Embodiments of the present disclosure generally relate to electroluminescent (EL) devices with improved outcoupling efficiency. More specifically, embodiments described herein relate to graded slope bottom reflective electrode layer structures for organic light-emitting diode (OLED) display pixels.
Organic light-emitting diode (OLED) technologies have become an important next-generation display technology offering many advantages (e.g., high efficiency, wide viewing angles, fast response, and potentially low cost). In addition, as a result of improved efficiency, OLEDs are also becoming practical for some lighting applications. Even so, typical OLEDs still exhibit significant efficiency loss between internal quantum efficiency (IQE) and external quantum efficiency (EQE).
Through certain combinations of electrode materials, carrier-transport layers, e.g., hole-transport layers (HTLs) and electron-transport layers (ETLs), emission layers (EMLs), and layer stacking, IQE levels can reach nearly 100%. However, EQE levels of typical OLED structures remain limited by optical outcoupling inefficiencies. Outcoupling efficiencies can suffer from optical energy loss due to significant emitting light being trapped by total internal reflection (TIR) inside the OLED display pixels.
Typical top-emitting OLED structures include a substrate, a reflective electrode over the substrate, organic layer(s) over the reflective electrode, and a transparent or semi-transparent top electrode over the organic layer(s). Due to higher refractive indices of the organic layer(s) (typically n>=1.7) and top electrode (typically n>=1.8) relative to air (n=1), significant emitting light is confined by TIR at the device-air interface preventing outcoupling to air.
Also in typical OLED structures, a significant portion of waveguided light diffusing to neighboring pixels (i.e., light leakage) can be scattered in the viewing direction along with the outcoupled light from the respective pixels causing pixel blurring, thereby reducing display sharpness and contrast.
Accordingly, what is needed in the art are improved structures, namely improved reflective structures, for OLED display pixels and methods of fabrication thereof.
In one embodiment, an electroluminescent (EL) device is provided. The EL device includes a pixel definition layer having a top surface, a bottom surface, and graded sidewalls interconnecting the top and bottom surfaces and a bottom reflective electrode layer disposed over the pixel definition layer. The bottom reflective electrode layer includes a planar portion disposed over the bottom surface and a graded portion disposed over the graded sidewalls, where the graded portion has a concave profile. The EL device includes an organic layer disposed over the bottom reflective electrode layer and a top electrode disposed over the organic layer.
In another embodiment, a method for fabricating an EL device is provided. The method includes coating a pixel definition layer over a substrate, the pixel definition layer having a bottom surface facing the substrate and a top surface opposite the bottom surface, recessing the top surface to form graded sidewalls interconnecting the top and bottom surfaces, and forming a bottom reflective electrode layer in the recess. The bottom reflective electrode layer includes a planar portion disposed over the bottom surface and a graded portion disposed over the graded sidewalls, where the graded portion has a non-linear profile. The method includes forming an organic layer over the bottom reflective electrode layer and forming a top electrode over the organic layer.
In yet another embodiment, a display structure is provided. The display structure includes an array of EL devices. Each EL device includes a pixel definition layer having a top surface, a bottom surface, and graded sidewalls interconnecting the top and bottom surfaces and a bottom reflective electrode layer disposed over the pixel definition layer. The bottom reflective electrode layer includes a planar portion disposed over the bottom surface and a graded portion disposed over the graded sidewalls, where the graded portion has a concave profile. Each EL device includes an organic layer disposed over the bottom reflective electrode layer and a top electrode disposed over the organic layer. The display structure includes a plurality of thin-film transistors forming a driving circuit array configured to drive and control the array of EL devices and a plurality of interconnection layers. Each interconnection layer is in electrical contact between an EL device and a respective thin-film transistor of the plurality of thin-film transistors.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments described herein relate to graded slope bottom reflective electrode layer structures for organic light-emitting diode (OLED) display pixels. An EL device includes a pixel definition layer having a top surface, a bottom surface, and graded sidewalls interconnecting the top and bottom surfaces and a bottom reflective electrode layer disposed over the pixel definition layer. The bottom reflective electrode layer includes a planar portion disposed over the bottom surface and a graded portion disposed over the graded sidewalls, where the graded portion has a non-linear profile. The EL device includes an organic layer disposed over the bottom reflective electrode layer and a top electrode disposed over the organic layer. Also described herein are methods for fabricating the EL device.
