which the embodiments described herein may be practiced are described herein and in further detail in commonly assigned U.S. patent application Ser. No. 12/620,788, (Attorney Docket No. APPM/012922/EES/AEP/ESONG), to Lopatin et al., now published as US 2010/0126849, titled APPARATUS AND METHOD FOR FORMING 3D NANOSTRUCTURE ELECTRODE FOR ELECTROCHEMICAL BATTERY AND CAPACITOR, and commonly assigned U.S. patent application Ser. No. 12/839,051, (Attorney Docket No. APPM/014080/AEP/LES/ESONG), filed Jul. 19, 2010, to Bachrach et al, titled COMPRRESSED POWDER 3D BATTERY ELECTRODE MANUFACTURING, both of which are herein incorporated by reference in their entirety.
The use of various types of substrates on which the materials described herein are formed is also contemplated. While the particular substrate on which certain embodiments described herein may be practiced is not limited, it is particularly beneficial to practice the embodiments on flexible conductive substrates, including for example, web-based substrates, panels and discrete sheets. The substrate may also be in the form of a foil, a film, or a thin plate. In certain embodiments where the substrate is a vertically oriented substrate, the vertically oriented substrate may be angled relative to a vertical plane. For example, in certain embodiments, the substrate may be slanted from between about 1 degree to about 20 degrees from the vertical plane. In certain embodiments where the substrate is a horizontally oriented substrate, the horizontally oriented substrate may be angled relative to a horizontal plane. For example, in certain embodiments, the substrate may be slanted from between about 1 degree to about 20 degrees from the horizontal plane. As used herein, the term “vertical” is defined as a major surface or deposition surface of the flexible conductive substrate being perpendicular relative to the horizon. As used herein, the term “horizontal” is defined as a major surface or deposition surface of the flexible conductive substrate being parallel relative to the horizon.
Anode structure 102 and cathode structure 103 each serve as a half-cell of Li-ion battery 100, and together form a complete working cell of Li-ion battery 100. Both the anode structure 102 and the cathode structure 103 comprise material into which and from which lithium ions can migrate. Anode structure 102 includes a current collector 111 and a conductive microstructure 110 that acts as an intercalation host material for retaining lithium ions. Similarly, cathode structure 103 includes a current collector 113 and an intercalation host material 112 such as a metal oxide for retaining lithium ions. Separator layer 104 may be a dielectric, porous, fluid-permeable layer that prevents direct electrical contact between the components in the anode structure 102 and the cathode structure 103. Methods of forming Li-ion battery 100, as well as the materials that make up the cathode structure 103 are described herein.
The electrolyte containing porous material on the cathode side of the Li-ion battery 100, or positive electrode, may comprise a lithium-containing metal oxide, such as lithium cobalt dioxide (LiCoO2) or lithium manganese dioxide (LiMnO2). The electrolyte containing porous material may be made from a layered oxide, such as lithium cobalt oxide, an olivine, such as lithium iron phosphate, or a spinel, such as lithium manganese oxide. In non-lithium embodiments, an exemplary cathode may be made from TiS2 (titanium disulfide). Exemplary lithium-containing oxides may be layered, such as lithium cobalt oxide (LiCoO2), or mixed metal oxides, such as LiNixCo1-2xMnO2, LiNi0.5Mn1.5O4, Li(Ni0.8Co0.15Al0.05)O2, LiMn2O4, and LiNiO2. Exemplary phosphates may be iron olivine (LiFePO4) and it is variants (such as LiFe1-xMgPO4), LiMoPO4, LiCoPO4, LiNiPO4, Li3V2(PO4)3, LiVOPO4, LiMP2O7, or LiFe1.5P2O7. Exemplary fluorophosphates may be LiVPO4F, LiAlPO4F, Li5V(PO4)2F2, Li5Cr(PO4)2F2, Li2CoPO4F, or Li2NiPO4F. Exemplary silicates may be Li2FeSiO4, Li2MnSiO4, or Li2VOSiO4. An exemplary non-lithium compound is Na5V2(PO4)2F3. Other exemplary electrolyte containing porous materials include Li3FeF3, Li2MnO3.NMC, and the porous materials shown in
The electrolyte containing porous material on the anode side of the Li-ion battery 100, or negative electrode, may be made from materials described above, for example, graphitic particles dispersed in a polymer matrix and/or various fine powders, for example, micro-scale or nano-scale sized powders. Additionally, microbeads of silicon, tin, or lithium titanate (Li4Ti5O12) may be used with, or instead of, graphitic microbeads to provide the conductive core anode material. The electrolyte containing porous material on the cathode side of the Li-ion battery 100, or positive electrode, may be made according to the embodiments described herein.
