Graft systems having filling structures supported by scaffolds and methods for their use

Information

  • Patent Grant
  • 10022249
  • Patent Number
    10,022,249
  • Date Filed
    Monday, October 27, 2014
    10 years ago
  • Date Issued
    Tuesday, July 17, 2018
    6 years ago
Abstract
Aneurysms are treated by filling at least one double-walled filling structure with a curable medium within the aneurysm. The filling structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Scaffolds are placed into the tubular lumens in order to help maintain the shape, anchor the filling structures in place, and provide improved blood flow transition into and out of the tubular lumens.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical apparatus and methods for treatment. More particularly, the present invention relates to expandable prosthesis and methods for treating abdominal and other aneurysms.


Aneurysms are enlargements or “bulges” in blood vessels which are often prone to rupture and which therefore present a serious risk to the patient. Aneurysms may occur in any blood vessel but are of particular concern when they occur in the cerebral vasculature or the patient's aorta.


The present invention is particularly concerned with aneurysms occurring in the aorta, particularly those referred to as aortic aneurysms. Abdominal aortic aneurysms (AAA's) are classified based on their location within the aorta as well as their shape and complexity. Aneurysms which are found below the renal arteries are referred to as infrarenal abdominal aortic aneurysms. Suprarenal abdominal aortic aneurysms occur above the renal arteries, while thoracic aortic aneurysms (TAA's) occur in the ascending, transverse, or descending part of the upper aorta.


Infrarenal aneurysms are the most common, representing about seventy percent (70%) of all aortic aneurysms. Suprarenal aneurysms are less common, representing about 20% of the aortic aneurysms. Thoracic aortic aneurysms are the least common and often the most difficult to treat. Most or all present endovascular systems are also too large (above 12 F) for percutaneous introduction.


The most common form of aneurysm is “fusiform,” where the enlargement extends about the entire aortic circumference. Less commonly, the aneurysms may be characterized by a bulge on one side of the blood vessel attached at a narrow neck. Thoracic aortic aneurysms are often dissecting aneurysms caused by hemorrhagic separation in the aortic wall, usually within the medial layer. The most common treatment for each of these types and forms of aneurysm is open surgical repair. Open surgical repair is quite successful in patients who are otherwise reasonably healthy and free from significant co-morbidities. Such open surgical procedures are problematic, however, since access to the abdominal and thoracic aortas is difficult to obtain and because the aorta must be clamped off, placing significant strain on the patient's heart.


Over the past decade, endoluminal grafts have come into widespread use for the treatment of aortic aneurysm in patients who cannot undergo open surgical procedures. In general, endoluminal repairs access the aneurysm “endoluminally” through either or both iliac arteries in the groin. The grafts, which typically have been fabric or membrane tubes supported and attached by various stent structures, are then implanted, typically requiring several pieces or modules to be assembled in situ. Successful endoluminal procedures have a much shorter recovery period than open surgical procedures.


Present endoluminal aortic aneurysm repairs, however, suffer from a number of limitations. A significant number of endoluminal repair patients experience leakage at the proximal juncture (attachment point closest to the heart) within two years of the initial repair procedure. While such leaks can often be fixed by further endoluminal procedures, the need to have such follow-up treatments significantly increases cost and is certainly undesirable for the patient. A less common but more serious problem has been graft migration. In instances where the graft migrates or slips from its intended position, open surgical repair is required. This is a particular problem since the patients receiving the endoluminal grafts are often those who are not considered good candidates for open surgery. Further shortcomings of the present endoluminal graft systems relate to both deployment and configuration. The multiple component systems require additional time for introducing each piece and even more time for assembling the pieces in situ. Such techniques are not only more time consuming, they are also more technically challenging, increasing the risk of failure. Current devices are also unsuitable for treating many geometrically complex aneurysms, particularly infrarenal aneurysms with little space between the renal arteries and the upper end of the aneurysm, referred to as short-neck or no-neck aneurysms. Aneurysms having torturous geometries, are also difficult to treat.


A particularly promising endoluminal graft is described in U.S. Publication No. 2006/0025853, which corresponds to parent application U.S. application Ser. No. 11/187,471, the full disclosure of which has previously been incorporated herein by reference. That patent application describes the treatment of the aortic and other aneurysms with a double-walled structure which is filled with a hardenable material which has cured in situ. The structure conforms to the shape of the aneurysmal space and resists migration and endoleaks. The particular design described, however, has certain shortcomings. For example, the lumen provided by the inner wall of the filled structure can sometimes deform so that the shape of the lumen is less than ideal. In other rare instances, leakage paths on the aortic or iliac ends of the graft may form.


For these reasons, it would desirable to provide improved methods, systems, and prosthesis for the endoluminal treatment of aortic aneurysms. Such improved methods, systems, and treatments should preferably provide implanted prosthesis which result in minimal or no endoleaks, resist migration, are relatively easy to deploy, have a low introduction profile (preferably below 12 F), and can treat most or all aneurismal configurations, including short-neck and no-neck aneurysms as well as those with highly irregular and asymmetric geometries. Further it would be desirable to provide fillable aneurysmal grafts having supported inner blood flow lumens and improved blood flow transitions at the aortic and/or iliac ends. At least some of these objectives will be met by the inventions described hereinafter.


2. Description of the Background Art


Grafts and endografts having fillable components are described in U.S. Pat. Nos. 4,641,653; 5,530,528; 5,665,117; and 5,769,882; U.S. Patent Publications 2004/0016997; and PCT Publications WO 00/51522 and WO 01/66038. The following patents and published applications describe stents and grafts having cuffs, extenders, liners, and related structures: U.S. Pat. Nos. 6,918,926; 6,843,803; 6,663,667; 6,656,214; 6,592,614; 6,409,757; 6,334,869; 6,283,991; 6,193,745; 6,110,198; 5,994,750; 5,876,448; 5,824,037; 5,769,882; 5,693,088; and 4,728,328; and U.S. Published Application Nos. 2005/0028484; 2005/0065592; 2004/0082989; 2004/0044358; 2003/0216802; 2003/0204249; 2003/0204242; 2003/0135269; 2003/0130725; and 2002/0052643.


BRIEF SUMMARY OF THE INVENTION

The present invention provides methods and systems for the endoluminal treatment of aneurysms, particularly aortic aneurysms including both abdominal aortic aneurysms (AAA's) and thoracic aortic aneurysms (TAA's). The systems include prostheses which comprise double-walled filling structures which are pre-shaped and otherwise adapted to substantially fill the enlarged volume of an aneurysm, particularly a fusiform aneurysm, leaving a lumen in place for blood flow.


The double-walled filling structures will thus usually have a generally toroidal structure with an outer wall, an inner wall, a potential space or volume between the outer and inner walls to be filled with a filling medium, and a generally tubular lumen inside of the inner wall which provides the blood flow lumen after the prosthesis has been deployed. The shape of the filling structure will be preferably adapted to conform to the aneurysm being treated. In some instances, the filling structure can be shaped for the aneurismal geometry of a particular patient using imaging and computer-aided design and fabrication techniques. In other instances, a family or collection of filling structures will be developed having different geometries and sizes so that a treating physician may select a specific filling structure to treat a particular patient based on the size and geometry of that patient's aneurysm. In all instances, the outer wall of the filling structure will conform or be conformable to the inner surface of the aneurysm being treated. While the inner wall of the structure will be aligned with lumens of the blood vessels on either side of the prosthesis after the prosthesis has been deployed.


The filling structures of the prosthesis will usually be formed from a non-compliant material, such as parylene, polyester (e.g., Dacron®), PET, PTFE, and/or a compliant material, such as silicone, polyurethane, latex, or combinations thereof. Usually, it will be preferred to form at least the outer wall partially or entirely from a non-compliant material to enhance conformance of the outer wall to the inner surface of the aneurysm. This is particularly true when the aneurysm has been individually designed and/or sized for the patient being treated.


The walls of the filling structures may consist of a single layer or may comprise multiple layers which are laminated, glued, heat bonded, ultrasonically bonded, or otherwise formed together. Different layers may comprise different materials, including both compliant and/or non-compliant materials. The structure walls may also be reinforced in various ways, including braid reinforcement layers, filament reinforcement layers, and the like.


