The present disclosure relates generally to a grading control system and more particularly, to a grading control system using machine linkages.
Preparation of a worksite often includes grading a worksite using a machine to form a ground surface having a desired grade. Grading a worksite may include preparing the ground surface to have a desired slope in a direction of travel of the machine and/or a cross-slope in a direction generally perpendicular to the direction of travel of the machine. Conventional methods of grading may include placing multiple grading stakes about the worksite as reference points. The orientation of a work implement of the machine may be adjusted based on the grading stakes to ensure that the correct amount of material is removed or added to form the desired grade. The orientation of the work implement may be controlled manually.
The accuracy of the grade, however, depends on the number of grade stakes used, the distance between the stakes, and the ability of the operator of the machine to correctly orient the work implement to achieve the desired grade. To minimize error, surveyors may have to place the stakes closer together, which may make stake placement a lengthy and tedious process. Furthermore, the machine may simultaneously pitch fore/aft and side to side during the grading operations as the machine tracks or wheels follow the uneven ground surface. An operator must, therefore, react quickly and accurately to accurately achieve the desired grade while also moving fast enough to be productive.
Some techniques for grading employ the use of automatic control systems coupled with sensors that communicate with external references that identify the desired grade. For example, U.S. Pat. No. 7,293,376 B2 of Glover issued on Nov. 13, 2007 (“the '376 patent”) and discloses a grading control system for a work machine having a work implement for grading along a grade defined by a laser plane generator. The '376 patent discloses a laser receiver attached to the work machine and configured to receive a laser signal indicative of a desired grade. The '376 patent further discloses lift sensor configured to communicate a lift signal indicative of a lift position of the work implement. The '376 patent also discloses a control module configured to generate and communicate control signals to actuate at least one of the lift and tilt actuators to maintain the work implement at a position substantially corresponding to the desired grade.
Although the '376 patent discloses an automated control system for grade control, the system of the '376 patent requires a laser receiver and a laser plane generator. Such laser equipment may be prone to damage during operations on a work site due to interaction with the work machines or materials at the work site. The need for laser receivers and the laser plane generator may also make the system of the '376 patent more expensive. Moreover, the laser receiver of the '376 patent may not be able to determine the desired grade without an unobstructed line of sight view of the laser plane. In addition, the system of the '376 patent still requires a separate hydro-mechanical system on the machine to keep the work tool on grade.
The grading control system of the present disclosure solves one or more of the problems set forth above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to a grading control system. The grading control system may include a lift actuator configured to selectively raise and lower the work implement. The grading control system may further include a tilt actuator configured to tilt a work implement of the machine. The grading control system may also include a first sensor configured to communicate a first signal indicative of a first position of the work implement relative to at least one of a machine frame or a gravity vector. Additionally, the grading control system may include a second sensor configured to communicate a second signal indicative of a second position of the machine frame relative to the gravity vector. The grading control system may include a controller in communication with the first and second sensors. The controller may be configured to determine a track plane defined by an undercarriage of the machine. The controller may also be configured to determine a desired grade relative to the track plane. Further, the controller may be configured to determine an orientation of the work implement relative to the track plane required to maintain the desired grade based on at least one of the first and second signals. The controller may also be configured to generate at least one control signal to actuate at least one of the lift actuator and the tilt actuator to orient the work implement based on the determined orientation.
In another aspect, the present disclosure is directed to a grading control method. The method may include receiving at least one input indicative of a desired grade. The method may also include generating a track plane associated with a machine. Further, the method may include determining, using a controller, the desired grade relative to the track plane of the machine based on the at least one input. The method may include propelling the machine on a ground surface. The method may also include determining, using the controller, an orientation of the work implement relative to the track plane required to maintain the desired grade as the machine is propelled on the ground surface. The method may include generating, using the controller, at least one control signal to actuate at least one of a lift actuator and a tilt actuator of the machine based on the determined orientation. In addition, the method may include actuating at least one of the lift actuator and the tilt actuator based on the at least one control signal to orient the work implement.