The PDL 120 is disposed over the substrate 110. In some embodiments, a bottom surface 122 of the PDL 120 contacts the substrate 110, the interconnection layer 114, or both. The PDL 120 has a top surface 124 facing away from the substrate 110. An emission region 102 of the EL device 100 is formed by openings in the PDL 120 extending from the top surface 124 through to the bottom surface 122 of the PDL 120. The PDL 120 has graded sidewalls 126 (i.e., a graded bank) interconnecting the top and bottom surfaces 124, 122. Herein, graded is defined as being simple or compound curved. In some embodiments, the graded sidewalls 126 may have any non-linear profile. In some embodiments, the PDL 120 may be a photoresist formed from any suitable photosensitive organic or polymer-containing material. In some other embodiments, the PDL 120 may be formed from SiO2, SiNx, SiON, SiCON, SiCN, Al2O3, TiO2, Ta2O5, HfO2, ZrO2, or another dielectric material.
The bottom reflective electrode layer 130 (e.g., anode in standard OLED configuration) includes a planar electrode portion 132 disposed over the interconnection layer 114 and a graded reflective portion 134 disposed over the graded sidewalls 126 of the PDL 120. Here, the graded portion 134 connects to the opposed lateral ends 132a of the planar portion 132. In some embodiments, the bottom reflective electrode layer 130 may be conformal to the interconnection layer 114 and the graded sidewalls 126. In some embodiments, the bottom reflective electrode layer 130 may extend to the top surface 124 of the PDL 120. In some embodiments, the bottom reflective electrode layer 130 may be a monolayer. In some other embodiments, the bottom reflective electrode layer 130 may be a multi-layer stack. In some embodiments, the bottom reflective electrode layer 130 may include a transparent conductive oxide layer and a metal reflective film. In some embodiments, the transparent conductive oxide layer may include one or more of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), combinations thereof, and multi-layer stacks thereof. In some embodiments, the metal reflective film may include one or more of aluminum (Al), silver (Ag), magnesium (Mg), platinum (Pt), lead (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), Al:Ag alloys, other alloys thereof, other suitable metals and their alloys, combinations thereof, and multi-layer stacks thereof. In some other embodiments, the bottom reflective electrode layer 130 may include a transparent conductive oxide layer and a Distributed Bragg Reflector (DBR) including alternately stacked high refractive index and low refractive index material layers forming a reflective multi-layer. In yet other embodiments, the transparent conductive oxide may be combined with one or more of a metal, transparent conductive metal oxide, transparent dielectric, scattering reflector, DBR, other suitable material layers, combinations thereof, and multi-layer stacks thereof.
In some embodiments, the bottom reflective electrode layer 130 may directly contact the interconnection layer 114 and the PDL 120. Here, the planar electrode portion 132 and the graded reflective portion 134 are formed of the same material. In some other embodiments, the interconnection layer 114 forms the planar electrode portion 132 of the bottom reflective electrode layer 130. In such embodiments, the planar electrode portion 132 and the graded reflective portion 134 may be formed from different materials. For example, the planar electrode portion 132 may be a multi-layer stack of ITO/Ag/ITO, and the graded reflective portion 134 may be a scattering reflector, DBR, or metal alloy.
One advantage of the bottom reflective electrode layer 130 having the graded bank structure is that the curved slope of the graded portion 134 is easier to fabricate compared to an analogous straight bank structure having a constant slope. In some aspects, the graded slope of the bottom reflective electrode layer 130 is analogous to a composition of straight bank structures having different slopes at different positions. In that regard, another advantage of the graded bank structure is averaging of redirection effects of different bank angles producing a more uniform emission pattern. Another advantage of the graded bank structure is that, relative to the straight bank structure, the graded slope produces angular intensities closer to the Lambertian distribution.