In addition to the filling structures just described, the aneurysm treatment systems of the present invention will further include at least a first scaffold separate from the filling structure, where the scaffold can be expanded within the generally tubular lumen which provides the blood flow after the filling structure has been deployed in the aneurysm. The first scaffold will be adapted to expand within at least a first portion of the tubular lumen of the filling structure and may provide one or more specific advantages. For example, the scaffold may support and smooth the inside wall of the tubular lumen which in some cases might otherwise become uneven during hardening of the polymer fill. Scaffolds may also provide for anchoring of the filling structure, particularly at the aortic end of the graft when placed in an AAA. The scaffold may be partly or wholly covered with a membrane in order to form a graft. In such cases, the graft structure may help provide a transition from the blood vessel into the generally tubular lumen of the filling structure from the aortic end. Alternatively, the graft structure could provide one or a pair of transitions out of the iliac end of the filling structure. In a particular example, a graft structure can be used on either side of the filling structure in order to treat additional or continuing aneurysmal regions in the adjacent blood vessel.


The scaffolds used in combination with the double-walled filling structures of the present invention may take any form generally associated with a vascular or other luminal stents or grafts. For example, the scaffolds may be formed from an elastic material, particularly a spring steel or shape memory alloy, so that they may be delivered in a constrained configuration and allowed to expand in situ to anchor within the generally tubular lumen of the filling structure. Alternatively, the scaffold may be formed from a malleable metal or other material, such as stainless steel, and be delivered using a balloon catheter or other conventional stent expansion device. Grafts will usually comprise a metal frame covered in part or in whole by a membrane material, such as polyester, PTFE, or the like.


The geometry of the scaffold may also vary considerably. Often, the scaffold will extend over substantially the entire length of the inner wall of the generally tubular lumen of the filling structure. Frequently, the scaffold will extend outwardly from at least one of the ends of the generally tubular lumen into the adjacent blood vessel. The scaffold may also extend outwardly from both ends of the generally tubular lumen as well as covering the entire inner wall surface of that lumen.


In other instances, multiple scaffold structures may be provided within a single generally tubular lumen of the filling structure. In such cases, the two or more scaffolds may be adapted to be placed in series, frequently overlapping. In other instances, scaffolds may be adapted to be spaced apart at either or both ends and optionally at regions between the ends. In the case of covered scaffolds, the scaffold will typically comprise a metal frame, at least a portion of which is covered by a polymeric membrane or other covering. In other instances, however, the scaffold or portions thereof may be polymeric and optionally formed from a biodegradable polyester. It will frequently be desirable to cover the outside of the scaffold over at least those portions of the scaffold which engage the inner wall of the generally tubular lumen of the filling structure. The scaffolds and/or their covers may be coated with, impregnated with, or otherwise coupled to drugs or other bioactive substances for a variety of purposes, such as promoting tissue ingrowth, reducing thrombosis, reducing the risk of invention, and the like.


Preferred delivery protocols for the filling structures will utilize delivery catheters having a balloon or other expandable support for carrying the filling structure. When using balloons, the balloons will preferably be substantially or entirely non-compliant, although compliant and combination compliant/non-compliant balloons may also find use. The balloon or other mechanical expansion components of the delivery catheter will initially be disposed within the inner tubular lumen of the filling structure, with the filling structure generally being collapsed into a low width or low profile configuration over the expansion element. The delivery catheter may then be introduced intraluminally, typically into the iliac artery and upwardly to the region within the aorta to be treated. The delivery catheter will also include one or more lumens, tubes, or other components or structures for delivering the filling medium in a fluid form to an internal filling cavity of the filling structure. Thus, the delivery catheter can be used to both initially place and locate the filling structure of the prosthesis at the aneurismal site. Once at the aneurismal site, the internal tubular lumen of the structure can be expanded using the balloon or other expandable element on the delivery catheter. The filling structure itself will be filled and expanded by delivering the filling medium via the catheter into the internal volume of the filling structure. Both expansion and filling operations may be performed simultaneously, or can be performed in either order, i.e. the filling structure may be filled first with the delivery catheter balloon being expanded second, or vice versa. The filling structure(s) and/or delivery balloons may have radiopaque markers to facilitate placement and/or pressure sensors for monitoring filling and inflation pressures during deployment.


In preferred aspects of the present invention, the filling structure will be filled with a fluid (prior to hardening as described herein below) at a pressure which is lower than that of the expansion force provided by the delivery catheter, typically the filling pressure of the expandable balloon. Typically, the filling structure will be filled with filling medium at a pressure from 80 mm of Hg to 1000 mm of Hg, preferably from 200 mm of Hg to 600 mm of Hg, while the delivery balloon is inflated to a pressure in the range from 100 mm of Hg to 5000 mm of Hg, preferably from 400 mm of Hg to 1000 mm of Hg. These pressures are gage pressures, i.e. measured relative to atmospheric pressure.


As described thus far, in the present invention includes delivery of a single prosthesis and filling structure to an aneurysm. Delivery of a single filling structure will be particularly suitable for aneurysms which are remote from a vessel bifurcation so that both ends of the filling structure are in communication with only a single blood vessel lumen. In the case of aneurysms located adjacent a vessel bifurcation, such as the most common, infrarenal abdominal aortic aneurysms, it will often be preferable to utilize two such filling structures introduced in a generally adjacent, parallel fashion within the aneurismal volume. In the specific case of the infrarenal aneurysms, each prosthesis will usually be delivered separately, one through each of the two iliac arteries. After locating the filling structures of the prosthesis within the aneurismal space, they can be filled simultaneously or sequentially to fill and occupy the entire aneurismal volume, leaving a pair of blood flow lumens.


Suitable filling materials will be fluid initially to permit delivery through the delivery catheter and will be curable or otherwise hardenable so that, once in place, the filling structure can be given a final shape which will remain after the delivery catheter is removed. The fillable materials will usually be curable polymers which, after curing, will have a fixed shape with a shore hardness typically in the range from 10 durometer to 140 durometer. The polymers may be delivered as liquids, gels, foams, slurries, or the like. In some instances, the polymers may be epoxies or other curable two-part systems. In other instances, the polymer may comprise a single material which, when exposed to the vascular environment within the filling structure, changes state over time, typically from zero to ten minutes.


In a preferred aspect of the present invention, after curing, the filling material will have a specific gravity, typically in the range from 0.1 to 5, more typically from 0.8 to 1.2 which is generally the same as blood or thrombus. The filling material may also include bulking and other agents to modify density, viscosity, mechanical characteristics or the like, including microspheres, fibers, powders, gasses, radiopaque materials, drugs, and the like. Exemplary filling materials include polyurethanes, collagen, polyethylene glycols, microspheres, and the like.


The filling structures may be modified in a variety of other ways within the scope of the present invention. For example, the external surfaces of the filling structures may be partially or entirely modified to enhance placement within the aneurismal space, typically by promoting tissue ingrowth or mechanically interlocking with the inner surface of the aneurysm. Such surface modifications include surface roughening, surface stippling, surface flocking, fibers disposed over the surface, foam layers disposed over the surface, rings, and the like. It is also possible to provide biologically active substances over all or a portion of the external surface of the filling structure, such as thrombogenic substances, tissue growth promotants, biological adhesives, and the like. It would further be possible to provide synthetic adhesives, such as polyacrylamides, over the surface to enhance adherence.


In some instances, it will be desirable to modify all or a portion of the internal surface of the filling structure. Such surface modifications may comprise surface roughening, rings, stipples, flocking, foam layers, fibers, adhesives, and the like. The purpose of such surface modification will usually be to enhance the filling and bonding to the filling material, and to control the minimum wall thickness when the structure is filled particularly after the filling material has been cured. In particular instances, locations of the filling structure may be pressed together when the structure is deployed, thus potentially excluding filling material. In such instances, it will be desirable if the surfaces of the filling structure can adhere directly to each other.


