1. Field of Invention
The current invention relates generally to apparatus, systems and methods for refracting light. More particularly, the apparatus, systems and methods relate to a flat lens for refracting light. Specifically, the apparatus, systems and methods provide for refracting light that passes through a sheet of material with small openings in it.
2. Description of Related Art
Large lenses that are used to refract light are often large, very difficult to accurately construct, and they can be very expensive. For example, germanium lenses for use in the Long-Wave Infrared (LWIR) range are expensive and heavy while flat Fresnel lenses may tend to have poor resolution and strong dispersion. Therefore a need exists for a better lightweight and inexpensive lens that has favorable resolution and dispersion characteristics.
The preferred embodiment of the invention includes a flat lens formed of solid material with openings smaller than the wavelength for light or other electromagnetic radiation) that it is to refract. The material can be a metamaterial that may be mass fabricated on the surface of a thin silicon wafer. The metamaterial lens can have an engineered profile of a refractive index gradient by controlling the density of holes formed in different areas of the material. This lens can be used for LWIR purposes.
One configuration of the preferred embodiment includes a lens with a graded index of refraction. The lens is formed out of a sheet of material having a uniform thickness with a top surface and a bottom surface. Elongated openings are formed in the top surface and extend downwardly to the bottom surface. Material of the elongated sheet is left between adjacent openings. A width of the material between adjacent openings is less than a wavelength of the electromagnet energy that the lens is configured to refract. The density and distribution of the openings vary across the sheet of material so that the refractive index of the lens varies across the sheet of material.
In other configurations of the preferred embodiment, features on the top surface of the sheet of material are less than the wavelength of the electromagnet energy the lens is configured to refract. For example, the distances across the openings on the top surface are less than the wavelength of electromagnet energy that the lens is configured to refract.
In other embodiments, the lens can have other useful features and characteristics. For example, the sheet of material can be formed out of a metamaterial. In some embodiments, metal filling can fill the elongated openings. The metal filling can be aluminum, copper or another metal. The refractive index of the material can be between 0 and 3.5.
The present application contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
One or more preferred embodiments that illustrate the best mode(s) are set forth in the drawings and in the following description. The appended claims particularly and distinctly point out and set for the invention.
The accompanying drawings, which are incorporated in and constitute a part of the Specification, illustrate various example methods, and other example embodiments of various aspects of the invention. It will be appreciated that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of another element may be implemented as an external component and vice versa. Furthermore, elements may not be drawn to scale.
Similar numbers refer to similar parts throughout the drawings.
In the preferred embodiment, the openings 108 are adjacent upward pointing material 106 that is left after the openings 108 are formed. The width ‘a’ of material 106 between openings 108 is significantly less than the wavelength “λ” of light that is to be refracted by the lens 100. In some configurations, the width of the openings “b” is also significantly less than the wavelength “λ” of light that is to be refracted by the lens 100.
For example, the lens 100 can be formed from a metamaterial implemented in the form of a flexible thin silicon (Si) membrane. The lens 100 might be used to simplify the wide-angle thermal infrared (WATIR) lens based on a commonly used fisheye design. The lens 100 illustrated in the Figures offers realistic and economically beneficial utilization of materials that include metamaterials developed for the optical domain. For example, a graded index metamaterial lens design can replace expensive and heavy GE lenses and can implement low cost lithography. Metamaterial feature sizes “a” and “b” are ideally roughly 1/10th the wavelength of the radiation “λ” which implies that the lens design only requires about one micron scale structures. Conventional semiconductor techniques can make this scale of structures using visible wavelength photolithography. This means that large area lenses (two to five inches in diameter) do not require expensive e-beam fabrication, and the fabrication costs can leverage the infrastructure already in place at BAE Systems. Conservatively assuming a meta-lens could remove three of five lenses at a cost savings of 50% implies a considerable unit cost reduction accompanied by considerable reduction in weight of the optical assembly.
In the preferred embodiment, the lens design is based on the “graded index metamaterial” concept as shown in
Scattering effects must be taken into account by full wave EM simulations using COMSOL Multiphysics. Results of these simulations are shown in
The described technical approach can be implemented to virtually any optical assembly. In narrow field of view (FOV) systems, such as TIM1500, it is sufficient to use a front flat graded index metamaterial lens which can be formed on the surface of a silicon wafer. On the other hand, WATIR lens systems 500 (built based on the commonly used fisheye design as shown in
Those skilled in the art will appreciate that the metamaterial WATIR lens of the present invention is inexpensive and realistic since it requires only realistic and easily obtained refractive indices in the 0<n<3.5 range, and it is making use of the existing proven wide field of view fisheye lens designs, which may provide FOV˜180°.
Example methods may be better appreciated with reference to flow diagrams. While for purposes of simplicity of explanation, the illustrated methodologies are shown and described as a series of blocks, it is to be appreciated that the methodologies are not limited by the order of the blocks, as some blocks can occur in different orders and/or concurrently with other blocks from that shown and described. Moreover, less than all the illustrated blocks may be required to implement an example methodology. Blocks may be combined or separated into multiple components. Furthermore, additional and/or alternative methodologies can employ additional, not illustrated blocks.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. Therefore, the invention is not limited to the specific details, the representative embodiments, and illustrative examples shown and described. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims.
Moreover, the description and illustration of the invention is an example and the invention is not limited to the exact details shown or described. References to “the preferred embodiment”, “an embodiment”, “one example”, “an example”, and so on, indicate that the embodiment(s) or example(s) so described may include a particular feature, structure, characteristic, property, element, or limitation, but that not every embodiment or example necessarily includes that particular feature, structure, characteristic, property, element or limitation. Furthermore, repeated use of the phrase “in the preferred embodiment” does not necessarily refer to the same embodiment, though it may.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/51547 | 8/20/2012 | WO | 00 | 5/16/2013 |
Number | Date | Country | |
---|---|---|---|
61529444 | Aug 2011 | US |