The dielectric layer 140 includes a graded portion 144 disposed over the graded portion 134 of the bottom reflective electrode layer 130. Here, the dielectric layer 140 terminates at the planar portion 132 of the bottom reflective electrode layer 130 without extending over the planar portion 132. In some other embodiments, the dielectric layer 140 may overlap the opposed lateral ends 132a of the planar portion 132 without extending over the entire planar portion 132. In some embodiments, the dielectric layer 140 may extend laterally beyond the graded portion 134 of the bottom reflective electrode layer 130 to the top surface 124 of the PDL 120. In some embodiments, the dielectric layer 140 may directly contact the bottom reflective electrode layer 130 and/or the PDL 120. In some embodiments, the dielectric layer 140 may be conformal to the bottom reflective electrode layer 130 and/or the PDL 120. In some embodiments, the dielectric layer 140 may include any suitable low-k dielectric material. In some embodiments, the dielectric layer 140 may be formed from SiO2, SiNx, SiON, SiCON, SiCN, Al2O3, TiO2, Ta2O5, HfO2, ZrO2, or another dielectric material.
The organic layer 150 includes a planar portion 152 disposed over the planar portion 132 of the bottom reflective electrode layer 130 and a graded portion 154 disposed over the graded portion 144 of the dielectric layer 140. Here, the graded portion 154 connects to lateral ends of the planar portion 152. In some embodiments, the organic layer 150 may directly contact the bottom reflective electrode layer 130 and the dielectric layer 140. In some embodiments, the organic layer 150 may be conformal to the bottom reflective electrode layer 130 and the dielectric layer 140. In some embodiments, the organic layer 150 may extend laterally beyond the bottom reflective electrode layer 130, may extend over the top surface 124 of the PDL 120, or both. Here, the organic layer 150 includes a plurality of organic layers, namely a hole injection layer (HIL) 156, a hole transport layer (HTL) 158, an emissive layer (EML) 160, an electron transport layer (ETL) 162, and an electron injection layer (EIL) 164. However, the organic layer 150 is not particularly limited to the illustrated embodiment. For example, in another embodiment, one or more layers may be omitted from the organic layer 150. In yet another embodiment, one or more additional layers may be added to the organic layer 150. In yet another embodiment, the organic layer 150 may be inverted such that the plurality of layers are reversed.
In some embodiments, the HIL 156 may have a thickness of from about 1 nm to about 30 nm, such as from about 1 nm to about 20 nm, such as from about 5 nm to about 15 nm, or such as about 10 nm. In one exemplary embodiment, the HIL 156 may include 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HATCN).
In some embodiments, the HTL 158 may have a thickness of from about 120 nm to about 240 nm, such as from about 120 nm to about 180 nm, such as from about 140 nm to about 160 nm, such as about 150 nm, alternatively from about 140 nm to about 240 nm, such as from about 160 nm to about 230 nm, such as from about 180 nm to about 220 nm, such as from about 190 nm to about 210 nm, such as about 195 nm, or alternatively about 200 nm. In one exemplary embodiment, the HTL 158 may include N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB).
In some embodiments, the EML 160 may have a thickness of from about 5 nm to about 40 nm, such as from about 5 nm to about 20 nm, such as about 10 nm, alternatively from about 10 nm to about 40 nm, such as from about 10 nm to about 30 nm, or such as about 20 nm. In one exemplary embodiment, the EML 160 may include 3,3-di(9H-carbazol9-yl)biphenyl-bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (mCBP:Ir(ppy)2(acac)).
In some embodiments, the ETL 162 may have a thickness of from about 20 nm to about 240 nm, such as from about 20 nm to about 100 nm, such as from about 40 nm to about 80 nm, such as from about 40 nm to about 60 nm, such as about 50 nm, alternatively from about 60 nm to about 80 nm, such as about 65 nm, alternatively from about 100 nm to about 240 nm, such as from about 150 nm to about 240 nm, such as from about 160 nm to about 220 nm, such as from about 170 nm to about 190 nm, such as about 180 nm, alternatively from about 180 nm to about 220 nm, such as from about 190 nm to about 210 nm, or such as about 200 nm. In one exemplary embodiment, the ETL 162 may include 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi).