In view of the above general descriptions of the present invention, the following specific embodiments may be better understood. In a first specific embodiment, methods for treating an aneurysm comprise positioning at least one double-walled filling structure across the aneurysm. By “across” the aneurysms, it is meant generally that the filling structure will extend axially from one anatomical location which has been identified by imaging or otherwise as the beginning of the aneurysm to a space-part location (or locations in the case of bifurcated aneurysm) where it has been established that the aneurysm ends. After positioning, the at least one filling structure is filled with a fluid filling medium so that an outer wall of the structure conforms to the inside of the aneurysm and an inner wall of the structure forms a generally tubular lumen to provide for blood flow after the filling structure has been deployed. While the filling structure is being filled, after the filling structure has been filled, or during both periods, the tubular lumen will preferably be supported, typically by a balloon or mechanically expansible element. After the filling structure has been filled, the filling material or medium is hardened while the tubular lumen remains supported. Supporting the tubular lumen during hardening assures that the lumen will have a desired geometry, will properly align with adjacent vascular lumens and that the tubular lumen being formed remains aligned with the native aortic and/or iliac artery lumens after the prosthesis has been fully implanted. Preferably, the support will be provided by a balloon which extends proximally and distally of the filling structure where the balloon may slightly “overexpand” in order to assure the desired smooth transition and conformance of the tubular lumen provided by the filling structure with the native vessel lumens.


After hardening, the support will be removed, leaving the filling structure in place. In some instances, however, prior to hardening, it will be desirable to confirm proper placement of the filling structure. This can be done using imaging techniques or otherwise testing for patency and continuity. In some instances, it may be desirable to first fill the filling structure with saline or other non-hardenable substance to make sure that the geometry of the filling structure is appropriate for the patient being treated. After testing, the saline may be removed and replaced with the hardenable filler.


In a second specific embodiment of the present invention, abdominal aortic aneurysms and other bifurcated aneurysms are treated by positioning first and second double-walled filling structures within the aneurismal volume. The first and second double-walled filling structures are positioned across the aneurysm, as defined above, extending from the aorta beneath the renal arteries to each of the iliac arteries, respectively. The first fluid filling structure is filled with a fluid filling material, the second filling structure is also filled with a fluid material, and the outer walls of each filling structure will conform to the inside surface of the aneurysm as well as to each other, thus providing a pair of tubular lumens for blood flow from the aorta to each of the iliac arteries. Preferably, the tubular lumens of each of the first and second filling structures are supported while they are being filled or after they have been filled. Further, the tubular lumens will preferably remain supported while the filling material is hardened, thus assuring that the transitions to the tubular lumens to the native vessel lumens remain properly aligned and conformed.


In a third specific embodiment of the present invention, systems for treating aneurysms comprise at least one double-walled filling structure and at least one delivery catheter having an expandable support positionable within a tubular lumen of the filling structure. The systems will usually further comprise a suitable hardenable or curable fluid filling medium. The particular characteristics of the filling structure and delivery balloon have been described above in connection with the methods of the present invention.


In a still further specific embodiment of the present invention, a system for treating abdominal aortic aneurysms comprises a first double-walled filling structure and a second double-walled filling structure. The first and second filling structures are adapted to be filled with a hardenable filling medium while they lie adjacent to each other within the aneurysm. The systems further comprise first and second delivery catheters which can be utilized for aligning each of the first and second filling structures properly with the right and left iliacs and the infrarenal aorta as they are being deployed, filled, and hardened.


The systems of the present invention for treating abdominal aortic aneurysms and other bifurcated lumens will typically include at least a first and a second scaffold, one for each of the tubular lumens defined by the first and second double-walled filling structures, respectively. The scaffolds will generally be the same as those described for the single filling structure embodiments, except that in some instances portions of the scaffold which extend into the adjacent blood vessel may be modified in order to enhance their ability to conform to each other. For example, the ends of the scaffolds may be modified to have D-shaped cross-sections so that when they are expanded, the flat surfaces of the D-shaped sections will engage each other to provide for a very full coverage of the area of the blood vessel. In other instances, the ends of the scaffolds which extend into the blood vessel may be formed into C-shaped structures which are expanded together to form a single generally continuous ring structure engaging the blood vessel wall.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a single prosthesis system comprising a filling structure mounted over a delivery catheter.



FIG. 2 is a cross-sectional view of the filling structure of FIG. 1 illustrating various surface modifications and a filling valve.



FIGS. 3A-3C illustrate alternative wall structures for the filling structure.



FIG. 4 illustrates the anatomy of an infrarenal abdominal aortic aneurysm.



FIGS. 5A-5D illustrate use of the prosthesis system of FIG. 1 for treating the infrarenal abdominal aortic aneurysm.



FIGS. 5E-5H illustrate the introduction of scaffolds into the tubular lumens of the filling structures of the systems of FIGS. 5A-5D.



FIG. 6 illustrates a system in accordance with the principles of the present invention comprising a pair of prosthesis for delivery to an infrarenal abdominal aortic aneurysm, where each prosthesis comprises a filling structure mounted on a delivery catheter.



FIGS. 7A-7F illustrate use of the filling structures of the prosthesis system of FIG. 6 for treating an infrarenal abdominal aortic aneurysm.



FIGS. 7G-7J illustrate the placement of scaffolds into the adjacent tubular lumens of the two filling structures of the prostheses of FIGS. 7A-7F. FIGS. 7H-1 and 7H-2 are cross-sectional views taken along line 7H-7H in FIG. 7H.





DETAILED DESCRIPTION OF THE INVENTION

A system 10 constructed in accordance with the principles of the present invention for delivering a double-walled filling structure 12 to an aneurysm includes the filling structure and a delivery catheter 14 having an expandable element 16, typically an inflatable balloon, at its distal end. The catheter 14 will comprise a guidewire lumen 18, a balloon inflation lumen (not illustrated) or other structure for expanding other expandable components, and a filling tube 20 for delivering a filling medium or material to an internal space 22 of the double-walled filling structure 12. The internal space 22 is defined between an outer wall 24 and inner wall 26 of the filling structure. Upon inflation with the filling material or medium, the outer wall will expand radially outwardly, as shown in broken line, as will the inner wall 26, also shown in broken line. Expansion of the inner wall 26 defines an internal lumen 28. The expandable balloon or other structure 16 will be expandable to support an inner surface of the lumen 28, as also in broken line in FIG. 1.


Referring now to FIG. 2, and the various internal and external surfaces may be shaped, coated, treated, or otherwise modified, to provide for a number of particular features in accordance with the principles of the present invention. For example, the outer wall 24 may be shaped to have rings, stipples, or other surface features which are typically formed into the material of the structure at the time of molding, vapor deposition, or other manufacturing process. The outer surface may also be coated with materials 28 which can be adhesives, drugs, active substances, fibers, flocking, foams, or a variety of other materials. In most cases, such surface features or modifications will be intended to enhance sealing or attachment of the outer wall 24 to the inner surface of the aneurysm being treated.


The inner surface 30 of the filling volume 22 may also be modified by providing features, coatings, surface roughening, or a variety of other modifications. The purpose of such internal features is typically to enhance adherence of the walls to the filling material or medium as the medium is cured or otherwise hardened. In some instances, materials may be coated on all or a portion of the inside surface 30 to induce or catalyze hardening of the filling material as it is being introduced.


The double-walled filling structure 12 will typically comprise at least one valve 40 to permit the introduction of the filling material or medium into the internal volume 22. As illustrated, the valve 40 may be a simple flap valve. Other more complex ball valves, and other one-way valve structures may be provided. In other instances, two-way valve structures may be provided to permit both filling and selective emptying of the internal volume 22. In other instances, the filling tube may comprise a needle or other filling structure to pass through the valve 40 to permit both filling and removal of filling medium.


As illustrated in FIG. 2, the wall structure of the double-walled filling structure may be a single layer, typically molded or otherwise conventionally formed. The wall structures may also be more complex, as illustrated for example, FIGS. 3A-3C. FIG. 3A shows a multi-layered wall comprising layers 42, 43 and 44. It will be appreciated that such multiple layer structure can provide for increased strength, puncture resistance, variations in compliance and/or flexibility, differences in resistance to degradation, and the like. As shown in FIG. 3B, a single wall or multiple wall structure can be reinforced by braid, coils, or other metal or non-polymeric reinforcement layers or structures. As shown in FIG. 3C, the external surface 24 of the wall may be covered with drugs, fibers, protrusions, holes, active agents or other substances for a variety of purposes.