In yet another aspect the present disclosure is directed to a machine. The machine may include a machine frame and a plurality of traveling devices configured to support the machine frame over a ground surface. The machine may also include a work implement. The machine may include a lift arm pivotably connected to the machine frame and to the work implement. The machine may include a lift actuator configured to selectively raise and lower the work implement relative to the machine frame. The machine may also include a tilt actuator configured to tilt the work implement relative to the lift arm. Further, the machine may include a first sensor configured to communicate a first signal indicative of a first position of the work implement relative to at least one of the lift arm, the machine frame, or a gravity vector. The machine may also include a second sensor configured to communicate a second signal indicative of a second position of the machine frame relative to the gravity vector. In addition, the machine may include a controller in communication with the first and second sensors and with the lift and tilt actuators. The controller may be configured to determine a desired grade relative to a track plane associated with the travelling devices of the machine. Further, the controller may be configured to determine an orientation of the work implement relative to the track plane to maintain the desired grade based on at least one of the first and second signals. The controller may also be configured to generate at least one control signal to orient the work implement based on the determined orientation. In addition, the controller may be configured to actuate at least one of the lift actuator and the tilt actuator based on the at least one control signal.
Machine frame 12 may extend from front end 22 to rear end 24 of machine 10. Machine frame 12 may be supported on ground surface 26 by undercarriage 14, which may be used to propel machine 10 in a forward or rearward direction (i.e. along arrow A). In some exemplary embodiments, a suspension system (not shown) may be disposed between machine frame 12 and undercarriage 14. The suspension system may include for example, one or more of springs, dampers, shock absorbers, and/or other suspension components known in the art. Undercarriage 14 may be configured to engage ground surface 26, roads, and/or other types of terrain. Undercarriage 14 may include, a pair of endless tracks 28 and 30 (see
Work tool assembly 16 of machine 10 may be connected to and may be supported by machine frame 12. In one exemplary embodiment as illustrated in
In one exemplary embodiment as illustrated in
As also illustrated in
Engine 18 may be supported by machine frame 12 and may be configured to generate a power output that can be directed through sprockets 34 and tracks 28 and 30 to propel machine 10 in a forward or rearward direction (i.e. along an direction between front end 22 and rear end 24). Engine 18 may be any suitable type of internal combustion engine, such as a compression-ignition engine, a spark-ignition engine, a natural gas or alternative fuel engine, or a hybrid-powered engine. It is also contemplated that in some exemplary embodiments engine 18 may be driven by electrical power.
Engine 18 may be configured to deliver power output directly to sprockets 34. Additionally or alternatively, engine 18 may be configured to deliver power output to a generator (not shown), which may in turn drive one or more electric motors (not shown) coupled to sprockets 34. According to yet another embodiment, engine 18 may deliver power output to a hydraulic motor (not shown) fluidly coupled to a hydraulic pump (not shown) and configured to convert a fluid pressurized by the hydraulic pump into a torque output, which may be directed to sprockets 34. In addition to providing power for propelling machine 10, engine 18 may also provide power to move and/or manipulate work tool assembly 16 associated with machine 10. For example, engine 18 may provide power to one or more hydraulic pumps (not shown) that may provide pressurized fluid to one or more of lift actuators 40 and/or tilt actuators 42 to manipulate work implement 38.