Anode structures 122a, 122b and cathode structures 123a, 123b each may serve as a half-cell of Li-ion battery cell 120, and together form a complete working bi-layer cell of Li-ion battery 120. Anode structures 122a, 122b each include a metal current collector 131a, 131b and a first electrolyte containing material 134a, 134b. Similarly, cathode structures 123a, 123b include a current collector 133a and 133b respectively and a second electrolyte containing material 132a, 132b, such as a metal oxide, for retaining lithium ions. The current collectors 131a, 131b, 133a, and 133b may be made of electrically conductive materials such as metals and metal alloys. In some cases, a separator layer 124a, 124b, which is an insulating, porous, fluid-permeable layer, for example, a dielectric layer, may be used to prevent direct electrical contact between the components in the anode structures 122a, 122b and the cathode structures 123a, 123b. It should also be understood that the embodiments described herein are not limited to Li-ion cell structures shown in
Alternatively, current collector 113 may comprise a host substrate that is non-conductive, such as a glass, silicon, and plastic or polymeric substrate that has an electrically conductive layer formed thereon by means known in the art, including physical vapor deposition (PVD), electrochemical plating, electroless plating, and the like. In one embodiment, current collector 113 is formed out of a flexible host substrate. The flexible host substrate may be a lightweight and inexpensive plastic material, such as polyethylene, polypropylene or other suitable plastic or polymeric material, with a conductive layer formed thereon. In one embodiment, the conductive layer is between about 10 and 15 microns thick in order to minimize resistive loss. Materials suitable for use as such a flexible substrate include a polyimide (e.g., KAPTON™ by DuPont Corporation), polyethyleneterephthalate (PET), polyacrylates, polycarbonate, silicone, epoxy resins, silicone-functionalized epoxy resins, polyester (e.g., MYLAR™ by E.I. du Pont de Nemours & Co.), APICAL AV manufactured by Kanegaftigi Chemical Industry Company, UPILEX manufactured by UBE Industries, Ltd.; polyethersulfones (PES) manufactured by Sumitomo, a polyetherimide (e.g., ULTEM by General Electric Company), and polyethylenenaphthalene (PEN). Alternately, the flexible substrate may be constructed from a relatively thin glass that is reinforced with a polymeric coating.
In one embodiment, the current collector 113 is treated prior to formation of the graded porous structure 202 to improve contact resistance and adhesion of the electrode to the current collector 113.
As shown in
In one embodiment, the first cathodically active material 212 is in the form of particles. In one embodiment, the particles are nano-scale particles. In one embodiment, the nano-scale particles have a diameter between about 1 nm and about 100 nm. In one embodiment, the particles are micro-scale particles. In one embodiment, the particles of the powder include aggregated micro-scale particles. In one embodiment, the micro-scale particles have a diameter between about 2 μm and about 15 μm. In certain embodiments it is desirable to select a particle size that maintains the packing density of the particles while maintaining a reduced surface area in order to avoid unwanted side reactions which may occur at higher voltages. In certain embodiments, the particle size may depend on the type of cathodically active material used. In one embodiment, the cathodically active material 212 is selected from the group comprising: lithium cobalt dioxide (LiCoO2), lithium manganese dioxide (LiMnO2), titanium disulfide (TiS2), LiNixCo1-2xMnO2, LiMn2O4, LiFePO4, LiFe1-xMgPO4, LiMoPO4, LiCoPO4, Li3V2(PO4)3, LiVOPO4, LiMP2O7, LiFe1.5P2O7, LiVPO4F, LiAlPO4F, Li5V(PO4)2F2, Li5Cr(PO4)2F2, Li2CoPO4F, Li2NiPO4F, Na5V2(PO4)2F3, Li2FeSiO4, Li2MnSiO4, Li2VOSiO4, LiNiO2, and combinations thereof.