Referring now to FIG. 4, the anatomy of an infrarenal abdominal aortic aneurysm comprises the thoracic aorta (TA) having renal arteries (RA) at its distal end above the iliac arteries (IA). The abdominal aortic aneurysm (AAA) typically forms between the renal arteries (RA) and the iliac arteries (IA) and may have regions of mural thrombus (T) over portions of its inner surface (S).


Referring to FIGS. 5A-5D, the treatment system 10 of FIG. 1 may be utilized to treat the complex geometry of the transmural abdominal aortic aneurysm (AAA) of FIG. 4 by first positioning the delivery catheter 14 to place the double-walled filling structure 12 (in its unfilled configuration) generally across the aneurysm from the region of the aorta beneath the renal arteries (RA) to a region over the iliac arteries (IA), as best seen FIG. 5A. Usually, the delivery catheter 14 will be introduced over a guidewire (GW) through a puncture in the patient's groin accessing the iliac artery by the Seldinger technique.


After the double-walled filling structure 12 is properly positioned, a hardenable inflation medium is introduced into the internal space 22 filling of the inner space 22 expands the outer wall 24 of the structure outwardly so that it conforms to the inner surface (S) of the aneurismal space.


Before, during, or after filling of the double-walled filling structure 12 with inflation medium, as illustrated in FIG. 5B, the balloon 16 or other expansible structure will also be inflated or expanded to open the tubular lumen defined by the interior of the inner wall 26. In a preferred embodiment, the balloon 16 will be generally compliant, typically having a maximum diameter of width which is at or slightly larger than the desired tubular lumen diameter or width through the deployed filling structure 12. The filling structure 12, in contrast, may be partially or completely formed from a generally non-compliant material, thus allowing the non-compliant balloon or other expansible structure 16 to fully open the tubular lumen and conform the ends of the lumens to the aorta and iliac walls, as illustrated in FIG. 5C. A lower or proximal end 50 of the tubular lumen will be flared to a larger diameter so that it can accommodate the openings into both of the iliac arteries (IA) as illustrated. Thus, it will be preferred to utilize a filling structure 12 geometry which has been chosen or fabricated to match the particular patient geometry being treated. It will also be preferable to use a balloon 16 or other expansible structure which will be shaped to preferentially open the lower proximal end 50 of the tubular lumen to a larger diameter than the upper or distal end 52.


After the filling material has been introduced to the filling structure 12, typically through the filling tube 20, the fluid filling material must be cured or otherwise hardened to provide for the permanent implant having a generally fixed structure which will remain in place in the particular aneurismal geometry. Methods for curing or hardening the filling material will depend on the nature of the filling material. For example, certain polymers may be cured by the application of energy, such as heat energy or ultraviolet light. Other polymers may be cured when exposed to body temperature, oxygen, or other conditions which cause polymerization of the fluid filling material. Still others may be mixed immediately prior to use and simply cure after a fixed time, typically minutes.


In accordance with the present invention, at least one scaffold will be placed into the tubular lumen defined by the inner wall 26. As illustrated in FIG. 5D, the scaffold may be a short, stent-like structure which may be implanted in the upper proximal opening 52 of the tubular lumen of the filling structure 12 in order to help anchor the upper end of the structure and prevent intrusion of blood into the region between the outer wall 24 and the inner surface S of the aneurysm and to generally improve the transition from the aorta into the tubular lumen. The stent-like structure 60 may comprise any conventional stent, graft, or other expandable luminal support structure known in the arts.


As shown in FIG. 5E, an alternative stent structure 64 may span the entire length from the aortic end of the filling structure 12 to the iliac end. Stent structure 64 could also comprise any conventional stent or graft structure, typically being an expandable metal frame optionally covered with a membrane to form a graft.


As shown in FIG. 5F, a further alternative stent structure 66 may extend fully through the filling structure and into the thoracic aorta TA, often covering the renal arteries RA. The portion of the stent 66 which extends through the filling structure 12 will often be covered with a membrane or other protective material so that the stent is actually a graft within the filling structure. A portion of the stent structure within the thoracic aorta TA, however, will preferably be left open to permit blood flow into the renal arteries RA.


As shown in FIG. 5G, two or more stent structures 68 may be implanted within the tubular lumen of the filling structure 12. As illustrated, the relatively short stent structures 68 are positioned at the aortic side and the iliac side of the filling structure. They could be positioned elsewhere, and the stent segments could be longer and extend into either the aorta either or both of the iliacs.


As shown in FIG. 5H, two or more stent structures 70 may be deployed within the tubular lumen of the filling structure 12 in an overlapping manner. By overlapping the stent segment 70, the overall length of the stent structure can be adjusted, e.g., to fully cover the renal arteries if that is desired, or in other instances to avoid covering the renal arteries if that is what is desired.


The stents, grafts, and other scaffold structures will often be delivered using separate delivery catheters (not shown) of the type commonly used to intravascularly deliver stents and grafts. The scaffold delivery catheters may comprise balloons or other expansion elements for expanding malleable scaffolds in situ. Alternatively, the delivery catheters could comprise tubular sheaths for covering and constraining self-expanding scaffolds prior to release within the tubular lumens of the filling structures. Systems could also deliver the scaffold(s) simultaneously with the filling structure(s), often on a common delivery catheter system.


In a particular and preferred aspect of the present invention, a pair of double-walled filling structures will be used to treat infrarenal abdominal aortic aneurysms, instead of only a single filling structure as illustrated in FIGS. 5A-5C. A system comprising such a pair of filling structures is illustrated in FIG. 6 which includes a first filling structure 112 and a second filling structure 212. Each of the filling structures 112 and 212 are mounted on delivery catheters 114 and 214, respectively. The components of the filling structures 112 and 212 and delivery catheters 114 and 214 are generally the same as those described previously with respect to the single filling structure system 10 of FIG. 1. Corresponding parts of each of the fillings systems 112 and 212 will be given identical numbers with either the 100 base number or 200 base number. A principal difference between the filling structures 112 and 212, on the one hand, and the filling structure 12 of FIG. 1 is that the pair of filling structures will generally have asymmetric configurations which are meant to be positioned adjacent to each other within the aneurismal space and to in combination fill that space, as will be described with specific reference to FIG. 7A-7F below.


In treating an infrarenal abdominal aortic aneurysm using the pair of filling structures 112 and 212 illustrated in FIG. 6, a pair of guidewires (GW) will first be introduced, one from each of the iliac arteries (IA). As illustrated in FIG. 7A. The first delivery catheter 114 will then be positioned over one of the guidewires to position the double-walled filling structure 112 across the aortic aneurysm (AAA), as illustrated in FIG. 7B. The second delivery catheter 214 is then delivered over the other guidewire (GW) to position the second filling structure 212 adjacent to the first structure 112 within the aneurysm (AAA), as illustrated in FIG. 7C. Typically, one of the filling structures and associated balloons will be expanded first, followed by the other of the filling structures and balloon, as illustrated in FIG. 7D where the filling structure 112 and balloon 116 are inflated to fill generally half of the aneurismal volume, as illustrated in FIG. 7D. Filling can generally be carried out as described above with the one filling structure embodiment, except of course that the filling structure 112 will be expanded to occupy only about one-half of the aneurismal volume. After the first filling structure 112 has been filled, the second filling structure 212 may be filled, as illustrated in FIG. 7E. In other protocols the two filling structures may be filled simultaneously. The upper ends of the balloons 116 and 216 will conform the tubular lumens of the filling structures against the walls of the aorta as well as against each other, while the lower ends of the balloons 116 and 216 will conform the tubular lumens into the respective iliac (IA).


After filling the filling structures 112 and 212 as illustrated in FIG. 7E, the filling materials or medium will be cured or otherwise hardened, and the delivery catheters 114 and 214 removed, respectively. The hardened filling structures will then provide a pair of tubular lumens opening from the aorta beneath the beneath the renal arteries to the right and left iliac arteries, as shown in broken line in FIG. 7. The ability of the filling structures 112 and 212 to conform to the inner surface (S) of the aneurysm, as shown in FIG. 7F, helps the structures to remain immobilized within the aneurysm with little or no migration. Immobilization of the filling structures 112 and 114 may be further enhanced by providing any of the surface features described above in connection with the embodiments of FIG. 2.


