The present application is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/434,954, filed Jan. 21, 2011, the entire contents of which are incorporated herein by reference.
The present application is generally related to the following applications: U.S. application Ser. No. 11/187,471 now U.S. Pat. No. 7,530,988, filed on Jul. 22, 2005, U.S. application Ser. No. 11/413,460, filed on Apr. 28, 2006, provisional U.S. Application No. 60/589,850, filed on Jul. 22, 2004, provisional U.S. Application No. 60/675,158, filed on Apr. 28, 2005, and provisional U.S. Application No. 60/736,602, filed on Nov. 14, 2005, the full disclosures of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to medical apparatus and methods for treatment. More particularly, the present invention relates to expandable prosthesis and methods for treating abdominal and other aneurysms.
Aneurysms are enlargements or “bulges” in blood vessels which are often prone to rupture and which therefore present a serious risk to the patient. Aneurysms may occur in any blood vessel but are of particular concern when they occur in the cerebral vasculature or the patient's aorta.
Of particular concern are aneurysms occurring in the aorta, particularly those referred to as aortic aneurysms. Aortic aneurysms are classified based on their location within the aorta as well as their shape and complexity. Abdominal aneurysms which are found below the renal arteries are referred to as infrarenal abdominal aortic aneurysms (AAAs). Suprarenal abdominal aortic aneurysms occur above the renal arteries, while thoracic aortic aneurysms (TAA's) occur in the ascending, transverse, or descending part of the upper aorta.
Infrarenal aneurysms are the most common, representing about seventy percent (70%) of all aortic aneurysms. Suprarenal aneurysms are less common, representing about 20% of the aortic aneurysms. Thoracic aortic aneurysms are the least common and often the most difficult to treat. Most or all present endovascular systems are also too large (above 12 F) for percutaneous introduction.
The most common form of aneurysm is “fusiform,” where the enlargement extends about the entire aortic circumference. Less commonly, the aneurysms may be characterized by a bulge on one side of the blood vessel attached at a narrow neck. Thoracic aortic aneurysms are often dissecting aneurysms caused by hemorrhagic separation in the aortic wall, usually within the medial layer. The most common treatment for each of these types and forms of aneurysm is open surgical repair. Open surgical repair is quite successful in patients who are otherwise reasonably healthy and free from significant co-morbidities. Such open surgical procedures are problematic, however, since access to the abdominal and thoracic aortas is difficult to obtain and because the aorta must be clamped off, placing significant strain on the patient's heart.
Over the past decade, endoluminal repair has been used to treat aortic aneurysms in about 50% of the patients, especially for those patients who cannot undergo open surgical procedures. In general, endoluminal repairs access the aneurysm “endoluminally” through either or both iliac arteries in the groin. The grafts, which are generally made using fabric or membrane tubes supported and attached by various stent structures, are then implanted, typically requiring several pieces or modules to be assembled in situ. Successful endoluminal procedures have a much shorter recovery period than open surgical procedures.
Present endoluminal aortic aneurysm repairs, however, suffer from a number of limitations. A significant number of patients after endoluminal repair experience leakage at the proximal juncture (attachment point closest to the heart) within two years of the initial procedure. While such leaks can often be fixed by secondary interventional procedures, the need to have such follow-up treatments significantly increases cost and is certainly undesirable for the patient. A less common but more serious problem has been graft migration. In instances where the graft migrates or slips from its intended position, open surgical repair is required or may require the use of another extender graft.
A particularly promising endoluminal graft is described in U.S. Publication No. 2006/0025853, which corresponds to related application U.S. application Ser. No. 11/187,471, the full disclosure of which has previously been incorporated herein by reference. That patent application describes the treatment of the aortic and other aneurysms with a double-walled filling structure which is filled with a hardenable material and cured in situ. The structure conforms to the shape of the aneurismal space and resists migration and endoleaks. The particular design described, however, may in some situations have certain drawbacks. For example, after initial treatment and depressurization of the aneurysm with a graft system, the thrombus often resolves over time resulting in changes to the size and shape of the aneurysm sac. This may lead to leakage and loss of graft apposition to the inside surface of the aneurysm, formation of hygroma in the space between the graft and the aneurysm surface, and enlargement of the aneurysm, all of which can eventually lead to graft migration and/or repressurization of the aneurysm sac. A rigid endoluminal graft may not accommodate these morphological changes in size and/or shape of the aneurysm after endoluminal graft repair over time.
For these reasons, it would desirable to provide improved methods, systems, and prosthesis for the endoluminal treatment of aortic aneurysms. Such improved methods, systems, and treatments should preferably provide implanted prosthesis which result in minimal or no endoleaks, resist migration, are relatively easy to deploy, have a low introduction profile (preferably below 12 F), and can treat most or all aneurismal configurations, including short-neck and no-neck aneurysms as well as those with highly irregular and asymmetric geometries. Further it would be desirable to provide fillable aneurismal grafts having the capability to adapt and accommodate changes in the size and/or shape of the aneurysm and maintain the position of the device and graft apposition and seal against the inside surface of the aneurysm. At least some of these objectives will be met by the embodiments described hereinafter.
2. Description of the Background Art
Grafts and endografts having fillable components are described in U.S. Pat. Nos. 4,641,653; 5,530,528; 5,665,117; and 5,769,882; U.S. Patent Publications 2004/0016997; and PCT Publications WO 00/51522 and WO 01/66038. The following patents and published applications describe endoframes and grafts having cuffs, extenders, liners, and related structures: U.S. Pat. Nos. 6,918,926; 6,843,803; 6,663,667; 6,656,214; 6,592,614; 6,409,757; 6,334,869; 6,283,991; 6,193,745; 6,110,198; 5,994,750; 5,876,448; 5,824,037; 5,769,882; 5,693,088; and 4,728,328; and U.S. Published Application Nos. 2005/0028484; 2005/0065592; 2004/0082989; 2004/0044358; 2003/0216802; 2003/0204249; 2003/0204242; 2003/0135269; 2003/0130725; and 2002/0052643.
Methods and systems for the endoluminal treatment of aneurysms, particularly aortic aneurysms including both abdominal aortic aneurysms (AAA's) and thoracic aortic aneurysms (TAA's) are provided. The systems include expandable prostheses having a fillable space and a membrane that allows fluid to permeate the membrane in the presence of a water potential differential. As used herein, fluid may refer to water molecules, including water molecules in a liquid or in a vapor, or fluid may refer to any water based fluids, such as a serum, or a fluid having therapeutic agents.
In a first aspect, the prostheses comprise double-walled filling structures which are pre-shaped and otherwise adapted to substantially fill the enlarged volume of an aneurysm, particularly a fusiform aneurysm, leaving a lumen in place for blood flow. The double-walled filling structure includes inner and outer walls and a fillable space therebetween. During deployment, the inner wall of the filling structure is expanded to define a generally tubular lumen for blood flow through the structure, while the outer wall of the filling structure expands to conform to the inside surface of the aneurysm, thereby excluding the aneurismal space from circulation. The inner wall is also designed to be impermeable to the transport of fluid filling media during the clinical procedure. The outer wall may be expanded against the inside surface of the aneurysm by filling the fillable space with a fluid filling medium so that the outer wall is in apposition with the aneurysm. After deployment, the membrane, preferably a semi-permeable membrane, allows transport of water molecules into or out of the fillable space through the membrane, the direction of fluid flow depending on the difference in water potential between the fillable space of the filling structure and the surrounding environment. The fillable space may be filled, at least partially, with a fluid filling medium, preferably a polymer hydrogel. The fluid filling medium may be selected so that the osmolarity of the filling medium induces an osmotic pressure within the filling structure sufficient to cause a desired osmotic pressure gradient across the membrane. Typically, the water molecules which permeate across the membrane into the fillable space will be from saline, serum or other body fluids. The overall water potential of the fluid within the fillable space will depend on the osmolarity of the fluid (which depends on the concentration of solutes in the fluid which are typically provided by the fluid filling medium), the pressure components, and gravimetric component and matrix effects, such as fluid cohesion and surface tension. The difference in water potential between the inside and outside of the filling structure causes transport of water molecules across the membrane. Transport of water molecules across the membrane into or out from the filling structure causes the filling structure to expand or contract, respectively, thereby accommodating changes in the size and/or shape of the aneurysm. In an embodiment, where the water potential differential is primarily caused by an osmotic gradient across the membrane, the membrane may comprise a semi-permeable membrane impermeable to at least one solute (the concentration of the solute inducing the osmotic gradient across the membrane). In some embodiments, the semi-permeable membrane may be less permeable or impermeable for a period of time after filling of the fillable structures, preferably within 24 hours of filling of the filling structure, to allow for changes in shape of the aneurysm due to depressurization after treatment. The membrane may be porous or non-porous. Typically, a non-porous membrane would be a semi-permeable membrane to allow diffusion of water vapor molecules through the membrane. Alternatively, the membrane may comprise pores which provide a mechanism for transport of fluid through the membrane in response to a water potential differential.