In certain embodiments, the first porous layer 210 further comprises conductive additives 214 for providing a conductive path between the highly resistive particles of the first cathodically active material 212. In one embodiment, the conductive additives 214 may be selected from the group comprising: graphite, graphene hard carbon, carbon black, carbon coated silicon, tin particles, tin oxide, silicon carbide, silicon (amorphous or crystalline), silicon alloys, doped silicon, lithium titanate, composites thereof, and combinations thereof.
In certain embodiments, the first porous layer 210 further comprises a binding agent 216. In certain embodiments, the binding agent 216 coats the surface of the particles of the first cathodically active material 212. In one embodiment, the binding agent 216 is a carbon containing polymer having a low molecular weight provided at a ratio of less than about 100 polymer molecules per particle. The low molecular weight polymer may have a number average molecular weight of less than about 10,000 to promote adhesion of the particles to the substrate. In one embodiment, the binding agent 216 is selected from the group comprising: polyvinylidene difluoride (PVDF) styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), water soluble binders, and combinations thereof. In one embodiment, N-methyl-2-pyrrolidone (NMP) is used as a carrier for the binding agent.
As shown in
In one embodiment, the second cathodically active material 222 is in the form of particles. In one embodiment, the particles are nano-scale particles. In one embodiment, the nano-scale particles have a diameter between about 1 nm and about 100 nm. In one embodiment, the particles are micro-scale particles. In one embodiment, the particles of the powder include aggregated micro-scale particles. In one embodiment, the micro-scale particles have a diameter between about 2 μm and about 15 μm. In one embodiment, the second cathodically active material 222 is selected from the group comprising: lithium cobalt dioxide (LiCoO2), lithium manganese dioxide (LiMnO2), titanium disulfide (TiS2), LiNixCo1-2xMnO2, LiMn2O4, LiFePO4, LiFe1-xMgPO4, LiMoPO4, LiCoPO4, Li3V2(PO4)3, LiVOPO4, LiMP2O4, LiFe1.5P2O7, LiVPO4F, LiAlPO4F, Li5V(PO4)2F2, Li5Cr(PO4)2F2, Li2CoPO4F, Li2NiPO4F, Na5V2(PO4)2F3, Li2FeSiO4, Li2MnSiO4, Li2VOSiO4, LiNiO2, and combinations thereof. In one embodiment, the first cathodically active material 212 and the second cathodically active material 222 are identical materials. In one embodiment, the first cathodically active material 212 and the second cathodically active material 222 are different materials selected to vary the properties of each layer.
In certain embodiments, the first porosity of the first porous layer 210 is greater than the second porosity of the second porous layer 220. In certain embodiments, the first layer has a porosity or “first porosity” of at least 40%, 45%, 50%, 55%, 60%, or 65% as compared to a solid film formed from the same material. In certain embodiments, the first layer has a first porosity up to 45%, 50%, 55%, 60%, 65%, or 70% as compared to a solid film formed from the same material. In certain embodiments, the second layer has a porosity or “second porosity” of at least 20%, 25%, 30%, or 35% as compared to a solid film formed from the same material. In certain embodiments, the second layer has a porosity up to 25%, 30%, 35%, or 40% as compared to a solid film formed from the same material. In one embodiment, the first porosity is between about 40% and about 70% as compared to a solid film formed from the same material and the second porosity is between about 20% and about 40% as compared to a solid film formed from the same material.
In certain embodiments, the first porosity of the first porous layer 210 is less than the second porosity of the second porous layer 220. In certain embodiments, the first layer has a porosity or “first porosity” of at least 20%, 25%, 30%, or 35% as compared to a solid film formed from the same material. In certain embodiments, the first layer has a porosity up to 25%, 30%, 35%, or 40% as compared to a solid film formed from the same material. In certain embodiments, the second layer has a porosity or “second porosity” of at least 40%, 45%, 50%, 55%, 60%, or 65% as compared to a solid film formed from the same material. In certain embodiments, the second layer has a second porosity up to 45%, 50%, 55%, 60%, 65%, or 70% as compared to a solid film formed from the same material. In one embodiment, the second porosity is between about 40% and about 70% as compared to a solid film formed from the same material and the first porosity is between about 20% and about 40% as compared to a solid film formed from the same material. In one embodiment, the second porosity is between about 40% and about 70% as compared to a solid film formed from the same material and the first porosity is between about 20% and about 35% as compared to a solid film formed from the same material.
