Embodiments relate to surge arresters.
Surge arresters, which provide a current path from a conductor to electrical ground, offer power systems and related components protection against power surges caused by, for example, lightning strikes, electrical switching events, and/or other causes. Surge arrester designs may include a metal oxide varistor (MOV) stack made up of one or more MOV devices or discs, which are highly nonlinear ceramic semiconductors that switch from an insulating state during normal operation to a conductive state in the presence of a power surge. The resistance of the MOV stack drops during a power surge such that the arrester conducts the surge current to ground. Accordingly, during a power surge, a voltage increase on the conductor may be limited to a level that will not cause damage to the power system or components.
As described above, the MOV discs included in a surge arrester can protect equipment against short duration power surges caused by lightning or electrical switching. However, the MOV discs of the surge arrester may be ineffective in protecting against sustained overvoltage conditions that occur at typical line frequencies, such as 50-60 Hz. Sustained over voltages may result in overheating of the arrester, which increases conductivity of the MOV discs and, thus, more power dissipation. As a result, the arrester may reach a critical temperature at which thermal runaway and short-circuit faults may occur within the arrester. Short-circuit faults in an arrester may lead to severe power arcing and possibly expulsions of hot debris into the environment, creating hazardous conditions for nearby personnel and equipment.
A first aspect provides an arrester including a metal oxide varistor (MOV) disc and a spark gap assembly electrically connected in series with the MOV disc. The spark gap assembly includes a spark gap and a frequency-dependent grading capacitor electrically connected in parallel with the spark gap.
A second aspect provides an accessory device electrically connected in series with an arrester. The accessory device includes a spark gap assembly including a spark gap and a frequency-dependent grading capacitor electrically connected in parallel with the spark gap.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
The surge arrester 100 further includes one or more metal oxide varistor (MOV) discs 130 and a spark gap assembly 135. In some embodiments, the MOV disc 130 is comprised of predominantly zinc oxide (ZnO) and includes one or more additives, such as bismuth (Bi), manganese (Mn), cobalt (Co), nickel (Ni), antimony (Sb), tin (Sn), chromium (Cr), aluminum (Al), silver (Ag), and/or Boron (B).
As shown in the circuit schematic illustrated in
The grading capacitor 145 is frequency dependent. That is, in operation, the electrical characteristics (e.g., capacitance, permittivity, etc.) of grading capacitor 145 are dependent on the frequency of the system 120 to which surge arrester 100 is connected, and thus, are dependent on the frequency of the voltage across grading capacitor 145. The grading capacitor 145 is designed such that the effective, or measured, capacitance of the grading capacitor 145 decreases as the frequency of the system 120 increases. In particular, the grading capacitor 145 is designed such that the effective, or measured, capacitance of the grading capacitor 145 decreases by at least 40% as the frequency of system 120 increases from 60 Hz to 500 kHz. Preferably, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 75% over the 60 Hz to 500 kHz frequency range of system 120.
In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 45% over the 60 Hz to 500 kHz frequency range of system 120. In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 50% over the 60 Hz to 500 kHz frequency range of system 120. In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 55% over the 60 Hz to 500 kHz frequency range of system 120. In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 60% over the 60 Hz to 500 kHz frequency range of system 120. In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 65% over the 60 Hz to 500 kHz frequency range of system 120. In some embodiments, the grading capacitor 145 is designed such that effective, or measured, capacitance of the grading capacitor 145 decreases by at least 70% over the 60 Hz to 500 kHz frequency range of system 120. The grading capacitor 145 may either be linear or nonlinear. A linear grading capacitor 145 has a capacitance that is not dependent on applied voltage. A nonlinear grading capacitor has a capacitance that changes with applied voltage.
To achieve the above-described capacitance decrease, the material(s) used to construct grading capacitor 145 may be chosen to be one or more capacitive materials that have a frequency-dependent permittivity. That is, the grading capacitor 145 is constructed from, or formed of, any material producing a suitable dielectric constant that is strongly enhanced at low system frequency. For example, the grading capacitor 145 may be formed of one or more of “soft,” or donor-doped, ferroelectric ceramics, relaxor ferroelectric ceramics, and/or various composite materials (e.g., conductor-insulator composites) that exhibit enhanced low frequency permittivity due to space charge effects.