In another aspect, the outer or inner wall of the filling structure, or at least a portion thereof, may comprise the semi-permeable membrane. In some embodiments, the inner wall may comprise an impermeable material, while the outer wall may comprise a semi-permeable material. This prevents transport of fluid from the blood flowing through the generally tubular lumen across the membrane, while allowing for the flow of serum from the inside surface of the aneurysm and/or thrombus, promoting resolution or resorption of the thrombus and shrinkage of the aneurysm. The filling structures of the prosthesis will usually be formed from a non-compliant material, such as parylene, polyester (e.g., Dacron®), PET, PTFE, and/or a compliant material, such as silicone, polyurethane, latex, or combinations thereof. Usually, it is preferable to form at least the outer wall partially or entirely from a non-compliant material to enhance conformance of the outer wall to the inner surface of the aneurysm. This is particularly true when the aneurysm has been individually designed and/or sized for the patient being treated. The walls of the filling structure may be a polymer material, such as polyurethanes, including a non-porous ePTFE coated or rolled with polyurethane. The outer and/or inner walls of the filling structure may comprise ePTFE having an internodal distance ranging from 0.3 nanometers to 5 microns. The total thickness of the inner and/or outer walls may range from 20 μm to 120 μm, and are preferably about 40 μm. Water vapor permeability of the wall material may be within a range from about 0.01 to about 0.03 mL/day/cm2, and is preferably about 0.015 mL/day/cm2.
The fluid filling medium comprises one or more filling fluids, at least one of which may include a hardenable polymer. Preferably, the hardenable polymer comprises a hydrogel polymer, such as polyethylene glycol PEG. The filling medium may be selected so as to have an osmolarity (or dissolvable solutes for causing an osmolarity) to induce a desired water potential differential sufficient to cause permeation of water molecules across the membrane as needed to enlarge or shrink the filling structure to adjust for changes in the morphology of the aneurysm. The pressure within the filling structure may be controlled through selection of a filling medium which imparts a desired osmotic pressure to the fluid inside the fillable space (such as through dissolvable solutes in the fluid filling medium). By providing the necessary water potential in the filling structure, the permeation of water molecules through the membrane can be controlled to expand or contract the filling structure as needed. For example, providing a filling medium having a water potential lower than the surrounding environment outside the filling structure, such as a hydrophilic PEG having dissolvable solutes, causes fluid flow across the semi-permeable material into the filling structure, thereby enlarging the filling structure and increasing the pressure inside the filling structure until equilibrium is reached. Providing a filling medium having an osmolarity lower than the surrounding environment outside the filling structure causes fluid flow out from the filling structure, thereby shrinking the filling structure. By selectively expanding or contracting the filling structure, the system can accommodate changes in the size or shape of the aneurysm, maintain apposition of the filling structure with the inside surface of the aneurysm, and maintain a pressure inside the filling structure to adequately seal the aneurysm.
The double-walled filling structures will thus usually have a generally toroidal structure with an outer wall, an inner wall, and a fillable space or volume between the outer and inner walls to be filled with a filling medium. Filling of the fillable space expands the outer wall of the filling structure such that the outer surface of the outer wall conforms against an inside surface of the aneurysm. Filling of the fillable space also expands the inner wall of the filling structure such that an inner surface of the inner wall defines a generally tubular lumen which provides for blood flow after the prosthesis has been deployed. Typically, blood flowing through the generally tubular lumen is in direct contact with the inner surface of the inner wall. The shape of the filling structure will be preferably adapted to conform to the aneurysm being treated. The outer wall of the filling structure may be shaped to conform or be conformable to the inside surface of the aneurysm being treated. In some instances, the filling structure can be shaped for the aneurismal geometry of a particular patient using imaging and computer-aided design and fabrication techniques. In other instances, a family or collection of filling structures will be developed having different geometries and sizes so that a treating physician may select a specific filling structure to treat a particular patient based on the size and geometry of that patient's aneurysm.
The fillable space may be filled through a valve and a filling tube. The structure may include one or more filling tubes, such that the filling medium may be removed or additional medium may be added. In some embodiments, the fillable space comprises one or more chambers to control and/or limit flow fluid within the fillable space. The fillable space may be filled with one or more fluids, which may include saline, serum, or hardenable polymers. The fillable space may further include one or more semi-permeable bags; multiple semi-permeable bags may be in fluid communication with each other or may be independently filled. The semi-permeable bags may be filled with the filling medium or may expand to fill with fluid over time, such as fluid flowing into the structure through the semi-permeable material. In some embodiments, the filling structure may include a mesh within the fillable space to reinforce and secure the filling medium to the filling structure. The mesh may be attached to the inner wall so that the filling medium mechanically interlocks with the filling structure to provide support to the generally tubular lumen and secure the hardened filling medium to the filling structure, while still allowing the outer wall to expand.
The water potential of a fluid or the filling medium may be controlled by selecting (or by altering) the levels of dissolvable solutes within the fluid or medium. The water potential of fluid flowing into the structure may be controlled by using a filling medium having dissolvable solutes. In one aspect, the semi-permeable material will be permeable to water molecules so as to allow transport of fluid, such as water vapor, but impermeable to at least one solute, such that the concentration of the at least one solute causes a tonicity or an osmotic pressure differential across the semi-permeable membrane. In some embodiments, the semi-permeable material will allow transmission of at least some drugs or therapeutic agents.
In another aspect, the filling structure is oversized relative to the aneurysm, such that the total filling capacity of the filling structures is greater than the aneurismal space being treated. The oversized structure allows for expansion of the filling structure to accommodate an increase in available space inside the aneurysm as thrombus resorbs. In many embodiments, the outer wall of the filling structure may comprise folds which unfurl as the filling structure expands so as to maintain apposition between the outer wall and the inside surface of the aneurysm and to maintain an adequate pressure inside the filling structure to ensure an adequate seal between the filling structure and the inside surface of the aneurysm.
In addition to the filling structures just described, the aneurysm treatment systems may further include at least a first scaffold separate from the filling structure, where the scaffold can be expanded within or around the generally tubular lumen which provides the blood flow after the filling structure has been deployed in the aneurysm. The first scaffold will be adapted to expand within at least a first portion of the tubular lumen of the filling structure and may provide one or more specific advantages. For example, the scaffold may support and smooth the inside wall of the tubular lumen which in some cases might otherwise become uneven during hardening of the polymer fill. Scaffolds may also provide for anchoring of the filling structure, particularly at the aortic end of the graft when placed in an AAA. The scaffold may be partly or wholly covered with a membrane in order to form a graft. In such cases, the graft structure may help provide a transition from the blood vessel into the generally tubular lumen of the filling structure from the aortic end. Alternatively, the graft structure could provide one or a pair of transitions out of the iliac end of the filling structure. In a particular example, a graft structure can be used on either side of the filling structure in order to treat additional or continuing aneurismal regions in the adjacent blood vessel. In some embodiments, two or more filling structures may be used across the aneurysm. In such embodiments, a scaffold or multiple scaffolds may be placed within each filling structure.