In certain embodiments, at least one of the first porous layer 210 and the second porous layer 220 is exposed to a compression process such as a calendaring process to increase the density of and decrease the porosity of the first porous layer 210 and/or the second porous layer 220. Although discussed as a two layer structure, it should be understood that any number of layers comprising different materials, particle sizes, and/or density may be used to form the porous cathode structure described herein. For example, in certain embodiments, the graded cathode structure comprises three of more layers with the porosity of each layer increasing relative to the previously deposited layer as the graded cathode structure extends from the current collector toward the separator. In certain embodiments, the graded cathode structure comprises three of more layers with the porosity of each layer decreasing relative to the previously deposited layer as the graded cathode structure extends from the current collector toward the separator. In certain embodiments where a dual sided electrode is formed, each porous layer may be simultaneously deposited on opposing sides of the substrate using a dual-sided deposition process.
In block 320, a first porous layer similar to first porous layer 210 having a first porosity is deposited over the conductive substrate. The first porous layer may be formed by depositing particles of a first cathodically active material as disclosed herein. In certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the first cathodically active material. In certain embodiments, the first cathodically active material may be pre-mixed with particles of conductive additives and/or binding agents prior to deposition on the conductive substrate. In certain embodiments, the binding agent coats the particles of first cathodically active material. In certain embodiments, the first cathodically active material may be concurrently deposited along with the particles of the conductive additives and/or binding agents from separate sources over the conductive substrate.
In one embodiment, the particles may be applied by particle application techniques including but not limited to sifting techniques, electrostatic spraying techniques, thermal or flame spraying techniques, fluidized bed coating techniques, roll coating techniques, slit coating, and combinations thereof, all of which are known to those skilled in the art. One exemplary process is a two-pass deposition process wherein a first pass deposits particles over the conductive substrate using a spray coating method followed by a second pass over the substrate to deposit additional particles via a slit coating process. Another exemplary two-pass deposition process involves depositing particles over the conductive substrate using a slit coating process followed by an electrostatic spraying process to further densify the structure.
In certain embodiments, electrostatic spraying methods are used to deposit particles or powder over the conductive substrate. Electrostatic spraying charges the powder particles and then sprays them toward the area to be coated, such as the conductive substrate, with an opposite and attractive electric charge. Since the charged powders in the spray stream are attracted toward the area to be coated, the electrostatic process helps minimize overspray and waste.
In certain embodiments, fluidized bed coating methods may be used to insert cathodically active particles over and/or into the conductive substrate. In fluidized bed systems, air is blown up through a porous bed or screen to suspend the powder thereby forming a fluidized bed. The item to be coated is inserted into the fluidized bed allowing the particles to stick onto the exposed surfaces. Coating particles in a fluidized bed can also be charged for the application of thicker coatings.
In certain embodiments, thermal, plasma, or flame spraying techniques may be used to deposit the cathodically active particles over the conductive substrate. Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The “feedstock” (coating precursor) is heated by electrical (e.g. plasma or arc) or chemical means (e.g. combustion flame). Coating materials available for thermal spraying include metals, alloys, ceramics, plastics and composites. The coating materials are fed in powder form; heated to a molten or semi-molten state and accelerated towards the substrate in the form of micrometer-size particles. Combustion or electrical arc discharge is usually used as the source of energy for thermal spraying. Exemplary thermal spraying techniques and apparatus are described in commonly assigned U.S. patent application Ser. No. 12/862,265, Attorney Docket No. APPM/014344.02/AEP/LES/ESONG), filed Aug. 24, 2010, to Shang et al., titled IN-SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY THERMAL SPRAYING, which is herein incorporated by reference in its entirety. Exemplary plasma spraying techniques and apparatus are described in commonly assigned U.S. patent application Ser. No. 12/862,244, Attorney Docket No. APPM/014344/AEP/LES/ESONG), filed Aug. 24, 2010, to Shang et al., titled IN-SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY PLASMA SPRAYING, which is herein incorporated by reference in its entirety.
