The present invention relates to implantable neural stimulators, and more particularly to an implantable neural stimulator and a method of using such implantable neural stimulator so as to gradually recruit muscle or neural excitable tissue in a more natural and efficacious manner.
Stimulation of excitable tissues, i.e., neural or muscular, utilizing wide pulse widths, and low rates, as are commonly used in the prior art, tends to force populations of fibers within the proximity of the electrode to exhibit synchronized firing. Indeed, synchronized firing has been the goal of many of these devices because historically it was thought that excitable tissue, if it is to be stimulated, should be stimulated so as to fire synchronously. Such synchronized firing causes the excitable tissue to exhibit nearly uniform input/output firing rate functions, thereby exhibiting minimal statistical variability. Disadvantageously, however, minimal statistical variability induces unnatural firing properties. Such unnatural firing properties are unable to generate a sufficient integrated electrical dynamic range within an excitable tissue to mimic biological recruitment characteristics. It is thus seen that there is a need for a neural stimulation system and method that overcomes the limitations associated with synchronized firing and that mimics biological recruitment characteristics.
U.S. Pat. No. 6,078,838, issued to Jay Rubinstein, teaches a particular type of pseudo-spontaneous neural stimulation system and method. The neural stimulation method taught by Rubinstein in the '838 patent generates stochastic independent activity across an excited nerve or neural population in order to produce what is referred to as “pseudo spontaneous activity”. Varying rates of pseudo spontaneous activity are created by varying the intensity of a fixed amplitude, high rate pulse train stimulus, e.g., of 5000 pulses per second (pps). The pseudo spontaneous activity is said to desynchronize the nerve fiber population as a treatment for tinnitus.
U.S. Pat. No. 6,249,704, issued to Albert Maltan et al., applies non-auditory-informative stimuli as well as auditory-informative stimuli to the same or neighboring sets of electrodes within the cochlea of a patient. The non-auditory-informative stimuli influence the properties and response characteristics of the auditory system so that when the auditory-informative stimuli are applied, such stimuli are more effective at evoking a desired auditory response, i.e., are more effective at allowing the patient to perceive sound.
One approach known in the art for expanding the dynamic range achieved with, for example, a cochlear implant is to apply a high rate conditioning signal, e.g., a 5000 Hz pulse train, in combination with analog stimulation to the electrode contacts in contact with the inner ear tissue to be stimulated. The 5000 Hz pulse train functions as a conditioner. See, Rubinstein et al., Second Quarterly Progress Report NO1-DC-6-2111 and U.S. Pat. No. 6,078,838. This approach, and the results achieved thereby, are illustrated in
The present invention addresses the above and other needs by utilizing high rate (e.g., greater than 2000 Hz) pulsatile stimulation to stimulate excitable tissue. Such high rate pulsatile stimulation exploits the subtle electro physiological differences between excitable tissue cells in order to desynchronize action potentials within the population as well as to induce a wider distribution of population thresholds and electrical dynamic ranges.
The present invention overcomes the limitations brought about by synchronized, unnatural firing. The stimulation provided by the invention is configured to elicit graded muscle contractions as well as wide dynamic ranges. Such beneficial results are accomplished by utilizing electrical stimulation parameters that provide an inefficiency of fiber recruitment similar to that seen for synaptic release of vesicular contained neurotransmitters.
The neurostimulation method provided by the invention produces a wide variety of beneficial results, including functional limb movement, wide electrical dynamic ranges for spiral ganglion cell neurons in cochlear implants, retinal ganglion cell firing patterns in visual prosthetics, as well as functional recruitment for any excitable tissue. Additional beneficial purposes made possible by the invention comprise: generating graded muscular movements, targeting class C sensory fibers for the purpose of pain relief, triggering auditory nerve fibers to provide the sensation of hearing, and/or encoding sensory information, to name but a few.
In accordance one aspect of the invention, stochastic firing is restored to the excitable tissue cells, thereby enhancing thresholds, dynamic range and psycho physical performance.
In accordance with yet another aspect of the invention, individual neurons are stimulated by a neurostimulator implant at a rate faster than the individual cells are able to follow, thereby resulting in a randomization of interspike (firing) intervals. Advantageously, when the neuron is no longer phase-locked to a carrier pulse, the firing probability becomes a function of stimulus energy, and becomes much more like a “natural” biological function.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
The present invention is aimed at providing gradual recruitment of muscle/neural excitable tissue through the application of a high rate electrical stimulation signal that is amplitude modulated with the desired control information. The beneficial results achieved through such stimulation occur because the stimulus pattern induces stochastic, i.e., random, neural firing, which stochastic neural firing acts to restore “spontaneous” neural activity. In fact, the high rate stimulus pattern provided by the invention stimulates individual neurons at a rate faster than the individual neuron can follow. This results in a randomization of inter-spike intervals, where the inter-spike interval is the time between successive neural firings for a given neuron; or stated differently, inter-spike intervals represent the “firing patterns” of individual nerve fibers. The inter-spike intervals, or firing patterns, of all nerve fibers within a selected group of excitable tissue, tend to be stochastic (random). Furthermore, these firing patterns are stochastic across the neural population. Advantageously, when the neuron is no longer phase-locked to a carrier pulse, as is usually the case when prior art neural stimulators are used, its firing probability becomes a function of stimulus energy, and thus becomes more like a “natural” biological function. Such randomization in a neural population better enables the population of neuron fibers to encode the fine details associated with the biological function performed by such population. That is, the population of neuron fibers is able to encode what a single neuron fiber is not able to encode.