Preferred delivery protocols for the filling structures will utilize delivery catheters having a balloon or other expandable support for carrying the filling structure. When using balloons, the balloons will preferably be substantially or entirely non-compliant, although compliant and combination compliant/non-compliant balloons may also find use. The balloon or other mechanical expansion components of the delivery catheter will initially be disposed within the inner tubular lumen of the filling structure, with the filling structure generally being collapsed into a low width or low profile configuration over the expansion element. The delivery catheter may then be introduced intraluminally, typically into the femoral artery and upwardly to the region within the aorta to be treated. The delivery catheter will also include one or more lumens, tubes, or other components or structures for delivering the filling medium in a fluid form to an internal filling cavity of the filling structure. Thus, the delivery catheter can be used to both initially place and locate the filling structure of the prosthesis at the aneurismal site. Once at the aneurismal site, the internal tubular lumen of the structure can be expanded using the balloon or other expandable element on the delivery catheter. The filling medium may be selected so that the medium has a quantity of dissolvable solutes sufficient to impart a concentration of solutes into the finable space so as to create the desired osmotic pressure in the fillable space. The membrane may be selected to allow transport of water molecules across the membrane to maintain a pressure inside the filling structure to adequately seal the aneurysm. The filling structure itself will be filled and expanded by delivering the filling medium via the catheter into the internal volume of the filling structure. Both expansion and filling operations may be performed simultaneously, or can be performed in either order, i.e. the filling structure may be filled first with the delivery catheter balloon being expanded second, or vice versa. The filling structure(s) and/or delivery balloons may have radiopaque markers to facilitate placement and/or pressure sensors for monitoring filling and inflation pressures during deployment. Once deployed, transport of water molecules through the semi-permeable material maintains the seal between the filling structure and the aneurysm, as well as the apposition of the outer wall to the inside surface of the aneurysm, expanding the outer wall outward when fluid flows into the filling structure and shrinking the structure when fluid flows out of the structure. This also helps to ensure that the filling structure is anchored in the aneurismal space, and does not migrate over time. In one aspect, the filling medium is selected so as to provide a salinity within the bag that is slightly above the high range of blood salinities that are likely to be experienced in the patient population so as to create an osmotic pressure (osmotic gradient) that is slightly positive. In another aspect, the osmotic pressure gradient provided is such that the bag does not shrink over time.
Delivery of a single prosthesis and filling structure to an aneurysm, as described thus far will be particularly suitable for aneurysms which are remote from a vessel bifurcation so that both ends of the filling structure are in communication with only a single blood vessel lumen. In the case of aneurysms located adjacent a vessel bifurcation, such as the most common, infrarenal abdominal aortic aneurysms, it will often be preferable to utilize two such filling structures introduced in a generally adjacent, parallel fashion within the aneurismal volume. In the specific case of the infrarenal aneurysms, each prosthesis will usually be delivered separately, one through each of the two iliac arteries. After locating the filling structures of the prosthesis within the aneurismal space, they can be filled simultaneously or sequentially to fill and occupy the entire aneurismal volume, leaving a pair of blood flow lumens.
In some embodiments, suitable filling materials will be fluid initially to permit delivery through the delivery catheter and will be curable or otherwise hardenable so that, once in place, the filling structure can be given a final shape which will remain after the delivery catheter is removed. The fillable materials will usually be curable polymers which, after curing, will have a fixed shape and hardness. The polymers may be delivered as liquids, gels, foams, slurries, or the like. In some instances, the polymers may be epoxies or other curable two-part systems. In other instances, the polymer may comprise a single material which, when exposed to the vascular environment within the filling structure, changes state over time, typically from zero to ten minutes.
In one aspect, after curing, the filling material will have a specific gravity, typically in the range from 0.1 to 5, more typically from 0.8 to 1.2 which is generally the same as blood or thrombus. The filling material may also include bulking and other agents to modify density, viscosity, mechanical characteristics or the like, including microspheres, fibers, powders, gasses, radiopaque materials, drugs, and the like. Exemplary filling materials include polyurethanes, collagen, polyethylene glycols, microspheres, and the like.
In view of the above general descriptions, the following specific embodiments may be better understood. In a first specific embodiment, methods for treating an aneurysm comprise positioning at least one double-walled filling structure across the aneurysm. By “across” the aneurysms, it is meant generally that the filling structure will extend axially from one anatomical location which has been identified by imaging or otherwise as the beginning of the aneurysm to a spaced apart location (or locations in the case of bifurcated aneurysm) where it has been established that the aneurysm ends. After positioning, the at least one filling structure is filled with a fluid filling medium so that an outer wall of the structure conforms to the inside of the aneurysm and an inner wall of the structure forms a generally tubular lumen to provide for blood flow after the filling structure has been deployed. Before the filling structure is being filled, while the filing structure is being filled, and after the filling structure has been filled, or during any one or more of these periods, the tubular lumen will preferably be supported, typically by a balloon or mechanically expansible element. After the filling structure has been filled, the filling material or medium is hardened while the tubular lumen remains supported. Supporting the tubular lumen during hardening assures that the lumen remains patent, will have a desired geometry, will properly align with adjacent vascular lumens and that the tubular lumen being formed remains aligned with the native aortic and/or iliac artery lumens after the prosthesis has been fully implanted. Preferably, the support will be provided by a balloon which extends proximally and distally of the filling structure where the balloon may slightly “overexpand” in order to assure the desired smooth transition and conformance of the tubular lumen provided by the filling structure with the native vessel lumens.
In a second specific embodiment, abdominal aortic aneurysms and other bifurcated aneurysms are treated by positioning first and second double-walled filling structures within the aneurismal volume. The first and second double-walled filling structures are positioned across the aneurysm, as defined above, extending from the aorta beneath the renal arteries to each of the iliac arteries, respectively. The first fluid filling structure is filled with a fluid filling material, the second filling structure is also filled with a fluid material, and the outer walls of each filling structure will conform to the inside surface of the aneurysm as well as to each other, thus providing a pair of tubular lumens for blood flow from the aorta to each of the iliac arteries. Preferably, the tubular lumens of each of the first and second filling structures are supported while they are being filled or after they have been filled. Further, the tubular lumens will preferably remain supported while the filling material is hardened, thus assuring that the transitions to the tubular lumens to the native vessel lumens remain properly aligned and conformed.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
Embodiments described relate to an aneurysm treatment system comprising a filling structure having a fillable space and a membrane that uses a water transport mechanisms, such as an osmosis process, to adjust the volume of fluid in the fillable space of the filling structure deployed in the aneurysm. By allowing the volume of a fillable space of the filling structure to increase (or decrease) through transport of a fluid through the membrane, such as by diffusion of water vapor through the membrane, the system may accommodate changes in the size or shape of the aneurysm over time. In a preferred embodiment, the water transport occurs through osmosis. In osmosis, which is sometimes referred to as “forward osmosis,” a semi-permeable membrane is used to attract substantially pure water into a solution with a relatively high osmotic pressure from a solution having a relatively low osmotic pressure. In one embodiment, the fillable space of the filling structure is filled with a solution having an osmolarity sufficient to induce a desired osmotic pressure in the filling structure, the desired osmotic pressure slightly lower than the pressure outside the filling structure. Osmotic pressure exerted by a fluid is a function of the amount of dissolved solutes in the fluid, their molecular weight, and temperature and may be calculated by equations known to one of skill in the art. In a preferred embodiment, the osmolarity of the solution in the fillable space of the filling structure is controlled by the concentration of dissolvable solutes within the fluid filling medium which impart the desired osmolarity to the fillable space of the filling structure. Generally, as transport of a fluid, such as water vapor molecules, into the filling structure increases the solution within the fillable space, the dissolved solutes remain inside the fillable structure such that the osmolarity within the filling structure remain substantially constant over time. The transport of fluid into the filling structure through the membrane may be expressed as a flux rate, which may be selected by the physician as appropriate for individual treatment needs. The flux rate is caused primarily by the difference in osmotic pressure, the fluid transport properties of the membrane and the fluid pressure inside and outside of the filling structure. In a preferred embodiment, the transport of fluid occurs in response to an osmotic pressure differential and occurs through the diffusion of water vapor molecules through a semi-permeable membrane. One of skill in the art would appreciate that transport of fluid through the membrane may occur through various mechanisms, some of which are discussed in more detail below.