In certain embodiments, roll coating techniques may be used to deposit the cathodically active particles over the conductive substrate. In one embodiment, the coating is made by forming a slurry of the cathodically active material in a solvent, such as, N-methyl pyrrolidone (NMP). In one embodiment, the coating further comprises binding agents and conductive additives. After application of the coating, the solvent may be removed using the drying techniques disclosed herein. In certain embodiments, the drying process may be used to encourage close settling of the particles.
In certain embodiments, where a dual-sided electrode is formed, the first porous layer may be simultaneously deposited on opposing sides of the substrate using a dual-sided deposition process. For example, a dual-sided electrostatic spraying process which uses opposing spray applicators to deposit cathodically active material on opposing sides of the substrate. In certain embodiments, where a dual-sided electrode is formed, the first layer may be formed using a two-pass process where the first layer is deposited over a first side of the current collector during a first pass and the first layer is deposited over an opposing side of a substrate during a second pass.
In block 330, the first porous layer may be exposed to an optional compression process. After the particles are deposited over the conductive substrate, the particles may be compressed using compression techniques, for example, a calendaring process, to achieve a desired net density of compacted particles while planarizing the surface of the layer. In certain embodiments, it is desirable to perform a calendaring process after deposition of the first porous layer in order to increase the net density of the first porous layer.
The first porous layer may be exposed to an optional drying process to remove any remaining solvents from the deposition process. The optional drying process may comprise, but is not limited to, drying processes such as an air drying process, for example, exposing the porous layer to heated nitrogen, an infrared drying process, a marangoni drying process, and an annealing process, for example, a rapid thermal annealing process.
In block 340, a second porous layer similar to second porous layer 220 having a second porosity is deposited over the first porous layer 210. The second porous layer may be formed by depositing particles of a second cathodically active material as disclosed herein. In certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the second cathodically active material. In certain embodiments, the second cathodically active material may be pre-mixed with particles of conductive additives and/or binding agents prior to deposition on the first porous layer. In certain embodiments, the second cathodically active material may be concurrently deposited along with the particles of the conductive additives and/or binding agents from separate sources over the conductive substrate. In certain embodiments, the particles may be deposited using the deposition techniques discussed in reference to block 320.
In certain embodiments, where a dual-sided electrode is formed, the second porous layer may be simultaneously deposited on opposing sides of the substrate using a dual-sided deposition process as discussed with reference to block 320.
In one embodiment, the first cathodically active material is identical to the second cathodically active material. In one embodiment, the first cathodically active material is a different material than the second cathodically active material.
In one embodiment, the particles of the first cathodically active material are a different size than the particles of the second cathodically active material. In one embodiment, the particles of the first cathodically active material and the second cathodically active material are approximately the same size.
In block 350, the second porous layer may be exposed to an optional compression process. After the particles are deposited over the conductive substrate, the particles may be compressed using compression techniques, for example, a calendaring process, to achieve a desired net density of compacted particles while planarizing the surface of the layer. In certain embodiments, it is desirable to perform a calendaring process after deposition of the second porous layer in order to increase the net density of the second porous layer relative to the first porous layer. In certain embodiments, a drying process similar to the process of block 330 is performed.
The graded cathode electrode 400 may be formed using processes similar to the process depicted in
The substrate or current collector 413 is similar to current collector 113. In one embodiment, the substrate or current collector 413 is an aluminum substrate or an aluminum alloy substrate. In one embodiment, the current collector 413 is perforated or porous three dimensional structure having a plurality of pores 415. In one embodiment, the three-dimensional structure may be formed using, for example, an imprint lithography process or a patterned punch through process. In one embodiment, the three-dimensional structure comprises a wire mesh structure comprising a material selected from aluminum and alloys thereof. In one embodiment, the wire mesh structure has a wire diameter between about 0.050 micrometers and about 10 micrometers. In one embodiment, the wire mesh structure has an aperture between about 10 micrometers and about 100 micrometers, for example about 90 micrometers. In certain embodiments, it may be desirable to use the wire mesh structure as the three-dimensional cathode structure since its formation does not require imprinting or etching.
In one embodiment, the porous current collector 413 is a three dimensional structure having a porosity of from about 50% to about 90%. In one embodiment, the current collector 413 is a three dimensional structure having a porosity of from about 70% to about 85%, for example, about 81%.
As shown in
As shown in
As shown in
As discussed herein, in certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the first cathodically active particles.