Operator station 20 may be supported on machine frame 12. Operator station 20 may be an open or an enclosed compartment. One or more controls may be associated with operator station 20 and may include, for example, one or more input devices for operating and/or driving machine 10. In one exemplary embodiment, the controls in operator station 20 may also include one or more display devices 58 (see
Input devices 72 may include one or more of joysticks, keyboards, knobs, levers, touch screens, or other input devices known in the art. Adapted to generate a desired movement signal, input devices 72 may receive one or more inputs from an operator and may communicate the one or more inputs as in the form of one or more signals to controller 74. Input devices 72 may be used to operate or drive machine 10, and may also be used to manually control lift actuators 40, tilt actuators 42, and/or cross-slope actuators 66. Further, input devices 72 may be used to control a speed of machine 10 and/or to steer machine 10 as machine 10 travels over ground surface 26. In addition, input devices 72 may be used to input a desired lift arm angle “θ” and/or tilt angle “ϕ” (see
Controller 74 may include one or more processors 92 and/or one or more memory devices 94. Controller 74 may be configured to control operations of input devices 72, display devices 58, lift actuators 40, tilt actuators 42, cross-slope actuators 66, and/or other operations of machine 10. Processor 92 may embody a single or multiple microprocessors, digital signal processors (DSPs), etc. Numerous commercially available microprocessors can be configured to perform the functions of processor 92. Various other known circuits may be associated with processor 92, including power supply circuitry, signal-conditioning circuitry, and communication circuitry.
The one or more memory devices 94 may store, for example, one or more control routines or instructions for determining a position of work implement 38 relative to machine frame 12 or ground surface 26 and for controlling work tool assembly 16 based on the determined position. Memory device 94 may embody non-transitory computer-readable media, for example, Random Access Memory (RAM) devices, NOR or NAND flash memory devices, and Read Only Memory (ROM) devices, CD-ROMs, hard disks, floppy drives, optical media, solid state storage media, etc. Controller 74 may receive one or more input signals from the one or more input devices 72 and may execute the routines or instructions stored in the one or more memory devices 94 to generate and deliver one or more command signals to one or more of lift valves 86, tilt valves 88, and/or cross-slope valves 90 associated with lift actuators 40, tilt actuators 42, and cross-slope actuators 66, respectively.
One or more display devices 58 may be associated with controller 74 and may be configured to display data or information in cooperation with processor 92. In one exemplary embodiment, display device 58 may show the position of work implement 38 as x, y, z coordinates. In another exemplary embodiment, display device 58 may show lift, tilt, and/or cross-slope angles θ, ϕ, and/or φ (e.g. φ1 and/or φ2). In another exemplary embodiment, display device 58 may include a series of LED lights that indicate whether edge 56 of work implement 38 is above grade, on grade, or below grade. In one exemplary embodiment, instead of a visual display, controller 74 may be associated with an audible indicator configured to indicate whether edge 56 of work implement 38 is above grade, on grade, or below grade. In yet another exemplary embodiment, controller 74 may be associated with both display device 58 and the audible indicator. Display device 58 may be a cathode ray tube (CRT) monitor, a liquid crystal display (LCD), a light emitting diode (LED) display, a projector, a projection television set, a touchscreen display, or any other kind of display device known in the art.
Sensor 76 may be an inertial measurement unit disposed on at least one lift arm 36. In one exemplary embodiment, sensor 76 may be a six degree-of-freedom inertial measurement unit configured to generate a signal indicative of one or more of a position, inclination, acceleration, speed, etc. of lift arms 36 as lift arms 36 move in response to movements of lift actuators 40 and/or machine 10. For example, sensor 76 may generate a signal indicative of a position of lift arms 36 relative to either machine frame 12, ground surface 26, or gravity vector 96. In one exemplary embodiment, the signal from sensor 76 may be indicative of a height of work implement 38 or 64 above ground surface 26 or above machine frame 12. In another exemplary embodiment, sensor 76 may be an angle sensor configured to measure a lift arm angle θ of lift arms 36 relative to machine frame 12 or ground surface 26. In some exemplary embodiments, sensors 76 may be located adjacent loader joints 46, although it is contemplated that sensors 76 may be disposed anywhere on lift arms 36. It is also contemplated that in some exemplary embodiments, sensor 76 may be disposed on work implement 38, or on a coupler or other linkage mechanisms associated with lift arm 36 and work implement 38, the coupler or linkage mechanisms being configured to couple work implement 38 to lift arm 36.