A system constructed in accordance with the principles described for treating an aneurysm in a blood vessel includes a filling structure having a fillable space and a membrane that allows fluid transport therethrough and a fluid filling medium for filling the filling structure. In a preferred embodiment, the membrane is a non-porous semi-permeable membrane through which fluid, such as water vapor molecules, diffuses into the fillable space of the filling structure. The fluid filling medium is selected to have an osmolarity to effect a desired osmotic pressure in the fillable space such that an increase in the volume of the aneurysm causes a water potential differential across the membrane such that fluid transport occurs into the filling structure. Preferably, the desired osmotic pressure is sufficient to maintain an adequate pressure inside the filling structure to seal the aneurysm and maintain the position of the filling structure in the aneurysm. In other embodiments, a difference in water potential may cause water molecules from fluids surrounding the filling structure, such as saline, serum and/or other body fluids, to permeate the semi-permeable membrane into the fillable space in response to the osmotic pressure differential until the water potential inside and outside the filling structure reaches equilibrium. By whichever mechanism water is transmitted across the membrane, the water will continue to flow toward the space having a lower water potential until equilibrium is reached. Factors affecting the equilibrium point include the difference in osmotic pressure, the internal pressure of the filling structure, as well as the pressure external of the filling structure. Hence, if the fillable inner space of the filling structure has a lower water potential than that of the external fluid surrounding the filling structure (such as when the aneurysm expands), then fluid will flow across the material into the fillable inner space causing the filling structure to expand until equilibrium is reached. If the fillable inner space has a water potential higher than the surrounding external fluid, the fluid will flow across the semi-permeable material from the fillable inner space causing the filing structure to shrink or contract until equilibrium is reached. Thus, the flux rate, or rate of fluid flow across the membrane, may be controlled through the selection of a membrane having certain fluid transport properties and the selection of a filling medium having dissolvable solutes sufficient to impart a desired osmotic pressure to the fillable space, thereby facilitating osmotic diffusion across the membrane when a water potential differential exists between the fillable space and the surroundings. It should be noted that generally fluid flow across the membrane does not include the fluid filling medium or the solutes affecting the osmolarity. For example, a semi-permeable membrane would be impermeable to the fluid filling medium, such as PEG. Even in an embodiment where the membrane is a porous material, the pores may be sized so as to allow transfer of fluid, but not the fluid filling medium.
The capability of the present system to expand and contract is advantageous as it allows the outer wall of the filling structure to accommodate changes in the volume and/or geometry of the aneurysm over time. Ideally, the outer wall of the filling structure is in apposition with the inside surface of the aneurysm and/or the vessel wall. Additionally, it may be desirable for the filling structure to be filled to a volume such that the filling structure exerts either a neutral pressure, or a slightly positive a pressure against the inside surface of the aneurysm. Preferably, the pressure exerted by the filling structure would be sufficient to maintain the position of the filling structure in the aneurysm and to maintain a seal between the filling structure and the vessel walls, thereby preventing or reducing flow of blood between the filling structure and the vessel walls. The pressure exerted against the vessel wall by the filling structure, however, should not be so large that the pressure would cause the aneurysm to grow. Once this optimal pressure is determined, the desired osmotic pressure at the equilibrium point can be determined, equilibrium being the point at which transport of fluid into (or out of) the filling structure ceases.
After initial treatment, the thrombus on the inside surface of an aneurysm may resolve due to depressurization of the aneurysm, which may result in an increase in the inner volume of the aneurysm. As the inner volume of the aneurysm increases, the outer wall of the filling structure may lose the seal between the filling structure and the aneurysm, potentially resulting in endoleaks or enlargement of the aneurysm. Mean changes in aneurysm size one year following treatment are typically less than 10 mm in aneurysm sac size diameter. However, even small changes in aneurysm sac size may result in the problems discussed above. Controlling transport of fluid, such as water molecules, into or out from the filling structure improves the ability of the filling structure to maintain a seal between the filling structure and the aneurysm, thereby reducing the likelihood of endoleaks, uncontrolled growth of the aneurysm, or migration of the implant.
In an exemplary embodiment, the membrane comprises a semi-permeable polyurethane, which may include polycarbonate and polyether urethanes. Typically, polyurethanes comprise segments cross-linked by semi-crystalline hard segments such that water molecules in an osmosis process permeate the polyurethane through the soft segments. The permeation of water molecules through the polyurethane is influenced by the chemical nature, morphology and spatial arrangement of the soft segments in the material. Although the equilibrium water content of polyurethane films may range from a few percent in volume to substantially more than 50% in volume, ideally the membrane comprises a polyurethane having a relatively low water content. In such an embodiment, it is believed that transport of water molecules through the membrane occurs through diffusive permeation of water vapor molecules across the membrane. This transport of water molecules across the membrane may be modeled as diffusion driven by differences in water vapor pressure on either side of the membrane. Diffusive permeation can be described by the following equations:
wherein in equation (1), N is the rate of water permeation, P is the diffusive permeability, which itself is the product of diffusivity times solubility, A is the mass transfer area, h is the membrane thickness, and ΔpH
The difference in partial pressure between the inside and outside surfaces of the membrane may be controlled through the selection of the fluid filling medium, preferably a hydrophilic PEG having dissolvable solutes dispersed therein. Preferably, the PEG in the filled filling structure is kept moist such so that the PEG may affect the partial pressure or osmolarity of the solution in the fillable space through its dissolved solutes. Additionally, the PEG may exert an osmotic swelling pressure as water molecules are imbibed into the hydrogel (such osmotic swelling pressure may be modified by the presence of ions, such as when the hydrogel is charged). The osmotic swelling pressure is additive to the osmotic pressure created by the dissolved solutes in the solution within the fillable space. This gel osmotic pressure can be calculated for certain idealized system if the Flory Huggins parameter for the filling medium is known. The partial pressure of the water vapor in the filling structure may be estimated using Raoult's law or other equations associated with osmotic pressure, or water vapor partial pressure known to one of skill in the art. The claimed system is not limited by the above equations and alternatively, the water transport characteristics of the system could be determined empirically.
The membrane can be located anywhere on the filling structure so long as fluid can flow into or out from the fillable inner space of the filling structure. For example, the membrane may comprise a semi-permeable material incorporated into a portion of the inner or outer wall. Alternatively, the inner and/or outer wall may be constructed entirely from the semi-permeable material. The semi-permeable material may be used in combination with an expandable or over-sized filling structure so that flow of water into the filling structure expands the filling structure so as to maintain apposition with the aneurysm walls. Maintaining apposition between the filling structure and the aneurysm walls helps maintain the seals at either end of the device, reduce the likelihood of endoleaks due to changes in morphology of the aneurysm, anchor the prosthesis and prevent migration of the structure. The shape of the over-sized filling structure can be controlled and pre-planned to suit the aneurysm size based on the starting thrombus load to ensure that the bag will not expand the aneurysm due to excess transport of fluid into the filling structure.
Osmosis and reverse osmosis operate by a number of different transport mechanisms or theories. The mechanism by which the transport of water occurs across the membrane may depend on the chemical nature of the membrane being used as well as the molecule being transported through the membrane. Transport mechanisms known to one of skill in the art of osmosis and reverse osmosis include “solution-diffusion,” convective flow, surface force-pore flow model, and the vapor pressure (or partial pressure) model. Depending on the Chemical composition and structure of the membrane used, the actual mechanism may be any of the transport mechanisms known to be operable for osmosis processes in general. In many embodiments, the membrane may comprise a polyurethane, in which the mechanism for transport of water molecules is believed to be a differential in vapor pressure. Where the membrane comprises materials other than polyurethane, the mechanism of transport is either known in the art to those skilled in osmosis and reverse osmosis membranes or would be readily determinable. Regardless of which transport mechanism causes the transport of water molecules across the membrane, however, the flux rate of water molecules across the membrane can be measured under simulated in-vivo conditions to determine the required transport characteristics of the structure without ever directly determining the transport mechanism. It should be noted that although the above described transport mechanisms are believed to be the predominate mechanisms by which transport may occur, the inventors do not intend to be bound by any particular theory.
Referring now to
Referring now to
The wall structure of the double-walled filling structure may be a single layer, typically molded or otherwise conventionally formed. The wall structures may also be more complex and include multiple layers. It will be appreciated that such multiple layer structures can provide for increased strength, puncture resistance, variations in compliance and/or flexibility, differences in resistance to degradation, controlled porosity and the like. The semi-permeable material may be formed into at least a portion of the outer or inner wall. In many embodiments, the entire outer wall and inner wall comprises a semi-permeable membrane, such as ePTFE coated or laminated with polyurethane. Preferably, the filling structure is constructed such that the ePTFE is facing the outer blood contacting surface and the polyurethane is facing the inner non-blood contacting surface.
The system 10 further comprises a fluid filling medium. In a preferred embodiment, the fluid filling medium is hardenable so as to support the inner and outer wall in the expanded state. The fluid filling medium may also have an associated osmolarity such that fluid in contact or diffusing through the filling medium has substantially the same osmolarity as the filling medium. In a preferred embodiment, the fluid filling medium is hardenable and comprised of PEG, which is typically over 75% water even in the hardened state. The PEG may have a dissolvable solute such that fluid in contact with the PEG has substantially the same osmolarity as the PEG. For example, the filling medium may include a dissolvable solute, thereby causing the solutes to dissolve into any fluid within the fillable space. Alternatively, the filling structure may be filled with fluid having a different osmolarity than the fluid filling medium, or the solute may be added separately as a dissolvable solute. For example, the hardenable filling medium may be delivered to provide support for the filling structure, and then a fluid having the desired concentration of solutes may be delivered to the fillable space. In another aspect, the osmolarity of the fluid within the filling structure may be variable. For example, the dissolvable solutes may dissolve at a controlled rate as in a timed release.