As shown in
In certain embodiments where the particles are micrometer sized particles, for example, layered oxides and spinels, the second cathodically active particles have a particle diameter greater than five times the particle size of the particles of the first layer so the solid state diffusion time is noticeably different. In other embodiments where cathode materials are nano-sized, such as, for example, LiFePO4, Li2MnSiO4, the cathodically active particles of the second layer may be greater than five times the particle size of the particles of the first layer. Additional diffusion enhancement can come from surface treatment.
In one embodiment, the first layer 510 has a porosity greater than a second porosity of the second layer 520. In one embodiment, the first porosity is between about 40% and about 50% as compared to a solid film formed from the same material and the second porosity is between about 30% and about 40% as compared to a solid film formed from the same material. In certain embodiments, the first layer 510 has a porosity less than the porosity of the second layer 520. In certain embodiments, the first porosity is between about 30% and about 35% as compared to a solid film formed from the same material and the second porosity is between about 40% and about 50% as compared to a solid film formed from the same material.
In certain embodiments, the second layer 520 is exposed to a compression process such as a calendaring process to modify the shape of the particles and increase the packing density of the particles in the second layer. In certain embodiments where the first layer 510 has greater density than the second layer 520, the first layer may be exposed to an optional compression process similar to the compression processes described herein.
In block 620, a first layer similar to first layer 510 comprising first cathodically active particles having a first diameter is deposited over the conductive substrate. The first layer may be formed by depositing particles of a cathodically active material as disclosed herein. In certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the cathodically active material as disclosed herein.
In block 630, the first layer may be exposed to an optional compression process. After the particles are deposited over the conductive substrate, the particles may be compressed using compression techniques, for example, a calendaring process, to achieve a desired net density of compacted particles while planarizing the surface of the first layer.
The first layer may be exposed to an optional drying process to remove any remaining solvents from the deposition process. The drying process may be tailored to adjust the thickness of the first layer. The optional drying process may comprise, but is not limited to, drying processes such as an air drying process, for example, exposing the porous layer to heated nitrogen, an infrared drying process, a marangoni drying process, and an annealing process, for example, a rapid thermal annealing process.
In block 640, a second layer similar to second layer 520 comprising second cathodically active particles having a second diameter is deposited over the first layer. The second layer may be formed by depositing particles of a cathodically active material as disclosed herein. In certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the cathodically active material as disclosed herein.
In block 650, the second layer may be exposed to an optional compression process. After the particles are deposited over the conductive substrate, the particles may be compressed using compression techniques, for example, a calendaring process, to achieve a desired net density of compacted particles while planarizing the surface of the second layer. In certain embodiments, it is desirable to perform a calendaring process after deposition of the second porous layer in order to increase the packing density of the particles of the second layer relative to the particles of the first layer.
In one embodiment, the first cathodically active material is identical to the second cathodically active material. In one embodiment, the first cathodically active material is a different material than the second cathodically active material.
In one embodiment, the second layer is exposed to a drying process similar to the optional drying processes described for the first layer.
In certain embodiments, the active material spray may include at least one of the following: simultaneous drying during spray, ultrasonic spray of highly viscous slurry, and water-based, low or no solvent slurry.
The graded cathode electrode 700 may be formed using processes similar to the method 600 depicted in
The substrate or current collector 713 may be similar to current collectors 413 and 113. In one embodiment, the substrate or current collector 713 is an aluminum substrate or an aluminum alloy substrate. In one embodiment, the current collector 713 is perforated or porous having a plurality of pores 715.
In one embodiment, the porous current collector 713 is a three dimensional structure having a porosity of from about 50% to about 90%. In one embodiment, the current collector 713 is a three dimensional structure having a porosity of from about 70% to about 85%, for example, about 81%.
As shown in
As shown in
In block 910 a conductive substrate, such as current collector 113 is provided. As shown in
In block 920, a first layer 810 comprising a first cathodically active material is deposited overt the current collector 113. In one embodiment, the first layer 810 has a thickness between about 10 μm to about 150 μm, for example, between about 50 μm to about 100 μm.