As with the single filling structure embodiments described previously, the double filling structure embodiments will include at least one separate scaffold deployed within each of the tubular blood flow lumens. The scaffolds will generally be stent-like or graft-like vascular structures and will be deployed within the tubular lumens using balloon or other expansion catheters (in the case of malleable or balloon-expandable scaffolds) or using constraining sheaths (in the case of self-expanding scaffolds).


Referring in particular to FIG. 7G, the first scaffold 250 may be placed in the tubular lumen of the first filling structure 112 while a second scaffold 252 may be placed in the tubular lumen of the second filling structure 212. As illustrated, the scaffolds are stent-like structures which extend into the iliac arteries IA at the lower end of the filling structures.


Referring now to FIG. 7H, first and second scaffolds 254 and 256 may extend upwardly on the aortic side of the first and second filling structures 112 and 212. When the separate stent or other scaffold structures extend into the thoracic aorta TA, it will usually be desirable that they be expanded so that they conform to each other along a plane or region of contact. For example, as shown in FIG. 7H-1, the upper ends of the scaffolds 254 and 256 may be formed preferentially to have D-shaped cross-sections when expanded. Thus, flat faces 258 and 260 will engage each other with the remaining portion of the stent conforming to the inner wall of the aorta. In this way, most of the cross-sectional area of the aorta will be covered with the stent, thus enhancing blood flow through the filling structures. Alternatively, as shown in FIG. 7H-2, the upper regions of the scaffolds 254 and 256 may be cut or otherwise modified to form open C-shaped cross-sections. In such cases, the expanded scaffolds can be arranged so that the C-shaped regions engage each other to form a continuous ring structure about the inner wall of the aorta. The open C-shaped regions will transition into a tubular region as the scaffolds enter the tubular lumens of the filling structures 112 and 212. In either of these embodiments, the scaffolds 254 and 256 may be partially or fully covered with a membrane or graft material, as described above in connection with other embodiments, particularly where such coverings extend partially or fully over the portion of the scaffold that extends into the adjacent blood vessel.


Referring now to FIG. 7I, scaffolds 260 and 264 may be implanted into the tubular lumens of the first filling structure 112 and second filling structure 212, respectively. The scaffold 260 includes an extension 268 at its lower end which is covered with a membrane or other material to form a graft region within the scaffold. This graft region 268 passes through an aneurysmal region within the iliac artery IA, thus allowing the structure to treat the iliac aneurysm as well as the aortic aneurysm. Optionally, a clip 269 or other fastening device, link, or tether, could be provided to connect the upper ends of the scaffolds 260 and 264 in the filling structures 112 and 212. By attaching the ends of the scaffolds, the distal ends of the filling structures will be stabilized and the risk of scaffold migration will be reduced.


As shown in FIG. 7J, a first scaffold 270 and second scaffold 274 are placed in the first filling structure and second filling structure 112 and 212, respectively. The scaffold 270 has a membrane covering as metal frame through the entire length of the tubular lumen of the filling structure. In addition, the covered structure extends into the iliac artery. The portion of the first scaffold 270 extending into the aorta, however, is not covered to allow blood flows through the open mesh region of the metal frame. Similarly, the second scaffold 274 has an open mesh region in the aorta and a covered, graft-like region passing through the tubular lumen of the second filling structure 212. The second scaffold 274, however, does not extend into the iliac artery IA.


Various modifications of the protocols described above will be within the scope of the present invention. For example, while the scaffolds have been shown as being delivered after deployment of the filling structure(s), it will also be possible to deliver the scaffolds simultaneously with or prior to deployment of the filling structures. For example, the scaffolds could be delivered on the same delivery catheter(s) used to deliver and/or shape the filling structures. The scaffolds could then be expanded at the same time as filling the filling structure or even prior to filling the filling structure.


While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims
  • 1. A system for treating an aneurysm in a blood vessel, said system comprising: at least a first double-walled filling structure having an outer wall and an inner wall with an internal space defined between the outer wall and the inner wall, the double-walled filling structure having a generally toroidal structure and being adapted for filling of the internal space with a hardenable fluid filling medium such that when the first filling structure is deployed across the aneurysm, the outer wall conforms to the inside surface of the aneurysm across the aneurysm and the inner wall forms a first generally tubular lumen to provide a path for blood flow across the aneurysm such that blood flow is in direct contact with the inner wall along the first generally tubular lumen; andat least a first scaffold disposed within the first double-walled filling structure and anchored to the inner wall of the first filling structure at least at one location such that the at least a first scaffold is expandable within at least a portion of the first tubular lumen of the filling structure.
  • 2. The system of claim 1, wherein the first scaffold extends over substantially an entire length of the first generally tubular lumen extending through the first double-walled filling structure.
  • 3. The system of claim 1, wherein the first scaffold is adapted to extend outwardly from at least one end of the first generally tubular lumen into the adjacent blood vessel.
  • 4. The system of claim 1, further comprising one or more additional scaffolds for placing in the first generally tubular lumen.
  • 5. The system of claim 4, wherein the first scaffold and the one or more additional scaffolds are adapted to be placed in series.
  • 6. The system of claim 4, wherein the first scaffold and the one or more additional scaffolds are overlapping within the generally tubular lumen of the first filling structure.
  • 7. The system of claim 1, wherein substantially the entire first double-walled filling structure is formed from a compliant material.
  • 8. The system of claim 1, wherein at least a portion of an exterior surface of the first double-walled filling structure is modified to enhance sealing or tissue ingrowth.
  • 9. The system of claim 1, further comprising a first delivery catheter having an expandable tubular support on which the first scaffold is disposed such that expansion of the tubular support expands the first scaffold and the first filling structure anchored thereon.
  • 10. The system of claim 9, wherein the expandable tubular support is adapted to extend upstream and downstream from the first double-walled filling structure so that tubular support aligns and conforms each end of the first double-walled filling structure with the blood vessel.
  • 11. The system of claim 9, wherein the tubular support comprises an inflatable support balloon having a non-compliant structure.
  • 12. The system of claim 11, wherein the tubular support comprises a mechanical structure expandable to one or more fixed diameters.
  • 13. The system of claim 1, further comprising a hardenable fluid filling medium including a flowable polymer which is curable in situ.
  • 14. The system of claim 1, wherein the first scaffold is anchored with the inner wall of the first filling structure by attachment at one or more locations.
  • 15. The system of claim 1, further comprising: a second double-walled filling structure having an outer wall and an inner wall with an internal space defined between the outer wall and the inner wall, the second double-walled filling structure being adapted to be placed adjacent to the first double-walled filling structure in the aneurysm and for filling of the internal space with a hardenable fluid filling medium so that when the second filling structure is deployed across the aneurysm, the outer wall conforms to the inside surface of the aneurysm across the aneurysm and to the first double-walled filling structure and forms a second generally tubular lumen to provide a path for blood flow across the aneurysm such that blood flow is in direct contact with the inner wall along the second generally tubular lumen; andat least a second scaffold disposed within the second double-walled filling structure and attached to the inner wall of the second double-walled filling structure at least at one location such that the at least a second scaffold is expandable within at least a portion of the second tubular lumen of the second filling structure.
  • 16. The system of claim 15, wherein each of the first and second scaffold have an end, wherein the respective ends of the first and second scaffolds are adapted to extend outwardly in parallel in at least one direction from their respective tubular lumens into the adjacent blood vessel.
  • 17. The system of claim 16, wherein said respective ends have complementary shapes that are adapted to together conform to the wall of the adjacent blood vessel.
  • 18. The system of claim 15, further comprising; a first delivery catheter having an expandable support which can be positioned within the first tubular lumen of the first double-walled filling structure; anda second delivery catheter having an expandable support which can be positioned within the second tubular lumen of the second double-walled filling structure.
  • 19. The system of claim 18, wherein the expandable support on each of the first and second delivery catheter is adapted to extend upstream and downstream from the respective double-walled filling structure so that the expandable support aligns and conforms each end of the respective double-walled filling structure with the iliac and aorta.
  • 20. The system of claim 19, wherein the expandable support on each delivery catheter comprises a balloon expandable to one or more fixed diameters.
  • 21. The system of claim 15, wherein the first and second scaffolds are anchored with the inner wall of the first and second filling structures, respectively, by attachment at one or more locations of the respective inner walls.
  • 22. The system of claim 21, wherein the first and second scaffolds are anchored with the inner wall of the first and second filling structures, respectively, by attachment at an upper end of the respective filling structure.
  • 23. The system of claim 22, wherein the first and second scaffolds are attached with the upper ends of the first and second filling structures, respectively, with a fastening device.
  • 24. The system of claim 23, wherein the fastening device comprises any of a clip, link and tether.
  • 25. The system of claim 15, further including: wherein the first and second filling structures include one or more additional pressures sensors configured for monitoring filling pressure of the first and second double-walled filling structures during deployment.
  • 26. The system of claim 1, wherein the first filling structure includes one or more pressures sensors configured for monitoring filling pressure of the first double-walled filling structure during deployment.
  • 27. The system of claim 1, wherein each of the inner and outer wall of the first filling structure comprise a single layer.
  • 28. The system of claim 1, wherein the inner and outer wall of the first filling structure are formed of a same material.
  • 29. The system of claim 28, wherein the material is PET, PTFE or polyurethane.
  • 30. A system for treating an aneurysm in a blood vessel, said system comprising: at least a first double-walled filling structure having an outer wall and an inner wall with an internal space defined between the outer wall and the inner wall, the double-walled filling structure having a generally toroidal structure and being adapted for filling of the internal space with a hardenable fluid filling medium such that when the first filling structure is deployed across the aneurysm, the outer wall conforms to the inside surface of the aneurysm across the aneurysm and the inner wall forms a first generally tubular lumen to provide a path for blood flow across the aneurysm such that blood flow is in direct contact with the inner wall along the first generally tubular lumen; andat least a first scaffold disposed within the first double-walled filling structure and anchored to the inner wall of the first filling structure at least at one location such that the at least a first scaffold is expandable within at least a portion of the first tubular lumen of the filling structure wherein the first scaffold is malleable and adapted to be balloon expanded from a narrow diameter configuration to a deployed configuration.
  • 31. A system for treating an aneurysm in a blood vessel, said system comprising: at least a first double-walled filling structure having an outer wall and an inner wall with an internal space defined between the outer wall and the inner wall, the double-walled filling structure having a generally toroidal structure and being adapted for filling of the internal space with a hardenable fluid filling medium such that when the first filling structure is deployed across the aneurysm, the outer wall conforms to the inside surface of the aneurysm across the aneurysm and the inner wall forms a first generally tubular lumen to provide a path for blood flow across the aneurysm such that blood flow is in direct contact with the inner wall along the first generally tubular lumen; andat least a first scaffold disposed within the first double-walled filling structure and anchored to the inner wall of the first filling structure at least at one location such that the at least a first scaffold is expandable within at least a portion of the first tubular lumen of the filling structure,wherein the first scaffold is anchored with the inner wall of the first filling structure by attachment at one or more locations, andwherein the first scaffold is anchored with the inner wall of the filling structure by attachment at an upper end of the first filling structure with a fastening device.
CROSS-REFERENCES TO RELATED APPLICATION