In a preferred embodiment, the fluid filling medium provides the desired osmolarity. For example, the filling medium may comprise dissolvable solutes which dissolve into a fluid in contact with the medium. The osmolarity of the solution may be adjusted primarily through selection of materials having a specific osmolarity. In many embodiments, the osmolarity of the filling medium may range from 50 mOsm/L to 350 mOsm/L, and more preferably from 175 mOsm/L to 265 mOsm/L. Typically, the polymer will be hypertonic to saline and/or blood and will provide fluoroscopic visibility for monitoring the filling structure over time. In a preferred embodiment, the filling medium comprises a 1% RO PEG polymer hydrogel having an osmolarity of about 210 mOsm/L with a borderline hypertonicity to saline, a computed tomography (CT) density of 250 Hounsfield units (HU) and computed tomographic (CT) visibility. 1% RO refers to a formulation containing 1% by weight of a radiopaque salt incorporated in to the formulation, preferably sodium diatrizoate.
Referring now to
FIG. 3A1 depicts a hypertonic environment where the solute concentration (A) outside the filling structure is greater than the solute concentration (B) of the fluid inside the filling structure. The lower concentration of solutes in fluid within the filling structure results in a water potential that is higher than that of the body fluids external the filling structure. As a result, water molecules diffuse through the semi-permeable membrane of the outer wall 24 and flow out of the filling structure 12, thereby shrinking the internal volume. This aspect may be useful when a reduction in the overall volume of the filling structure is desired over time, such as when an aneurismal sac decreases in size after treatment until equilibrium is reached.
FIG. 3A2 depicts a hypotonic environment where the solute concentration (B) inside the filling structure is greater than the solute concentration of the fluid (C) outside the filling structure. The higher concentration of solutes inside the filling structure results in an osmolarity that is higher than that of body fluids external the filling structure. As a result, water molecules diffuse through the semi-permeable membrane of outer wall 24 and flow into the inner space 22 of filling structure 12, thereby expanding the filling structure or increasing the pressure inside the filling structure. This aspect may be useful when an increase in the overall volume of the filling structure is desired over time or a slight positive pressure is desired to maintain an adequate seal between the filling structure and the inside surface of the aneurysm.
FIG. 3A3 depicts an isotonic environment where the solute concentration of fluids (B) inside the filling structure is the same as that of fluid (B) outside the filling structure. Since the water potential of both fluids are about the same, water molecules flow into and out of the filling structure through the semi-permeable membrane of the outer wall 24 at approximately the same rate. This aspect may be useful when a filling structure of constant size is required, such as when the aneurysm and thrombus have stabilized and no change in the volume of the filling structure is desired.
Referring now to
Referring to
After the double-walled filling structure 12 is properly positioned, a hardenable fluid filling medium 30 is introduced into the internal space 22 filling the inner space. Filling of the inner space 22 expands the outer wall 24 of the structure outwardly so that it conforms to the inner surface (S) of the aneurismal space. The filling structure may be oversized to allow for later expansion of the structure to accommodate changes in the size or volume of the aneurismal space over time. For example, the outer wall 24 of the structure may comprise folds or wrinkles so that when additional fluid, such as water vapor, enters the internal space 22 over time, the internal space 22 expands the outer wall 24 against the inner surface (S) of the aneurismal space unfurling the folds or wrinkles in the outer wall 24.
Before, during, or after filling of the double-walled filling structure 12 with inflation medium, or during combinations thereof, as illustrated in
In another variation of the method, an optional contrast pre-filling step may be utilized. In this embodiment, after the delivery catheter is positioned across the aneurysm and the endoframe has been radially expanded, the filling structure may be pre-filled with contrast media and/or saline, or other fluids so as to permit observation of the filled filling structure under a fluoroscope relative to the aneurismal sac. Additionally, the pre-filling step allows the physician to record the pressure and volume of the contrast media used for optimal filling of the filling structure and this will provide an estimate of volume and pressure to be used when filling the filling structure with the hardenable filling material. In order to prevent overfilling of the filling structure, any of the pressure relief valves disclosed below may also be used to bleed off excess fluid from the filling structure.
After the filling material 30 has been introduced to the filling structure 12, typically through the filling tube 20, the fluid filling material 30 may be cured or otherwise hardened to provide for the permanent implant having a generally fixed structure which will remain in place in the particular aneurismal geometry. The filling material 30 is selected to have dissolvable solutes suitable for causing a desired osmolarity inside the filling structure, the desired osmolarity creating an osmotic pressure that causes a transfer of water molecules across the membrane resulting in expansion or shrinkage of the filling structure over time. The filling material 30 may also include a material having a variable osmolarity, such as an osmolarity that changes due to a filling material that releases solutes over time (e.g. a timed release). Methods for curing or hardening the filling material will depend on the nature of the filling material. For example, certain polymers may be cured by the application of energy, such as heat energy or ultraviolet light. Other polymers may be cured when exposed to body temperature, oxygen, or other conditions which cause polymerization of the fluid filling material. Still others may be mixed immediately prior to use and simply cure after a fixed time, typically minutes.
The filling structure may also include a scaffold placed into the tubular lumen defined by the inner wall 26, as illustrated in
As shown in
The radially expandable structures, grafts, and other scaffold structures will often be delivered using separate delivery catheters (not shown) of the type commonly used to intravascularly deliver stents and grafts. The scaffold delivery catheters may comprise balloons or other expansion elements for expanding malleable scaffolds in situ. Alternatively, the delivery catheters could comprise tubular sheaths for covering and constraining self-expanding scaffolds prior to release within the tubular lumens of the filling structures. Systems could also deliver the scaffold(s) simultaneously with the filling structure(s), often on a common delivery catheter system.
In another embodiment, a pair of double-walled filling structures will be used to treat infrarenal abdominal aortic aneurysms, instead of only a single filling structure as illustrated in
In treating an infrarenal abdominal aortic aneurysm using the pair of filling structures 112 and 212 illustrated in
After filling the filling structures 112 and 212 as illustrated in
As with the single filling structure embodiments described previously, the double filling structure embodiments may include at least one separate scaffold deployed within each of the tubular blood flow lumens. The scaffolds will generally be radially expandable structures or graft-like vascular structures and will be deployed within the tubular lumens using balloon or other expansion catheters (in the case of malleable or balloon-expandable scaffolds) or using constraining sheaths (in the case of self-expanding scaffolds). The filling structures of the double filling structure embodiments may be positioned substantially parallel to each other, placed side-by-side so as to allow blood flow into right and left iliac arteries. The scaffolds may also be positioned substantially parallel to one another, placed side-by-side within each of the filling structures of the double filling structure embodiment. One of skill in the art would appreciate that while filling structures in such embodiments may be substantially parallel in the coronal plane, with the structures may form a cross (X-shape) in the sagittal plane, or that the structure may be substantially parallel in the sagittal plane, with the structures forming a cross (X-shape) in the coronal plane.
Referring in particular to
Referring now to
Referring now to
Referring now to
Various modifications of the protocols described above will be within the scope of the present invention. For example, while the inner space is often depicted as one large space, it would also be possible to design the inner space of the filling structure as multiple spaces, interconnected or separate, or to design the inner space to have chambers or baffled regions to control fluid flow and expansion or shrinkage of the filling structure.
Additional information regarding various aspects of apparatus and methods for treatment generally related to the present application can be found in the following applications: U.S. application Ser. No. 08/620,072 now U.S. Pat. No. 5,665,117; U.S. application Ser. No. 12/478,225; U.S. application Ser. No. 12/478,208; U.S. application Ser. No. 12/371,087; U.S. application Ser. No. 12/429,474; U.S. application Ser. No. 11/752,750 now U.S. Pat. No. 7,790,273; U.S. application Ser. No. 11/444,603; U.S. application Ser. No. 11/413,460; U.S. application Ser. No. 12/684,074; U.S. application Ser. No. 11/482,503 now U.S. Pat. No. 7,666,220; U.S. application Ser. No. 12/421,297; U.S. application Ser. No. 11/187,471 now U.S. Pat. No. 7,530,988; U.S. application Ser. No. 11/876,458; U.S. application Ser. No. 10/668,901; and U.S. application Ser. No. 10/787,404, the full disclosures of which are incorporated herein by reference.