In one embodiment, the first cathodically active material is selected from the group comprising: lithium cobalt dioxide (LiCoO2), lithium manganese dioxide (LiMnO2), titanium disulfide (TiS2), LiNixCo1-2xMnO2, LiMn2O4, LiFePO4, LiFe1-xMgPO4, LiMoPO4, LiCoPO4, Li3V2(PO4)3, LiVOPO4, LiMP2O7, LiFe1.5P2O7, LiVPO4F, LiAlPO4F, Li5V(PO4)2F2, Li5Cr(PO4)2F2, Li2CoPO4F, Li2NiPO4F, Na5V2(PO4)2F3, Li2FeSiO4, Li2MnSiO4, Li2VOSiO4, LiNiO2, and combinations thereof. In one embodiment, the first cathodically active material comprises LiFePO4. As discussed herein, in certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the cathodically active material.
In block 925, the first layer may be exposed to an optional compression process as described herein to achieve a desired net density of compacted particles while planarizing the surface of the layer.
In block 930, a second layer 820, comprising a second cathodically active material different than the first cathodically active material is deposited over the first layer 810. In one embodiment, the second cathodically active material is selected from the group comprising: lithium cobalt dioxide (LiCoO2), lithium manganese dioxide (LiMnO2), titanium disulfide (TiS2), LiNixCo1-2xMnO2, LiMn2O4, LiFePO4, LiFe1-xMgPO4, LiMoPO4, LiCoPO4, Li3V2(PO4)3, LiVOPO4, LiMP2O7, LiFe1.5P2O7, LiVPO4F, LiAlPO4F, Li5V(PO4)2F2, Li5Cr(PO4)2F2, Li2CoPO4F, Li2NiPO4F, Na5V2(PO4)2F3, Li2FeSiO4, Li2MnSiO4, Li2VOSiO4, LiNiO2, and combinations thereof. In one embodiment, the second cathodically active material comprises LiNixCo1-2xMnO2. As discussed herein, in certain embodiments, it may be desirable to deposit conductive additives and/or a binding agent in conjunction with the cathodically active material.
In one embodiment, the first layer 810 comprises a material that provides for higher power performance with a lower voltage electrode and the second layer 820 comprises a material that provides for a higher voltage electrode with slower power performance. In one embodiment, the first layer 810 comprises LiFePO4 and the second layer 820 comprises LiNixCo1-2xMnO2.
In block 940, the second layer 820 may be exposed to an optional compression process. After the second cathodically active material is deposited over the conductive substrate, the material may be compressed using compression techniques, for example, a calendaring process, to achieve a desired net density of compacted particles while planarizing the surface of the second layer 820.
The first layer 810 and the second layer 820 may also be exposed to the optional drying processes described herein.
In certain embodiments, the cathode electrode structure 103 may be formed using a laminate process. For example, a first layer is formed on a conductive substrate using embodiments described herein and a second layer comprising a cathodically active material, a binding agent, and a conductive additive is formed on a separate substrate, for example, a glass substrate. The glass substrate is laminated to a top surface of the first layer to form the cathode electrode structure using a compression process and/or heating.
The graded cathode electrode depicted in
In one embodiment, the processing system 1100 comprises an imprint chamber 1112 configured to perform a three dimensional substrate formation process, such as an imprinting process or a punch-through process on at least a portion of the flexible conductive substrate 1110 to form a porous flexible conductive substrate.
In one embodiment, the processing system 1100 further comprises a first rinse chamber 1114 configured to rinse and remove any residual particles and processing solution from the portion of the vertically oriented conductive flexible substrate 1110 with a rinsing fluid, for example, de-ionized water.
In one embodiment, the processing system 1100 further comprises a wet etch chamber 1116 disposed next to the first rinse chamber 1114. In one embodiment, the wet etch chamber 1116 is configured to perform an etching process on at least a portion of the flexible conductive substrate 1110 to increase the porosity of the porous flexible conductive substrate. In one embodiment, chamber 1112 and chamber 1116 may comprise a chamber selected from an imprint chamber, a wet etch chamber, an electrochemical etching chamber, a pattern punch-through chamber, and combinations thereof.
In one embodiment, the processing system 1100 further comprises a second rinse chamber 1118 configured to rinse and remove any residual etching solution from the portion of the vertically oriented conductive flexible substrate 1110 with a rinsing fluid, for example, de-ionized water, after the wet etch process has been performed. In one embodiment, a chamber 1120 comprising an air-knife is positioned adjacent to the second rinse chamber 1118.