The top electrode 170 (e.g., a cathode in a standard OLED configuration) includes a planar portion 172 disposed over the planar portion 152 of the organic layer 150 and a graded portion 174 disposed over the graded portion 154 of the organic layer 150. Here, the graded portion 174 connects to opposed lateral ends of the planar portion 172. In some embodiments, the top electrode 170 may directly contact the organic layer 150. In some embodiments, the top electrode 170 may be conformal to the organic layer 150. In some embodiments, the top electrode 170 may extend laterally beyond the organic layer 150, may contact the dielectric layer 140, and/or may extend over the top surface 124 of the PDL 120. In some embodiments, the top electrode 170 may be a monolayer. In some other embodiments, the top electrode 170 may be a multi-layer stack. In some embodiments, the top electrode 170 may be formed from one or more of Al, Ag, Mg, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, LiF, Al:Ag alloys, Mg:Ag alloys, other alloys thereof, other suitable metals and their alloys, ITO, IZO, ZnO, In2O3, IGO, AZO, GZO, combinations thereof, and multi-layer stacks thereof. In some embodiments, the top electrode 170 may include an underlayer formed from one or more of HATCN, LiF, combinations thereof, or multi-layer stacks thereof. In some embodiments, the top electrode 170 may have a thickness of from about 5 nm to about 120 nm, such as from about 5 nm to about 50 nm, such as from about 10 nm to about 30 nm, such as about 20 nm, alternatively from about 50 nm to about 120 nm, such as from about 80 nm to about 120 nm, such as from about 90 nm to about 110 nm, or such as about 100 nm.
In one exemplary embodiment, the EL device 100 may include (from bottom to top) a bottom reflective electrode layer 130 including a multi-layer stack of alternating ITO and Ag, an HTL 158 having a thickness of about 200 nm, an EML 160 having a thickness of about 10 nm, an ETL 162 having a thickness of about 200 nm, and a top electrode 170 including Ag and having a thickness of about 20 nm. One advantage of the EL device 100 according to this embodiment is improved efficiency compared to other exemplary embodiments described herein.
In another exemplary embodiment, the EL device 100 may include (from bottom to top) a bottom reflective electrode layer 130 including a multi-layer stack of alternating ITO and Ag, an HTL 158 having a thickness of about 200 nm, an EML 160 having a thickness of about 10 nm, an ETL 162 having a thickness of about 180 nm, and a top electrode 170 including Ag and having a thickness of about 20 nm. One advantage of the EL device 100 according to this embodiment is improved color viewing compared to other exemplary embodiments described herein.
In yet another exemplary embodiment, the EL device 100 may include (from bottom to top) a bottom reflective electrode layer 130 including a multi-layer stack of alternating ITO and Ag, an HTL 158 having a thickness of about 195 nm, an EML 160 having a thickness of about 10 nm, an ETL 162 having a thickness of about 65 nm, and a top electrode 170 including ITO and having a thickness of about 100 nm. Advantages of the EL device 100 according to this embodiment are improved efficiency and reduced light absorption in the top electrode 170 compared to other exemplary embodiments described herein.
In yet another exemplary embodiment, the EL device 100 may include (from bottom to top) a bottom reflective electrode layer 130 including a multi-layer stack of alternating ITO and Ag, an HIL 156 including HATCN and having a thickness of about 10 nm, an HTL 158 including NPB and having a thickness of about 150 nm, an EML 160 including mCBP:Ir(ppy)2(acac) and having a thickness of about 20 nm, an ETL 162 including TBPi and having a thickness of about 50 nm, and a top electrode 170 including one of a first layer including HATCN and having a thickness of about 30 nm and a second layer including ITO and having a thickness of about 80 nm ITO or a first layer including LiF and having a thickness of about 1 nm and a second layer including a Mg:Ag alloy and having a thickness of about 20 nm.
Comparing top electrodes 170 including ITO therein vs. Mg:Ag alloys therein, one advantage of an ITO top electrode is improved optical outcoupling efficiency to the filler 180a, b (ηfiller) and resultant improvement in external optical outcoupling efficiency from the EL device 100 to air (next). In one or more embodiments, using an ITO top electrode vs. a Mg:Ag alloy top electrode, miner has been shown to improve by about 30%. In some embodiments, using an ITO top electrode has been shown to achieve ηfiller up to about 90%. The improved efficiency of an ITO top electrode compared to a Mg:Ag alloy top electrode is due, at least in part, to lower absorption and lower surface plasmon loss for ITO compared to Mg:Ag alloys.