While the above provides a complete description of particular embodiments, various alternatives, modifications, and equivalents may be used. One of skill in the art would appreciate that various features of separate embodiments may be combined in accordance with the principles of the invention. Therefore, the above description should not be taken as limiting the scope which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3760806 | Leeper | Sep 1973 | A |
3797485 | Urquhart | Mar 1974 | A |
4157085 | Austad | Jun 1979 | A |
4327725 | Cortese et al. | May 1982 | A |
4565738 | Purdy | Jan 1986 | A |
4638803 | Rand | Jan 1987 | A |
4641653 | Rockey | Feb 1987 | A |
4686776 | Matsubara | Aug 1987 | A |
4704126 | Baswell | Nov 1987 | A |
4710192 | Liotta | Dec 1987 | A |
4728328 | Hughes et al. | Mar 1988 | A |
4731073 | Robinson | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4743258 | Ikada | May 1988 | A |
4763654 | Jang | Aug 1988 | A |
4856516 | Hillstead | Aug 1989 | A |
4858264 | Reinhart | Aug 1989 | A |
4892544 | Frisch | Jan 1990 | A |
4936057 | Rhoades | Jun 1990 | A |
4976692 | Atad | Dec 1990 | A |
5002532 | Gaiser | Mar 1991 | A |
5074845 | Miraki | Dec 1991 | A |
5082723 | Gross et al. | Jan 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5139480 | Hickle | Aug 1992 | A |
5156620 | Pigott | Oct 1992 | A |
5195984 | Schatz | Mar 1993 | A |
5199226 | Rose | Apr 1993 | A |
5217484 | Marks | Jun 1993 | A |
5222970 | Reeves | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242399 | Lau | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5292331 | Houki et al. | Mar 1994 | A |
5314444 | Gianturco | May 1994 | A |
5316023 | Palmaz et al. | May 1994 | A |
5330528 | Lazim | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5352199 | Tower | Oct 1994 | A |
5375612 | Cottenceau | Dec 1994 | A |
5383892 | Cardon | Jan 1995 | A |
5421955 | Lau | Jun 1995 | A |
5423849 | Engelson | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5425744 | Fagan | Jun 1995 | A |
5441510 | Simpson | Aug 1995 | A |
5441515 | Khosravi | Aug 1995 | A |
5443477 | Marin | Aug 1995 | A |
5443496 | Schwartz | Aug 1995 | A |
5449373 | Pinchasik | Sep 1995 | A |
5485667 | Kleshinski | Jan 1996 | A |
5494029 | Lane | Feb 1996 | A |
5496277 | Termin | Mar 1996 | A |
5496368 | Wiese | Mar 1996 | A |
5499994 | Tihon et al. | Mar 1996 | A |
5507767 | Maeda | Apr 1996 | A |
5507769 | Marin et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514115 | Frantzen | May 1996 | A |
5514154 | Lau | May 1996 | A |
5522882 | Gaterud | Jun 1996 | A |
5530528 | Houki et al. | Jun 1996 | A |
5531741 | Barbacci | Jul 1996 | A |
5534024 | Rogers et al. | Jul 1996 | A |
5545210 | Hess | Aug 1996 | A |
5547378 | Linkow | Aug 1996 | A |
5549662 | Fordenbacher | Aug 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5562641 | Flomenblit | Oct 1996 | A |
5562698 | Parker | Oct 1996 | A |
5562728 | Lazarus | Oct 1996 | A |
5569295 | Lam | Oct 1996 | A |
5578074 | Mirigian | Nov 1996 | A |
5578149 | De Scheerder | Nov 1996 | A |
5591195 | Taheri | Jan 1997 | A |
5591223 | Lock | Jan 1997 | A |
5591226 | Trerotola | Jan 1997 | A |
5591228 | Edoga | Jan 1997 | A |
5591230 | Horn | Jan 1997 | A |
5593417 | Rhodes | Jan 1997 | A |
5601600 | Ton | Feb 1997 | A |
5603721 | Lau | Feb 1997 | A |
5605530 | Fischell | Feb 1997 | A |
5607442 | Fischell | Mar 1997 | A |
5607445 | Summers | Mar 1997 | A |
5607468 | Rogers | Mar 1997 | A |
5609605 | Marshall | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5618299 | Khosravi | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5630840 | Mayer | May 1997 | A |
5632760 | Sheiban | May 1997 | A |
5632762 | Myler | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632771 | Boatman | May 1997 | A |
D380266 | Boatman | Jun 1997 | S |
5634941 | Winston | Jun 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
D380831 | Kavteladze | Jul 1997 | S |
5662614 | Edoga | Sep 1997 | A |
5665117 | Rhodes | Sep 1997 | A |
5674241 | Bley | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683449 | Marcade | Nov 1997 | A |
5690643 | WiJay | Nov 1997 | A |
5693038 | Suzuki et al. | Dec 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5693088 | Lazarus | Dec 1997 | A |
5697971 | Fischell | Dec 1997 | A |
5709707 | Lock | Jan 1998 | A |
5718713 | Frantzen | Feb 1998 | A |
5723004 | Dereume | Mar 1998 | A |
5725568 | Hastings | Mar 1998 | A |
5725572 | Lam | Mar 1998 | A |
5728068 | Leone | Mar 1998 | A |
5728131 | Frantzen | Mar 1998 | A |
5728158 | Lau | Mar 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5735892 | Myers | Apr 1998 | A |
5735893 | Lau | Apr 1998 | A |
5741327 | Frantzen | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5746691 | Frantzen | May 1998 | A |
5755769 | Richard | May 1998 | A |
5755773 | Evans et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766238 | Lau | Jun 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5776114 | Frantzen | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5782907 | Frantzen | Jul 1998 | A |
5785679 | Abolfathi et al. | Jul 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5800393 | Sahota | Sep 1998 | A |
5800512 | Lentz et al. | Sep 1998 | A |
5800514 | Nunez | Sep 1998 | A |
5800525 | Bachinski | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5810872 | Kanesaka | Sep 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824037 | Fogarty et al. | Oct 1998 | A |
5824040 | Cox | Oct 1998 | A |
5824049 | Ragheb | Oct 1998 | A |
5824054 | Khosravi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5827321 | Roubin | Oct 1998 | A |
5836966 | St. Germain | Nov 1998 | A |
5843160 | Rhodes | Dec 1998 | A |
5843175 | Frantzen | Dec 1998 | A |
5846246 | Dirks | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5849037 | Frid | Dec 1998 | A |
5860998 | Robinson | Jan 1999 | A |
5863627 | Szycher | Jan 1999 | A |
5867762 | Rafferty et al. | Feb 1999 | A |
5868708 | Hart | Feb 1999 | A |
5868782 | Frantzen | Feb 1999 | A |
5871537 | Holman | Feb 1999 | A |
5873907 | Frantzen | Feb 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5879381 | Moriuchi | Mar 1999 | A |
5888660 | Landoni et al. | Mar 1999 | A |
5902332 | Schatz | May 1999 | A |
5919224 | Thompson | Jul 1999 | A |
5928279 | Shannon et al. | Jul 1999 | A |
5931866 | Frantzen | Aug 1999 | A |
5944750 | Tanner | Aug 1999 | A |
5947991 | Cowan | Sep 1999 | A |
5948184 | Frantzen | Sep 1999 | A |
5976178 | Goldsteen et al. | Nov 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
5985305 | Peery et al. | Nov 1999 | A |
5994750 | Yagi | Nov 1999 | A |
6007573 | Wallace | Dec 1999 | A |
6015431 | Thornton | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6056776 | Lau | May 2000 | A |
6066167 | Lau | May 2000 | A |
6066168 | Lau | May 2000 | A |
6083259 | Frantzen | Jul 2000 | A |
6093199 | Brown | Jul 2000 | A |
6099548 | Taheri | Aug 2000 | A |