Sensor 78 may also be an inertial measurement unit disposed on machine frame 12. Like sensor 76, in one exemplary embodiment, sensor 78 may be a six degree-of-freedom inertial measurement unit configured to generate a signal indicative of one or more of a position, inclination, acceleration, speed, etc. of machine frame 12. For example, sensor 78 may generate a signal indicative of a position of machine frame 12 relative to ground surface 26 or gravity vector 96. Sensor 80 may be an angle sensor configured to generate a signal indicative of tilt angle “ϕ” (see
As also illustrated in the exemplary embodiment of
In one exemplary embodiment, controller 74 may be configured to determine one or more of angle “θ1” between virtual linkage 104 and virtual linkage 106, angle “θ2” between virtual linkage 102 and virtual linkage 104, and/or angles φ1 and/or φ2 representing a cross-slope of work implement 38 based on kinematic model 100. Controller 74 may determine one or more of angles θ1, θ2, φ1, and/or φ2 to orient work implement 38 such that edge 56 may excavate ground surface 26 to generate a desired grade. Although
The grading control system of the present disclosure may be used to continuously adjust an orientation of the work implement of a machine as the machine travels over a ground surface of a work site to perform grading operations. In particular, the grading system of the present disclosure may determine the orientation of the work implement based on a comparison of the desired grade to a plane defined by the contact points of the undercarriage of the machine and the ground surface. By doing so, the grading control system of the present disclosure may eliminate the need for external references, such as, grading stakes, laser planes, etc. for controlling the work implement during grading operations. The grading control system may also determine the configurations (e.g. extension or retraction) of various actuators, for example, lift, tilt, and cross-slope actuators, to orient the work implement according to the orientation determined by the grading control system to achieve the desired grade on the ground surface. An exemplary method of operation of grading control system 70 will be discussed below.
Method 600 may include a step of receiving information regarding a desired grade for a worksite (Step 602). Information regarding the desired grade may be received, for example, via the one or more input devices 72 associated with machine 10. In one exemplary embodiment, the information may include a desired mainfall and/or a desired cross-slope. In another exemplary embodiment, the information may include an initial orientation of work implement 38. For example, the information may include a lift angle θ, a tilt angle ϕ, and or a cross-slope angle φ (e.g. φ1 or φ2) associated with work implement 38.
Method 600 may include a step of determining a track plane 120 (see
Method 600 may include a step of determining the desired grade (Step 606). Controller 74 may determine the desired grade based on the information received in, for example, step 602. In one exemplary embodiment, controller may determine a plane defined by one or more of angles θ, ϕ, φ1, and/or φ2, and the known geometry of work implement 38 or edge 56. Controller 74 may then determine the desired grade (i.e. the desired mainfall and the desired cross-slope) based on an orientation of the plane relative to track plane 120 determined, for example, in step 604. In another exemplary embodiment, controller 74 may determine the desired mainfall and cross-slope based on a plane defined by one or more points on track plane 120 and one or more points on work implement 38 or edge 56, after orienting work implement 38 to the initial orientation specified by an operator or machine 10, for example, in step 602.
Method 600 may include a step of propelling machine 10 over ground surface 26 of a worksite (Step 608). Machine 10 may be propelled on ground surface 26 manually by an operator by using the one or more controls located in operator's station 20 of machine 10. Alternatively, machine 10 may be propelled on ground surface 26 automatically by controller 74, which may control one or more of a speed, acceleration, heading, and/or steering of machine 10 based on a predetermined travel path stored in memory device 94.
Method 600 may include a step of determining an orientation of work implement 38 (Step 610). Controller 74 may determine an orientation of work implement 38 by monitoring a height of work implement 38 above ground surface, a tilt position of work implement 38, and/or a cross-slope position work implement 38. Controller 74 may determine the height, lift position, and/or cross-slope position by determining a length of one or more of lift actuators 40, tilt actuators 42, and/or cross-slope actuators 66. Controller 74 may combine the determined lengths with geometric, trigonometric, and/or kinematic equations representing the geometry of machine 10 to determine the height, lift position, and/or cross-slope position of work implement 38.