The present application is a continuation of U.S. Ser. No. 13/285,897 filed Oct. 31, 2011 (now U.S. Pat. No. 8,870,941), which is a Divisional of U.S. Ser. No. 11/413,460 filed Apr. 28, 2006 (now U.S. Pat. No. 8,048,145); which application is a continuation-in-part of U.S. Ser. No. 11/187,471 filed on Jul. 22, 2005 (now U.S. Pat. No. 7,530,988); which claimed the benefit of priority to Provisional Appln. No. 60/589,850 filed Jul. 22, 2004, the full disclosures of which are incorporated herein by reference. The present application also claims the benefit of priority to Provisional Appln. No. 60/675,158, filed on Apr. 28, 2005 and Appln. No. 60/736,602 filed Nov. 14, 2005. The full disclosures, all of which are incorporated herein by reference in their entirety, for all purposes.

US Referenced Citations (382)
Number Name Date Kind
4183102 Guiset Jan 1980 A
4565738 Purdy Jan 1986 A
4638803 Rand Jan 1987 A
4641653 Rockey Feb 1987 A
4704126 Baswell Nov 1987 A
4710192 Liotta Dec 1987 A
4728328 Hughes et al. Mar 1988 A
4731073 Robinson Mar 1988 A
4733665 Palmaz Mar 1988 A
4743258 Ikada May 1988 A
4763654 Jang Aug 1988 A
4856516 Hillstead Aug 1989 A
4858264 Reinhart Aug 1989 A
4892544 Frisch Jan 1990 A
4936057 Rhoades Jun 1990 A
4976692 Atad Dec 1990 A
5002532 Gaiser Mar 1991 A
5074845 Miraki Dec 1991 A
5104404 Wolff Apr 1992 A
5108417 Sawyer Apr 1992 A
5122154 Rhodes Jun 1992 A
5133732 Wiktor Jul 1992 A
5139480 Hickle Aug 1992 A
5156620 Pigott Oct 1992 A
5195984 Schatz Mar 1993 A
5199226 Rose Apr 1993 A
5217484 Marks Jun 1993 A
5222970 Reeves Jun 1993 A
5234437 Sepetka Aug 1993 A
5242399 Lau Sep 1993 A
5250071 Palermo Oct 1993 A
5261916 Engelson Nov 1993 A
5263964 Purdy Nov 1993 A
5292331 Houki et al. Mar 1994 A
5314444 Gianturco May 1994 A
5316023 Palmaz et al. May 1994 A
5330528 Lazim Jul 1994 A
5334024 Niznick Aug 1994 A
5334217 Das Aug 1994 A
5350397 Palermo Sep 1994 A
5352199 Tower Oct 1994 A
5375612 Cottenceau Dec 1994 A
5383892 Cardon Jan 1995 A
5421955 Lau Jun 1995 A
5423849 Engelson Jun 1995 A
5425739 Jessen Jun 1995 A
5425744 Fagan Jun 1995 A
5441510 Simpson Aug 1995 A
5441515 Khosravi Aug 1995 A
5443477 Marin Aug 1995 A
5443496 Schwartz Aug 1995 A
5449373 Pinchasik Sep 1995 A
5485667 Kleshinski Jan 1996 A
5494029 Lane Feb 1996 A
5496277 Terrnin Mar 1996 A
5507767 Maeda Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507771 Gianturco Apr 1996 A
5514115 Frantzen May 1996 A
5514154 Lau May 1996 A
5522882 Gaterud Jun 1996 A
5530528 Houki et al. Jun 1996 A
5531741 Barbacci Jul 1996 A
5534024 Rogers et al. Jul 1996 A
5545210 Hess Aug 1996 A
5549662 Fordenbacher Aug 1996 A
5549663 Cottone, Jr. Aug 1996 A
5554181 Das Sep 1996 A
5562641 Flomenblit Oct 1996 A
5562698 Parker Oct 1996 A
5562728 Lazarus Oct 1996 A
5569295 Lam Oct 1996 A
5578074 Mirigian Nov 1996 A
5578149 De Scheerder Nov 1996 A
5591195 Taheri Jan 1997 A
5591223 Lock Jan 1997 A
5591226 Trerotola Jan 1997 A
5591228 Edoga Jan 1997 A
5591230 Horn Jan 1997 A
5593417 Rhodes Jan 1997 A
5601600 Ton Feb 1997 A
5603721 Lau Feb 1997 A
5605530 Fischell Feb 1997 A
5607442 Fischell Mar 1997 A
5607445 Summers Mar 1997 A
5607468 Rogers Mar 1997 A
5609605 Marshall Mar 1997 A
5617878 Taheri Apr 1997 A
5618299 Khosravi Apr 1997 A
5624411 Tuch Apr 1997 A
5630840 Mayer May 1997 A
5632760 Sheiban May 1997 A
5632762 Myler May 1997 A
5632763 Glastra May 1997 A
5632771 Boatman May 1997 A
D380266 Boatman Jun 1997 S
5634941 Winston Jun 1997 A
5636641 Fariabi Jun 1997 A
D380831 Kavteladze Jul 1997 S
5662614 Edoga Sep 1997 A
5665117 Rhodes Sep 1997 A
5674241 Bley Oct 1997 A
5676697 McDonald Oct 1997 A
5683449 Marcade Nov 1997 A
5690643 WiJay Nov 1997 A
5693038 Suzuki et al. Dec 1997 A
5693067 Purdy Dec 1997 A
5693088 Lazarus Dec 1997 A
5697971 Fischell Dec 1997 A
5709707 Lock Jan 1998 A
5718713 Frantzen Feb 1998 A
5723004 Dereume Mar 1998 A
5725568 Hastings Mar 1998 A
5725572 Lam Mar 1998 A
5728068 Leone Mar 1998 A
5728131 Frantzen Mar 1998 A
5728158 Lau Mar 1998 A
5733303 Israel et al. Mar 1998 A
5735892 Myers Apr 1998 A
5735893 Lau Apr 1998 A
5741327 Frantzen Apr 1998 A
5741333 Frid Apr 1998 A
5746691 Frantzen May 1998 A
5755769 Richard May 1998 A
5755773 Evans et al. May 1998 A
5755778 Kleshinski May 1998 A
5766151 Valley et al. Jun 1998 A
5766238 Lau Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5776114 Frantzen Jul 1998 A
5776161 Globerman Jul 1998 A
5782907 Frantzen Jul 1998 A
5785679 Abolfathi et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5797953 Tekulve Aug 1998 A
5800393 Sahota Sep 1998 A
5800512 Lentz et al. Sep 1998 A
5800514 Nunez Sep 1998 A
5800525 Bachinski Sep 1998 A
5807404 Richter Sep 1998 A
5810872 Kanesaka Sep 1998 A
5824036 Lauterjung Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824040 Cox Oct 1998 A
5824049 Ragheb Oct 1998 A
5824054 Khosravi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5827321 Roubin Oct 1998 A
5836966 St. Germain Nov 1998 A
5843160 Rhodes Dec 1998 A
5843175 Frantzen Dec 1998 A
5846246 Dirks Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5849037 Frid Dec 1998 A
5860998 Robinson Jan 1999 A
5863627 Szycher Jan 1999 A
5867762 Rafferty et al. Feb 1999 A
5868685 Powell et al. Feb 1999 A
5868708 Hart Feb 1999 A