6110198 | Fogarty et al. | Aug 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6123722 | Fogarty | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6132457 | Chobotov | Oct 2000 | A |
6152144 | Lesh | Nov 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6168592 | Kupiecki et al. | Jan 2001 | B1 |
6187033 | Schmitt | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6193745 | Fogarty et al. | Feb 2001 | B1 |
6196230 | Hall et al. | Mar 2001 | B1 |
6203732 | Clubb | Mar 2001 | B1 |
6214022 | Taylor et al. | Apr 2001 | B1 |
6231562 | Khosravi et al. | May 2001 | B1 |
6235050 | Quiachon et al. | May 2001 | B1 |
6241761 | Villafana | Jun 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6280466 | Kugler | Aug 2001 | B1 |
6283991 | Cox et al. | Sep 2001 | B1 |
6290722 | Wang | Sep 2001 | B1 |
6290731 | Solovay et al. | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6299597 | Buscemi et al. | Oct 2001 | B1 |
6299604 | Ragheb | Oct 2001 | B1 |
6312462 | McDermott et al. | Nov 2001 | B1 |
6312463 | Rourke et al. | Nov 2001 | B1 |
6325816 | Fulton, III | Dec 2001 | B1 |
6325819 | Pavcnik et al. | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6331191 | Chobotov | Dec 2001 | B1 |
6334869 | Leonhardt et al. | Jan 2002 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6375675 | Dehdashtian et al. | Apr 2002 | B2 |
6395019 | Chobotov | May 2002 | B2 |
6409757 | Trout, III et al. | Jun 2002 | B1 |
6432131 | Ravenscroft | Aug 2002 | B1 |
6451047 | McCrea | Sep 2002 | B2 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6527799 | Shanley | Mar 2003 | B2 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544276 | Azizi | Apr 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6554858 | Dereume et al. | Apr 2003 | B2 |
6576007 | Dehdashtian et al. | Jun 2003 | B2 |
6579301 | Bales | Jun 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6613037 | Khosravi et al. | Sep 2003 | B2 |
6645242 | Quinn | Nov 2003 | B1 |
6656214 | Fogarty et al. | Dec 2003 | B1 |
6656220 | Gomez et al. | Dec 2003 | B1 |
6663607 | Slaikeu et al. | Dec 2003 | B2 |
6663667 | Dehdashtian et al. | Dec 2003 | B2 |
6679300 | Sommer et al. | Jan 2004 | B1 |
6682546 | Amplatz | Jan 2004 | B2 |
6692486 | Jaafar et al. | Feb 2004 | B2 |
6692528 | Ward et al. | Feb 2004 | B2 |
6695833 | Frantzen | Feb 2004 | B1 |
6729356 | Baker et al. | May 2004 | B1 |
6730119 | Smalling | May 2004 | B1 |
6733521 | Chobotov | May 2004 | B2 |
6761733 | Chobotov | Jul 2004 | B2 |
6773454 | Wholey et al. | Aug 2004 | B2 |
6776771 | Van Moorlegem et al. | Aug 2004 | B2 |
6827735 | Greenberg | Dec 2004 | B2 |
6843803 | Ryan et al. | Jan 2005 | B2 |
6878161 | Lenker | Apr 2005 | B2 |
6878164 | Kujawski | Apr 2005 | B2 |
6887268 | Butaric et al. | May 2005 | B2 |
6918926 | Letort | Jul 2005 | B2 |
6945989 | Betelia et al. | Sep 2005 | B1 |
6958051 | Hart et al. | Oct 2005 | B2 |
6960227 | Jones et al. | Nov 2005 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7105012 | Trout, III | Sep 2006 | B2 |
7112217 | Kugler | Sep 2006 | B1 |
7122052 | Greenhalgh | Oct 2006 | B2 |
7131991 | Zarins et al. | Nov 2006 | B2 |
7147661 | Chobotov et al. | Dec 2006 | B2 |
7156877 | Lotz et al. | Jan 2007 | B2 |
7175651 | Kerr | Feb 2007 | B2 |
7229472 | DePalma et al. | Jun 2007 | B2 |
7314483 | Landau et al. | Jan 2008 | B2 |
7326237 | Depalma et al. | Feb 2008 | B2 |
7435253 | Hartley et al. | Oct 2008 | B1 |
7530988 | Evans et al. | May 2009 | B2 |
7641691 | Lotz et al. | Jan 2010 | B2 |
7666220 | Evans et al. | Feb 2010 | B2 |
7682383 | Robin | Mar 2010 | B2 |
7708773 | Pinchuk et al. | May 2010 | B2 |
7789911 | Hamilton | Sep 2010 | B2 |
7790273 | Lee et al. | Sep 2010 | B2 |
7794447 | Dann et al. | Sep 2010 | B2 |
7828838 | Bolduc et al. | Nov 2010 | B2 |
7892214 | Kagan et al. | Feb 2011 | B2 |
7951448 | Lee et al. | May 2011 | B2 |
8088162 | Gieseke et al. | Jan 2012 | B1 |
8292911 | Brister et al. | Oct 2012 | B2 |
8545530 | Eskridge et al. | Oct 2013 | B2 |
20010020184 | Dehdashtian et al. | Sep 2001 | A1 |
20010027337 | Robin | Oct 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010044655 | Patnaik et al. | Nov 2001 | A1 |
20020019665 | Dehdashtian et al. | Feb 2002 | A1 |
20020026217 | Baker et al. | Feb 2002 | A1 |
20020045848 | Jaafar et al. | Apr 2002 | A1 |
20020045931 | Sogard et al. | Apr 2002 | A1 |
20020052643 | Wholey et al. | May 2002 | A1 |
20020077594 | Chien et al. | Jun 2002 | A1 |
20020151953 | Chobotov | Oct 2002 | A1 |
20020151956 | Chobotov | Oct 2002 | A1 |
20020151958 | Chuter | Oct 2002 | A1 |
20020156518 | Tehrani | Oct 2002 | A1 |
20020165521 | Cioanta et al. | Nov 2002 | A1 |
20020169497 | Wholey et al. | Nov 2002 | A1 |
20020183629 | Fitz | Dec 2002 | A1 |
20030004560 | Chobotov | Jan 2003 | A1 |
20030009132 | Schwartz et al. | Jan 2003 | A1 |
20030014075 | Rosenbluth et al. | Jan 2003 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030036745 | Khosravi et al. | Feb 2003 | A1 |
20030040800 | Li et al. | Feb 2003 | A1 |
20030051735 | Pavcnik et al. | Mar 2003 | A1 |
20030074056 | Killion et al. | Apr 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030093145 | Lawrence-Brown et al. | May 2003 | A1 |
20030130720 | DePalma et al. | Jul 2003 | A1 |
20030130725 | DePalma et al. | Jul 2003 | A1 |
20030135269 | Swanstrom | Jul 2003 | A1 |
20030204242 | Zarins et al. | Oct 2003 | A1 |
20030204249 | Letort | Oct 2003 | A1 |
20030216802 | Chobotov et al. | Nov 2003 | A1 |
20030220649 | Bao et al. | Nov 2003 | A1 |
20040016997 | Ushio | Jan 2004 | A1 |
20040044358 | Khosravi et al. | Mar 2004 | A1 |
20040082989 | Cook et al. | Apr 2004 | A1 |
20040091543 | Bell et al. | May 2004 | A1 |
20040098096 | Eton | May 2004 | A1 |
20040116997 | Taylor et al. | Jun 2004 | A1 |
20040147811 | Diederich et al. | Jul 2004 | A1 |
20040153025 | Seifert et al. | Aug 2004 | A1 |
20040167607 | Frantzen | Aug 2004 | A1 |
20040193245 | Deem et al. | Sep 2004 | A1 |
20040204755 | Robin | Oct 2004 | A1 |
20040215172 | Chu et al. | Oct 2004 | A1 |
20040215316 | Smalling | Oct 2004 | A1 |
20040220522 | Briscoe et al. | Nov 2004 | A1 |
20040220669 | Studer | Nov 2004 | A1 |
20040243057 | Vinten-Johansen et al. | Dec 2004 | A1 |
20050004660 | Rosenbluth et al. | Jan 2005 | A1 |
20050027238 | Fago et al. | Feb 2005 | A1 |
20050028484 | Littlewood | Feb 2005 | A1 |
20050065592 | Holzer | Mar 2005 | A1 |
20050085916 | Li et al. | Apr 2005 | A1 |
20050090804 | Chobotov et al. | Apr 2005 | A1 |
20050096731 | Looi et al. | May 2005 | A1 |
20050113929 | Cragg et al. | May 2005 | A1 |
20050215989 | Abboud et al. | Sep 2005 | A1 |
20050245891 | McCormick et al. | Nov 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20060015173 | Clifford et al. | Jan 2006 | A1 |
20060025853 | Evans et al. | Feb 2006 | A1 |
20060074481 | Vardi et al. | Apr 2006 | A1 |
20060135942 | Fernandes et al. | Jun 2006 | A1 |
20060142836 | Hartley et al. | Jun 2006 | A1 |