Method 600 may include a step of determining track plane 120 of undercarriage 14 of machine 10 (Step 612). In step 612, controller 74 may perform one or more processes similar to those discussed above with respect to, for example, step 604. Method 600 may include a step of determining an orientation of work implement 38 to achieve the desired grade (i.e. the desired mainfall and the desired cross-slope) (Step 614). In step 614, controller 74 may compare the orientation of work implement 38 determined, for example, in step 610 with track plane 120 of undercarriage 14 of machine 10 determined, for example, in step 612. Controller 74 may determine the orientation of work implement 38 based on this comparison, and further based on, for example, one or more geometric, trigonometric, and/or kinematic equations, and/or kinematic models 100, or other algorithms stored in memory device 94. In one exemplary embodiment, controller 74 may determine angle θ1 between virtual linkages 104 and 106, angle θ2 between virtual linkages 102 and 104, and angles θ, φ1 and/or φ2 for work implement 38 based on, for example, kinematic model 100 of machine 10. In other exemplary embodiments, controller 74 may determine lift angle θ and/or a tilt angle for work implement 38 based on angles θ1, θ2, and/or φ1 or φ2, or directly using kinematic model 100. In some exemplary embodiments, controller 74 may determine a tilt angle for work implement 38 required to orient work implement 38 relative to gravity vector 96 based on the orientation provided by an operator, for example, in step 602. In these exemplary embodiments, controller 74 may determine a lift angle θ required to maintain work implement 38 on a plane corresponding to the desired mainfall and the desired cross-slope as determined, for example, in step 606 based on, for example, one or more geometric, trigonometric, and/or kinematic equations, and/or kinematic models 100, or other algorithms stored in memory device 94. Controller 74 may determine the lift and tilt angles relative to track plane 120 of machine 10.
Method 600 may include a step of generating valve control signals corresponding to the determined new orientation of work implement 38 (Step 616). In step 616, controller 74 may generate control signals for one or more of valves 86, 88, 90 associated with one or more of lift actuators 40, tilt actuators 42, and/or cross-slope actuators 66, respectively. Method 600 may include a step of controlling one or more of lift, tilt, and/or cross-slope valves 86, 88, 90 to orient work implement 38 according to the determined orientation (Step 618). In step 618, controller 74 may adjust the flow of, for example, hydraulic fluid to or from one or more of lift actuators 40, tilt actuators 42, and/or cross-slope actuators 66 by controlling one or more of lift, tilt, and/or cross-slope valves 86, 88, 90 to orient work implement 38. In some exemplary embodiments, valve control signals generated by controller 74 for one or more of valves 86, 88, 90 may supplement signals generated for valves 86, 88, 90 based on one or more input devices 72, which may be operated by an operator of machine 10. In other exemplary embodiments lift actuators 40, tilt actuators 42, and cross-slope actuators 66 may be adjusted based solely on valve control signals generated by controller 74 in, for example, step 616.
Method 600 may include a step of displaying grade control information on display device 58 (Step 618). In step 618, controller 74 may display grade control information, including, for example, an actual grade of ground surface 26, a desired grade, an orientation of work implement 38, etc., on display device 58. In some embodiments, controller 74 may also display one or more LED lights to indicate whether edge 56 of work implement 38 is above the desired grade, on the desired grade, or below the desired grade. Controller may repeat one or more of steps 602 through 620 as machine 10 moves on ground surface 26 during grading operations.
As discussed above, grading control system 70 controls the orientation of work implement 38 based on a plane corresponding to undercarriage 14 of machine 10. By using the plane corresponding to undercarriage 14 of machine 10 as representative of the desired grade, grading control system 70 eliminates the need for external references, such as, grading stakes, laser planes, etc. Furthermore, by independently controlling one or more of lift actuators 40, tilt actuators 42, and/or cross-slope actuators 66, grading control system 70 allows edge 56 of working implement 38 or 64 to be oriented automatically to accurately adjust both the mainfall and the cross-slope, without input from the operator, during grading operations.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed grading control system. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed grading control system. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.