In one embodiment, the processing system 1100 further comprises a first drying chamber 1122 disposed adjacent to the air-knife 1120 configured to expose the vertically oriented conductive substrate 1110 to a drying process. In one embodiment, the first drying chamber 1122 is configured to expose the vertically oriented conductive substrate 1110 to a drying process such as an air drying process, for example, exposing the conductive substrate 1110 to heated nitrogen, an infrared drying process, a marangoni drying process, or an annealing process, for example, a rapid thermal annealing process.
In one embodiment, the processing system 1100 further comprises a first spray coating chamber 1124 configured to deposit a cathodically active particles, over and/or into the vertically oriented porous conductive substrate 1110. Although discussed as a spray coating chamber, the first spray coating chamber 1124 may be configured to perform any of the aforementioned deposition processes.
In one embodiment, the processing system 1100 further comprises a drying chamber 1126 disposed adjacent to the first spray coating chamber 1124 configured to expose the vertically oriented conductive substrate 1110 to a drying process, for example, an annealing process. In one embodiment, the drying chamber 1126 is configured to perform a drying process such as a rapid thermal annealing process.
In one embodiment, the processing system 1100 further comprises a second spray coating chamber 1128 positioned adjacent to the drying chamber 1126. Although discussed as a spray coating chamber, the second spray coating chamber 1128 may be configured to perform any of the aforementioned deposition processes. In one embodiment, the second spray coating chamber 1128 is configured to deposit second cathodically active particles over the vertically oriented porous conductive substrate 1110. In one embodiment, the second spray coating chamber 1128 is configured to deposit an additive material such as a binder over the vertically oriented conductive substrate 1110. In embodiments where a two pass spray coating process is used, the first spray coating chamber 1124 may be configured to deposit cathodically active particles over the vertically oriented conductive substrate 1110 during a first pass using, for example, an electrostatic spraying process, and the second spray coating chamber 1128 may be configured to deposit cathodically active particles over the vertically oriented conductive substrate 1110 in a second pass using, for example, a slit coating process.
In one embodiment, the processing system 1100 further comprises a compression chamber 1130 disposed adjacent to the first drying chamber 1122 configured to expose the vertically oriented conductive substrate 1110 to a calendaring process to compress the as-deposited cathodically active particles into the conductive microstructure. In one embodiment, the compression process may be used to modify the porosity of the as-deposited cathodically active particles to a desired net-density.
In one embodiment, the processing system 1100 further comprises a third drying chamber 1132 disposed adjacent to the compression chamber 1130 configured to expose the vertically oriented conductive substrate 1110 to a drying process. In one embodiment, the third drying chamber 1132 is configured to expose the vertically oriented conductive substrate 1110 to a drying process such as an air drying process, for example, exposing the conductive substrate 1110 to heated nitrogen, an infrared drying process, a marangoni drying process, or an annealing process, for example, a rapid thermal annealing process.
In one embodiment, the processing system 1100 further comprises a third spray coating chamber 1134 positioned adjacent to the drying chamber 1132. Although discussed as a spray coating chamber, the third spray coating chamber 1134 may be configured to perform any of the aforementioned deposition processes. In one embodiment, the third spray coating chamber 1134 is configured to deposit a separator layer over the vertically oriented conductive substrate.
In certain embodiments, the processing system 1100 further comprises additional processing chambers. The additional modular processing chambers may comprise one or more processing chambers selected from the group of processing chambers comprising an electrochemical plating chamber, an electroless deposition chamber, a chemical vapor deposition chamber, a plasma enhanced chemical vapor deposition chamber, an atomic layer deposition chamber, a rinse chamber, an anneal chamber, a drying chamber, a spray coating chamber, and combinations thereof. It should also be understood that additional chambers or fewer chambers may be included in the in-line processing system.
The processing chambers 1112-1134 are generally arranged along a line so that portions of the vertically oriented conductive substrate 1110 can be streamlined through each chamber through feed roll 1140 and take up roll 1142. In one embodiment, as the vertically oriented substrate 1110 leaves the take up roll 1142, the substrate 1110 is further processed to form a prismatic assembly 1150.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/294,628 (Attorney Docket No. 14493L), filed Jan. 13, 2010, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61294628 | Jan 2010 | US |