By way of illustration, the improvements obtained through randomization of the neural population in accordance with the teachings of the present invention will next be explained relative to transduction and neural coding within the cochlea. It is the voltage fluctuations within an inner hair cell (IHC) that initiate the neural impulses sent to the brain through the auditory nerve that allow a person to perceive sound. The biological function performed by the IHC, or stated more correctly, by the population of IHC's found in both left and right cochlea of a patient, is the transduction of mechanical vibration into a neural code which is interpreted by the brain as hearing. It is to be emphasized that the present invention is not limited to use only with an IHC, or population of IHC's, of the cochlea. Rather, the target to be stimulated is the “nerve”, which nerve may be the auditory nerve, coupled to a population of IHC's, or may be any other nerve coupled to muscular and/or neural excitable tissue(s). In particular, it is noted that where there is a bundle of muscle fibers or muscle tissue to be electrically stimulated, there exists a very narrow window from going to no response to a full recruitment of fibers. What is needed relative to muscle stimulation is a gradual response. The present invention advantageously provides for such a gradual response, either through direct electrical stimulation of the muscle fibers or tissue, or through electrical stimulation of the nerves that innervate the muscle fibers or tissue.
Therefore, when electrical stimulation is provided through the use of a cochlear implant device—and it is to be noted that in most instances where a cochlear implant device is used, it is because the IHC has been lost—such implant device, in order to better represent a “natural” biological function, should induce a stimulus randomness like that of the healthy IHC. The present invention advantageously focuses on achieving such stimulation randomness.
The curve 110 in
Next, with reference to
Disadvantageously, the stimulation patterns employed by most neutral stimulators known in the art result in a very narrow system dynamic range for the patient. This is because, as seen in
In contrast to the analog approach proposed by Rubinstein et al. (see
By way of example, in the case of a cochlear stimulator, the control signal may be the sound information, processed in an appropriate manner, sensed through an external microphone. The frequency of stimulation should be high, e.g., at least 2000 Hz, and preferably 3000-5000 Hz, and the pulse widths should be less than about 100 μS.
In the case of a visual prosthetic, the control signal may be visual information, processed in an appropriate manner, sensed through an array of light sensors. Electrical contacts placed in contact or near the retina of the eye apply the ACHR signal to light sensitive or other cells within or near the retina. When the cells are stimulated, i.e., when the cells fire, information from the cells that are fired is transmitted to the brain via the optic nerve.
In the case of functional limb movement, the control signal may be a signal that defines the desired movement of the limb, and the electrical contacts through which the ACHR signal is applied are in contact with appropriate muscle tissue or nerves of the limb.
In the case of any other functional recruitment of excitable tissue, the control signal may be a signal that defines the desired biological change that is to occur.
When viewed on a large time scale, e.g., of several milliseconds (mS), the ACHR pulsatile signal provided by a neural stimulator in accordance with the teachings of the present invention would appear as shown in
The ACHR signal generated by the output driver 176 is applied between a selected pair of a multiplicity of electrodes E1, E2, E3, . . . En, each of which is in contact with the tissue or nerves to be stimulated, through an output switch 180. The output switch is controlled by appropriate programming signals. When an output current amplifier of the type disclosed in the above-referenced U.S. Pat. No. 6,181,969 is employed, the output switch 180 is not needed, as each electrode has a programmable current sink/source attached thereto. The ACHR signal may be applied bipolarly between a selected pair of the multiple electrodes, unipolarly between one of the selected electrodes and a ground electrode, or multipolarly between a first group of the multiple electrodes (functioning a cathode) and a second group of the multiple electrodes (functioning as an anode).
As can be seen in
Advantageously, a key feature of the invention is that the ACHR signal may be applied to a bundle of muscle fibers, e.g., to electrically stimulate movement of a limb, and the intensity (or amplitude) of the control signal (the envelope 140—see
A neurostimulator suitable for practicing the invention may take many forms, depending upon the particular muscle or nerves that are to be stimulated. So long as the neurostimulator has the capacity to generate a high frequency pulsatile signal, with the ability to modulate the intensity of the individual pulses within the signal, it could be satisfactorily used to practice the invention.
A representative neurostimulator suitable for auditory nerve stimulation is disclosed in U.S. Pat. No. 6,219,580 or 6,067,474, incorporated herein by reference.
A representative neurostimulator suitable for stimulating the nerves of the spinal cord is disclosed in U.S. patent application Ser. No. 09/626,010, filed Jul. 26, 2000, assigned to the same assignee as the present application, and incorporated herein by reference.
The neurostimulator disclosed in the '010 patent application may be easily adapted or modified in order to apply the invention to muscle stimulation, e.g., functional electrical stimulation (FES) for effecting the movement of limbs or for other purposes.
As described above, it is seen that through the proper use of a neurostimulator, i.e., by generating an appropriate high frequency pulsatile signal that is amplitude-modulated with an appropriate control signal, it is possible to have populations of neuron fibers be stimulated at a rate that is faster than an individual neuron fiber is able to follow. Advantageously, such fast stimulation results in a randomization of interspike intervals, or a randomization of when the individual neuron fibers fire. When the neuron is no longer phase-locked to the carrier pulse, its firing probability becomes a function of stimulus energy, and thus becomes more like “natural” neural firing. Such randomization in a neural population better enables the population of neuron fibers to encode the fine details of the desired biological function that is being controlled. That is, the population of neuron fibers is able to encode what a single neuron fiber is not able to encode.
Further, as described above, it is seen that by restoring stochastic firing to the selected nerves, thresholds, dynamic range and psycho physical performance are significantly enhanced.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
02757116.5 | Aug 2001 | EP | regional |
The present application is a Divisional of U.S. patent application Ser. No. 10/485,136, filed Jan. 27, 2004, which application is a 371 filing of PCT/US02/25861 filed Aug. 13, 2002, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/313,223, filed Aug. 17, 2001, which applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60313223 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10485136 | Jan 2004 | US |
Child | 11762692 | Jun 2007 | US |