In addition to including a frequency-dependent grading capacitor 145, the spark gap assembly 135 is designed such that voltage sharing between the spark gap assembly and the MOV disc 130 is optimized. For example, the spark gap assembly 135 is designed to allow for a specific voltage sharing between the MOV disc 130 and the spark gap 140 included in spark gap assembly 145, as required by the application and desired performance of surge arrester 100. Furthermore, the spark gap assembly 135 is designed such that the impulse sparkover voltage of the surge arrester 100 is minimized at high frequencies (e.g., 500 kHz-1 MHz).
In some embodiments, the spark gap assembly 135 is designed such that the impedance of the grading capacitor 145 is coordinated with the series impedance of the MOV disc 130. In some embodiments, the impedance of the grading capacitor 145 is designed, or selected, to be a first percentage of the total impedance of surge arrester 100 at a 50/60 Hz maximum continuous operating voltage (MCOV). In such embodiments, the relative impedance of grading capacitor 145 increases to a second percentage, which is greater than the first percentage of the total impedance of surge arrester 100 during system voltage surges at frequencies between 30 kHz-1 MHz. For example, the impedance of grading capacitor 145 may be 20-50% of the total impedance of surge arrester 100 during operation at 50/60 Hz MCOV. However, at the same voltage but at higher frequencies between 30 kHz-1 MHz, the impedance of grading capacitor 145 increases to a value between 80-100% of the total impedance of surge arrester 100. That is, when the surge arrester 100 experiences a high frequency surge event occurring in system 120, the percentage of the surge arrester's total impedance that is attributed to grading capacitor 145 increases.
In some embodiments, the impedance of grading capacitor 145 may be less than the impedance of the MOV disc(s) 130 during operation at 50/60 Hz MCOV, and thus makes up less than 50% of the total impedance of surge arrester 100. During surges occurring at frequencies of 30 kHz-1 MHz, the impedance of gap assembly 135 is reduced to less than the impedance of the MOV disc(s) 130, owing to the frequency dependent capacitance of the grading capacitor 145. As a result, voltage sharing between the MOV disc(s) 130 and the gap assembly 135 is altered, such that the voltage across the MOV disc(s) 130 is reduced and the voltage across the gap assembly 135 is increased, causing earlier firing of the spark gap 140 at high frequency.
When compared to existing spark gap assemblies, the spark gap assembly 135 utilizes only a single grading capacitor 145 that is rated to withstand the gap sparkover voltage. The use of a single grading capacitor 145, as opposed to a plurality of grading circuit elements, reduces cost and size of the spark gap assembly 135. In addition, spark gap assemblies that include only a single grading capacitor may dissipate less heat than spark gap assemblies that include multiple circuit grading elements, particularly during surge events.
It should be understood that the embodiment of the surge arrester 100 illustrated by
Moreover, it should be understood that the embodiment of the spark gap assembly 135 illustrated by
As an example,
In some instances, it may be desirable to provide the protection offered by spark gap assembly 135 described herein to pre-existing and/or new surge arresters that do not include their own spark gap assemblies. Accordingly, in some embodiments, the spark gap assemblies described herein and/or illustrated in
As shown, the accessory device 600 further includes a spark gap assembly 135. Accordingly, when the accessory device 600 is connected in series with the surge arrester 800, the impedance of the grading capacitor 145 included in spark gap assembly 135 is coordinated with the series impedance of the MOV disc(s) 130 included in arrester 700, as described above.
In some examples, is preferable for the grading capacitor to be formed of a dielectric ceramic that contains both capacitive and resistive microstructural elements when sintered in air. One example of this dielectric ceramic is perovskite ceramic with chemical formula Cu0.75Ca0.25TiO3. Pervoskite ceramic naturally exhibits an inhomogeneous conductivity, with insulating grain boundaries and conductive grains, such that the material behaves as a complex R-C circuit.
Thus, the disclosure provides, among other things, surge arresters for protecting a power system against high frequency surge events. Various features and advantages of the disclosure are set forth in the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 63/313,050, filed Feb. 23, 2022, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63313050 | Feb 2022 | US |