5868782 Frantzen Feb 1999 A
5871537 Holman Feb 1999 A
5873907 Frantzen Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5879381 Moriuchi Mar 1999 A
5888660 Landoni et al. Mar 1999 A
5902332 Schatz May 1999 A
5919224 Thompson Jul 1999 A
5928279 Shannon et al. Jul 1999 A
5931866 Frantzen Aug 1999 A
5944750 Tanner Aug 1999 A
5947991 Cowan Sep 1999 A
5948184 Frantzen Sep 1999 A
5976178 Goldsteen et al. Nov 1999 A
5984955 Wisselink Nov 1999 A
5994750 Yagi Nov 1999 A
6007573 Wallace Dec 1999 A
6015431 Thornton Jan 2000 A
6022359 Frantzen Feb 2000 A
6033434 Borghi Mar 2000 A
6042606 Frantzen Mar 2000 A
6056776 Lau May 2000 A
6066167 Lau May 2000 A
6066168 Lau May 2000 A
6083259 Frantzen Jul 2000 A
6093199 Brown Jul 2000 A
6099548 Taheri Aug 2000 A
6110198 Fogarty et al. Aug 2000 A
6123715 Amplatz Sep 2000 A
6123722 Fogarty Sep 2000 A
6124523 Banas et al. Sep 2000 A
6132457 Chobotov Oct 2000 A
6152144 Lesh Nov 2000 A
6152943 Sawhney Nov 2000 A
6168592 Kupiecki et al. Jan 2001 B1
6187033 Schmitt Feb 2001 B1
6187034 Frantzen Feb 2001 B1
6190402 Horton et al. Feb 2001 B1
6190406 Duerig et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6196230 Hall et al. Mar 2001 B1
6203732 Clubb Mar 2001 B1
6214022 Taylor et al. Apr 2001 B1
6231562 Khosravi et al. May 2001 B1
6235050 Quiachon et al. May 2001 B1
6241761 Villafana Jun 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6280466 Kugler Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6290722 Wang Sep 2001 B1
6290731 Solovay et al. Sep 2001 B1
6293960 Ken Sep 2001 B1
6296603 Turnlund et al. Oct 2001 B1
6299597 Buscemi et al. Oct 2001 B1
6299604 Ragheb Oct 2001 B1
6312462 McDermott et al. Nov 2001 B1
6312463 Rourke et al. Nov 2001 B1
6325816 Fulton, III Dec 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6325823 Horzewski Dec 2001 B1
6331184 Abrams Dec 2001 B1
6331191 Chobotov Dec 2001 B1
6334869 Leonhardt et al. Jan 2002 B1
6344056 Dehdashtian Feb 2002 B1
6375675 Dehdashtian et al. Apr 2002 B2
6395019 Chobotov May 2002 B2
6409757 Trout, III et al. Jun 2002 B1
6432131 Ravenscroft Aug 2002 B1
6451047 McCrea Sep 2002 B2
6463317 Kucharczyk et al. Oct 2002 B1
6506204 Mazzocchi Jan 2003 B2
6527799 Shanley Mar 2003 B2
6544276 Azizi Apr 2003 B1
6547804 Porter et al. Apr 2003 B2
6554858 Dereume et al. Apr 2003 B2
6576007 Dehdashtian et al. Jun 2003 B2
6579301 Bales Jun 2003 B1
6592614 Lenker et al. Jul 2003 B2
6613037 Khosravi et al. Sep 2003 B2
6645242 Quinn Nov 2003 B1
6656214 Fogarty et al. Dec 2003 B1
6656220 Gomez et al. Dec 2003 B1
6663607 Slaikeu et al. Dec 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6679300 Sommer et al. Jan 2004 B1
6682546 Amplatz Jan 2004 B2
6692486 Jaafar et al. Feb 2004 B2
6695833 Frantzen Feb 2004 B1
6699277 Freidberg Mar 2004 B1
6729356 Baker et al. May 2004 B1
6730119 Smalling May 2004 B1
6733521 Chobotov May 2004 B2
6761733 Chobotov Jul 2004 B2
6773454 Wholey et al. Aug 2004 B2
6776771 Van Moorlegem et al. Aug 2004 B2
6827735 Greenberg Dec 2004 B2
6843803 Ryan et al. Jan 2005 B2
6878161 Lenker Apr 2005 B2
6878164 Kujawski Apr 2005 B2
6887268 Butaric et al. May 2005 B2
6918926 Letort Jul 2005 B2
6945989 Betelia et al. Sep 2005 B1
6958051 Hart et al. Oct 2005 B2
6960227 Jones et al. Nov 2005 B2
6964667 Shaolian et al. Nov 2005 B2
7001431 Bao et al. Feb 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7105012 Trout, III Sep 2006 B2
7112217 Kugler Sep 2006 B1
7122052 Greenhalgh Oct 2006 B2
7131991 Zarins et al. Nov 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7175651 Kerr Feb 2007 B2
7229472 DePalma et al. Jun 2007 B2
7314483 Landau et al. Jan 2008 B2
7326237 Depalma et al. Feb 2008 B2
7435253 Hartley et al. Oct 2008 B1
7530988 Evans et al. May 2009 B2
7666220 Evans et al. Feb 2010 B2
7682383 Robin Mar 2010 B2
7708773 Pinchuk et al. May 2010 B2
7790273 Lee et al. Sep 2010 B2
7828838 Bolduc et al. Nov 2010 B2
7872068 Khosravi et al. Jan 2011 B2
7951448 Lee et al. May 2011 B2
8044137 Khosravi et al. Oct 2011 B2
8048145 Evans et al. Nov 2011 B2
8182525 Herbowy et al. May 2012 B2
8870941 Evans Oct 2014 B2
20010020184 Dehdashtian et al. Sep 2001 A1
20010027337 Di Caprio Oct 2001 A1
20010027338 Greenberg Oct 2001 A1
20010044655 Patnaik et al. Nov 2001 A1
20020019665 Dehdashtian et al. Feb 2002 A1
20020026217 Baker et al. Feb 2002 A1
20020045848 Jaafar et al. Apr 2002 A1
20020045931 Sogard et al. Apr 2002 A1
20020052643 Wholey et al. May 2002 A1
20020077594 Chien et al. Jun 2002 A1
20020151953 Chobotov Oct 2002 A1
20020151956 Chobotov Oct 2002 A1
20020151958 Chuter Oct 2002 A1
20020156518 Tehrani Oct 2002 A1
20020165521 Cioanta et al. Nov 2002 A1
20020169497 Wholey et al. Nov 2002 A1
20020183629 Fitz Dec 2002 A1
20030004560 Chobotov Jan 2003 A1
20030009132 Schwartz et al. Jan 2003 A1
20030014075 Rosenbluth et al. Jan 2003 A1
20030028209 Teoh et al. Feb 2003 A1
20030036745 Khosravi et al. Feb 2003 A1
20030051735 Pavcnik et al. Mar 2003 A1
20030074056 Killion et al. Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030130720 DePalma et al. Jul 2003 A1
20030130725 DePalma et al. Jul 2003 A1
20030135269 Swanstrom Jul 2003 A1
20030204242 Zarins et al. Oct 2003 A1
20030204249 Letort Oct 2003 A1
20030216802 Chobotov et al. Nov 2003 A1