The filler 180a, b is disposed over the top electrode 170. In some embodiments, the filler 180a, b may directly contact the top electrode 170. As illustrated in
In another embodiment, e.g., illustrated in
In some embodiments, the filler 180a, b may include one or more high refractive index materials (i.e., n≥1.8), or index-matching materials, having a similar refractive index to the emission region 102. In some embodiments, the refractive index of the filler 180a, b, may exceed the refractive index of the emission region 102 by about 0.2 or more. In one or more embodiments, the filler 180a, b may be highly transparent. For example, the filler 180a, b can include one or more metal oxides, metal nitrides, Al2O3, SiO2, TiO, TaO, AlN, SiN, SiOxNx, TiN, TaN, high refractive index nanoparticles, other suitable materials, and combinations thereof. Non-limiting examples of materials that can be used in the filler 180a, b include any suitable material that can be integrated into OLED fabrication, such as organic materials (e.g., N,N′-Bis(napthalen-1-yl)-N,N′-bis(phenyl)benzidine, or NPB), inorganic materials, resins, or a combination thereof. The filler 180a, b can include a composite such as a colloidal mixture where the colloids are high refractive index inorganic materials such as TiO2.
In the embodiment illustrated in
The planar portion 232 has a width W1 defined along the x-axis between the opposed lateral ends 232a. The graded portion 234 has a width W2 defined along the x-axis between one of the lateral ends 232a and the adjacent graded portion end 234a. In some embodiments, the bottom reflective electrode layer 230 includes a top portion 236 substantially parallel to the planar portion 232 having a width W3 along the x-axis. In such embodiments, the top portion 236 may extend midway between adjacent EL devices 100 (see
Referring to
Referring to
As illustrated in
The graded portion 334 and the top portion 336 are non-continuous at the graded portion end 334a such that the graded portion 334 forms an angle θB′ with the x-axis. In the embodiment illustrated in
Referring to
At activity 502, the method 500 includes coating the PDL 120 over the substrate 110 as illustrated in
At activity 504, the method 500 includes performing photolithographic patterning of the PDL 120 to recess the PDL 120 from the top surface 124 thereof through to the bottom surface 122 to form the generally concave structure of the emission region 102 having the graded sidewalls 126 as illustrated in
In some other embodiments, performing the photolithographic patterning includes exposing the PDL 120 to patterned ultraviolet (UV) light through a photomask (not shown). In such embodiments, the PDL photoresist material is a negative tone photoresist. Light diffusion at edges of the photomask pattern may cause partial UV exposure forming a latent pattern in the PDL 120 corresponding to the graded sidewalls 126. With the negative tone photoresist, portions of the PDL 120 exposed to the UV light are polymerized or cross-linked, such that exposed portions are retained and unexposed portions are removed during development, forming the structure shown in
In yet other embodiments, the PDL 120 may be recessed using an etching process. In such embodiments, one of a patterned hard mask or patterned photoresist layer (not shown) is formed over the PDL 120 and used as an etch stop. Isotropic wet or dry etching may be used to etch the PDL 120. It will be appreciated that isotropic etching can result in lateral etching of the PDL 120 at edges of the patterned etch stop layer forming the graded sidewalls 126 shown in
At activity 506, the method 500 includes forming the bottom reflective electrode layer 130 over the patterned PDL 120 as illustrated in
At activity 508, the method 500 includes forming the dielectric layer 140 over the graded portion 134 of the bottom reflective electrode layer 130 as illustrated in
At activity 510, the method 500 includes forming the organic layer 150 over the substrate 110, including over the planar portion 132 of the bottom reflective electrode layer 130 and over the dielectric layer 140 as illustrated in
In some embodiments, a total thickness of the organic layer 150 may be about 300 nm or less, such as about 200 nm or less, such as about 200 nm, alternatively from about 200 nm to about 300 nm, such as from about 200 nm to about 250 nm, such as from about 220 nm to about 240 nm, or such as about 230 nm. The total thickness of the organic layer 150 is reduced from typical EL devices 100 (about 400 nm). One advantage of the reduced total thickness of the organic layer 150 is improved color uniformity due to reduced color shift across viewing angles.
At activity 512, the method 500 includes forming the top electrode 170 over the organic layer 150 as illustrated in
At activity 514, the method 500 optionally includes forming the filler 180b over the top electrode 170 as illustrated in
At activity 516, the method 500 optionally includes patterning the filler 180b to form the patterned filler 180a as illustrated in
While the foregoing is directed to examples of the present disclosure, other and further examples of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2020/042244 | Jul 2020 | US | national |
This application claims benefit of PCT Application Serial No. PCT/US20/42244, filed on Jul. 16, 2020, the entirety of which is herein incorporated by reference.