20060155369 | Edwin et al. | Jul 2006 | A1 |
20060161244 | Seguin | Jul 2006 | A1 |
20060184109 | Gobel | Aug 2006 | A1 |
20060206197 | Morsi | Sep 2006 | A1 |
20060212112 | Evans et al. | Sep 2006 | A1 |
20060265043 | Mandrusov et al. | Nov 2006 | A1 |
20060292206 | Kim et al. | Dec 2006 | A1 |
20070032850 | Ruiz et al. | Feb 2007 | A1 |
20070043420 | Lostetter | Feb 2007 | A1 |
20070050008 | Kim et al. | Mar 2007 | A1 |
20070055355 | Kim et al. | Mar 2007 | A1 |
20070061005 | Kim et al. | Mar 2007 | A1 |
20070150041 | Evans et al. | Jun 2007 | A1 |
20070162109 | Davila et al. | Jul 2007 | A1 |
20070208416 | Burpee et al. | Sep 2007 | A1 |
20070276477 | Lee et al. | Nov 2007 | A1 |
20080039923 | Taylor et al. | Feb 2008 | A1 |
20080154368 | Justis et al. | Jun 2008 | A1 |
20080228259 | Chu | Sep 2008 | A1 |
20080294237 | Chu | Nov 2008 | A1 |
20090099649 | Chobotov et al. | Apr 2009 | A1 |
20090198267 | Evans et al. | Aug 2009 | A1 |
20090209855 | Drilling et al. | Aug 2009 | A1 |
20090216125 | Lenker | Aug 2009 | A1 |
20090318949 | Ganpath et al. | Dec 2009 | A1 |
20090319029 | Evans et al. | Dec 2009 | A1 |
20100004728 | Rao et al. | Jan 2010 | A1 |
20100036360 | Herbowy et al. | Feb 2010 | A1 |
20100106087 | Evans et al. | Apr 2010 | A1 |
20100217383 | Leonhardt et al. | Aug 2010 | A1 |
20120016456 | Herbowy et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
4010975 | Oct 1991 | DE |
95302708.3 | Nov 1995 | EP |
1325717 | Jul 2003 | EP |
1903985 | Mar 2010 | EP |
2834199 | Jul 2003 | FR |
2003-525692 | Sep 2003 | JP |
2004-537353 | Dec 2004 | JP |
2005-505380 | Feb 2005 | JP |
2005-532120 | Oct 2005 | JP |
2008-510502 | Apr 2008 | JP |
9719653 | Jun 1997 | WO |
9853761 | Dec 1998 | WO |
0029060 | May 2000 | WO |
0051522 | Sep 2000 | WO |
0121108 | Mar 2001 | WO |
0166038 | Sep 2001 | WO |
02078569 | Oct 2002 | WO |
02083038 | Oct 2002 | WO |
02102282 | Dec 2002 | WO |
03007785 | Jan 2003 | WO |
03032869 | Apr 2003 | WO |
03037222 | May 2003 | WO |
03053288 | Jul 2003 | WO |
2004004603 | Jan 2004 | WO |
2004026183 | Apr 2004 | WO |
2004026183 | Apr 2004 | WO |
2004037116 | May 2004 | WO |
2004037116 | May 2004 | WO |
2004045393 | Jun 2004 | WO |
2006012567 | Feb 2006 | WO |
2006012567 | Feb 2006 | WO |
2006116725 | Nov 2006 | WO |
2007008600 | Jan 2007 | WO |
2007142916 | Dec 2007 | WO |
Entry |
---|
Patrick W. Serruys and Michael JB Kutryk; Handbook of Coronary Stents, Second Edition; 1998; pp. 45, 55, 78, 103, 112, 132, 158, 174, 185, 190, 207, 215, 230, 239; Martin Dunitz; UK. |
Journal of Endovascular Therapy; Apr. 2000; pp. 111, 114, 132-140; vol. 7′ No. 2; International Society of Endovascular Specialists; Phoenix, AZ. |
Gilling-Smith, “Stent Graft Migration After Endovascular Aneurysm Repair,” presented at 25th International Charing Cross Symposium, Apr. 13, 2003 [Power Point Presentation and Transcript], 56 pages total. |
Carmi et al., “Endovascular stent-graft adapted to the endoluminal environment: prototype of a new endoluminal approach,” J Endovasc Ther. Jun. 2002;9(3):380-381. |
Donayre et al., “Fillable Endovascular Aneurysm Repair,” Endovascular Today, pp. 64-66, Jan. 2009. |
William Tanski, Mark Fillinger. Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery. Feb. 2007. p. 243-249. |
Susan M. Trocciola et al. The development of endotension is associated with increased transmission of pressure and serous components in porous expanded polytetrafluoroethylene stent-grafts: Characterization using a canine model. Journal of Vascular Surgery. Jan. 2006. p. 109-116. |
Shan-e-ali Haider et al. Sac behavior after aneurysm treatment with the Gore Excluder low-permeability aortic endoprosthesis: 12-month comparison to the original Excluder device. Journal of Vascular Surgery. vol. 44, No. 4. 694-700. Oct. 2006. |
International Search Report and Written Opinion of PCT Application No. PCT/US2009/046310, dated Jul. 29, 2009, 9 pages total. |
International Search Report of PCT/US 06/16403, dated Aug. 7, 2007. 2 pages. |
International Search Report and Written Opinion of PCT Application No. PCT/US2006/062257, mailed Jan. 18, 2008. 7 pages total. |
International Search Report and Written Opinion of PCT Application No. PCT/US07/69671, dated Jul. 7, 2008, 9 pages. |
International Search Report and Written Opinion of PCT Application No. PCT/US09/34136, D dated Apr. 8, 2009, 16 pages total. |
U.S. Appl. No. 12/371,087, filed Feb. 13, 2009, first named inventor: K.T. Venkateswara Rao. |
International Search Report and Written Opinion of PCT Application No. PCT/US09/41718, dated Jun. 22, 2009, 23 pages total. |
Supplementary European Search Report and Search Opinion of EP Patent Application No. 05773726, mailed Apr. 23, 2010, 6 pages total. |
International Search Report and The Written Opinion of The International Searching Authority, Issued in PCT/US2012/032612 on Jul. 25, 2012, 13 pages. |
The International Search Report of the International Searching Authority for Application No. PCT/US2012/021878, mailed on May 23, 2012, 4 pages. |
The Written Opinion, including the search, of the International Searching Authority for Application No. PCT/US2012/021878, mailed May 23, 2012, 9 pages. |
Extended European search report of corresponding EP Application No. 06751879.5, dated Apr. 16, 2013. 9 pages. |
European Search Report and Search Opinion of EP Patent Application No. 06774540.6, mailed Mar. 30, 2010, 6 pages total. |
EP report, dated Nov. 7, 2013, of corresponding EP Application No. 09733719.0. |
Search report dated Oct. 17, 2013 of corresponding PCT/US2012/032612. |
International Preliminary Report on Patentability PCT/US2012/021878 dated Aug. 1, 2013. |
Report of European Patent Application No. 06850439.8 dated May 15, 2013. |
Report for European Patent Application No. 06850439.8, May 15, 2013. |
Examination report for JP Application. No. 2008-547709 dated Dec. 13, 2011. |
International Search Report and Written Opinion of PCT Application No. PCT /US2009/046308, mailed Nov. 17, 2009, 12 pages total. |
Examination Report of corresponding Japanese Application No. 2011-512667, dated Jun. 18, 2013. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority, Issued in PCT/US2010/061621 on Jul. 12, 2012, 7 pages. |
PCT International Search Report and Written Opinion dated Feb. 28, 2011 for PCT Application No. PCT/US2010/61621. 11 pages. |
U.S. Appl. No. 60/855,889, filed Oct. 31, 2006; first named inventor: Steven L. Herbowy. |
U.S. Appl. No. 12/429,474, filed Apr. 24, 2009; first named inventor: Steven L. Herbowy. |
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolyn A. Watanabe. |
Search report of corresponding PCT/US2014/021928, mailed May 20, 2014. 8 pages. |
Examination Report of Japanese Patent Application No. 2011-506487, dated May 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20120203264 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61434954 | Jan 2011 | US |