20030225446 Hartley Dec 2003 A1
20040016997 Ushio Jan 2004 A1
20040044358 Khosravi et al. Mar 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040091543 Bell et al. May 2004 A1
20040098096 Eton May 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040147811 Diederich et al. Jul 2004 A1
20040153025 Seifert et al. Aug 2004 A1
20040167607 Frantzen Aug 2004 A1
20040193245 Deem et al. Sep 2004 A1
20040204755 Robin Oct 2004 A1
20040215172 Chu et al. Oct 2004 A1
20040215316 Smalling Oct 2004 A1
20040220522 Briscoe et al. Nov 2004 A1
20040243057 Vinten-Johansen et al. Nov 2004 A1
20050004660 Rosenbluth et al. Jan 2005 A1
20050027238 Fago et al. Feb 2005 A1
20050028484 Littlewood Feb 2005 A1
20050065592 Holzer Mar 2005 A1
20050090804 Chobotov et al. Apr 2005 A1
20050096731 Looi et al. May 2005 A1
20050215989 Abboud et al. Sep 2005 A1
20050245891 McCormick et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20060015173 Clifford et al. Jan 2006 A1
20060025853 Evans et al. Feb 2006 A1
20060074481 Vardi et al. Apr 2006 A1
20060135942 Fernandes et al. Jun 2006 A1
20060142836 Hartley et al. Jun 2006 A1
20060155369 Edwin et al. Jul 2006 A1
20060161244 Seguin Jul 2006 A1
20060184109 Gobel Aug 2006 A1
20060206197 Morsi Sep 2006 A1
20060222596 Askari et al. Oct 2006 A1
20060265043 Mandrusov et al. Nov 2006 A1
20060292206 Kim et al. Dec 2006 A1
20070032850 Ruiz et al. Feb 2007 A1
20070043420 Lostetter Feb 2007 A1
20070050008 Kim et al. Mar 2007 A1
20070055355 Kim et al. Mar 2007 A1
20070061005 Kim et al. Mar 2007 A1
20070150041 Evans et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070208416 Burpee et al. Sep 2007 A1
20070276477 Lee et al. Nov 2007 A1
20080039923 Taylor et al. Feb 2008 A1
20080154368 Justis et al. Jun 2008 A1
20080228259 Chu Sep 2008 A1
20080294237 Chu Nov 2008 A1
20090099649 Chobotov et al. Apr 2009 A1
20090209855 Drilling et al. Aug 2009 A1
20090216125 Lenker Aug 2009 A1
20090318949 Ganpath et al. Dec 2009 A1
20090319029 Evans et al. Dec 2009 A1
20100004728 Rao et al. Jan 2010 A1
20100036360 Herbowy et al. Feb 2010 A1
20100106087 Evans et al. Apr 2010 A1
20100217383 Leonhardt et al. Aug 2010 A1
20120016456 Herbowy et al. Jan 2012 A1
20120046684 Evans et al. Feb 2012 A1
Foreign Referenced Citations (35)
Number Date Country
4010975 Oct 1991 DE
0679372 Nov 1995 EP
1325717 Jul 2003 EP
1903985 Apr 2008 EP
2834199 Jul 2003 FR
H04-322665 Nov 1992 JP
2003-525692 Sep 2003 JP
2004-537353 Dec 2004 JP
2005-505380 Feb 2005 JP
2005-532120 Oct 2005 JP
2008-510502 Apr 2008 JP
9717912 May 1997 WO
9719653 Jun 1997 WO
9853761 Dec 1998 WO
9900073 Jan 1999 WO
9944539 Sep 1999 WO
0029060 May 2000 WO
0051522 Sep 2000 WO
0121108 Mar 2001 WO
0166038 Sep 2001 WO
02078569 Oct 2002 WO
02083038 Oct 2002 WO
02102282 Dec 2002 WO
2003007785 Jan 2003 WO
03032869 Apr 2003 WO
03037222 May 2003 WO
03053288 Jul 2003 WO
2004004603 Jan 2004 WO
2004026183 Apr 2004 WO
2004037116 May 2004 WO
2004045393 Jun 2004 WO
2006012567 Feb 2006 WO
2006116725 Nov 2006 WO
2007008600 Jan 2007 WO
2007142916 Dec 2007 WO
Non-Patent Literature Citations (11)
Entry
Carmi et al., “Endovascular stent-graft adapted to the endoluminal environment: prototype of a new endoluminal approach,” J Endovasc Ther. Jun. 2002;9(3):380-381.
Donayre et al., “Fillable Endovascular Aneurysm Repair,” Endovascular Today, pp. 64-66, Jan. 2009.
Gilling-Smith, “Stent Graft Migration After Endovascular Aneurysm Repair,” presented at 25th International Charing Cross Symposium, Apr. 13, 2003 [Power Point Presentation and Transcript], 56 pages total.
Journal of Endovascular Therapy; Apr. 2000; pp. 111, 114, 132-140; vol. 7′ No. 2; International Society of Endovascular Specialists; Phoenix, AZ.
Patrick W. Serruys and Michael JB Kutryk; Handbook of Coronary Stents, Second Edition; 1998; pp. 45, 55, 78, 103, 112, 132, 158, 174, 185, 190, 207, 215, 230, 239; Martin Dunitz; UK.
Shan-e-ali Haider et al. Sac behavior after aneurysm treatment with the Gore Excluder low-permeability aortic endoprosthesis: 12-month comparison to the original Excluder device. Journal of Vascular Surgery. vol. 44, No. 4. 694-700. Oct. 2006.
Susan M. Trocciola et al. The development of endotension is associated with increased transmission of pressure and serous components in porous expanded polytetrafluoroethylene stent-grafts: Characterization using a canine model. Journal of Vascular Surgery. Jan. 2006. p. 109-116.
William Tanski, Mark Fillinger. Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery. Feb. 2007. p. 243-249.
U.S. Appl. No. 60/855,889, filed Oct. 31, 2006; first named inventor: Steven L. Herbowy.
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolyn A. Watanabe.
Examination report of EP Application No. 06751879.5, dated Mar. 24, 2014. 5 pages.
Related Publications (1)
Number Date Country
20150105848 A1 Apr 2015 US
Provisional Applications (3)
Number Date Country
60589850 Jul 2004 US
60675158 Apr 2005 US
60736602 Nov 2005 US
Divisions (1)
Number Date Country
Parent 11413460 Apr 2006 US
Child 13285897 US
Continuations (1)
Number Date Country
Parent 13285897 Oct 2011 US
Child 14525019 US
Continuation in Parts (1)
Number Date Country
Parent 11187471 Jul 2005 US
Child 11413460 US