This invention relates to agricultural harvesters. More particularly it relates to agricultural harvesting heads. Even more particularly, it relates to feeding tracks for agricultural harvesting heads.
Agricultural harvesters such as combines or windrowers, travel through fields of agricultural crop harvesting the crop. In one common arrangement, agricultural harvesting heads extend forward from the agricultural harvester to engage the plant stalks, sever them, and carry the severed crop into the body of the agricultural harvester itself for further processing. To do this, the agricultural harvesting head has a reciprocating knife supported on the frame of the harvesting head. This reciprocating knife extends laterally, perpendicular to the direction of travel of the agricultural harvester. It extends substantially the entire width of the agricultural harvesting head. The reciprocating knife severs the crop across the width of the agricultural harvesting head and permits it to fall rearward into a laterally extending track. This track conveys cut crop from opposing lateral ends of the agricultural harvesting head to a central region of the head. In the central region, another track changes the direction of crop flow and conveys it rearward into a feeder house of the agricultural harvester.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
An agricultural harvesting head comprises a frame that supports a cutter configured to cut an agricultural product. The agricultural harvesting head also comprises a set of laterally extending and forward tilted feeding tracks that guide the cut agricultural product to a center of the agricultural harvesting head. The set of feeding tracks comprise a base web of elastomer-impregnated fabric, elongated cleats that extend upward from the base web and extend across substantially the entire width of the base web and a plurality of textured protrusions that extend upward from the web between adjacent elongate cleats. The textured protrusions protrude upward from the base web a distance sufficient to catch and hold grain rolling downhill in a direction perpendicular to the direction of travel of the feeding track and extend over substantially the entire width of the base web. A center feeding track configured to receive the cut agricultural product from the set of laterally extending feeding tracks and guide the agricultural product into a body of an agricultural harvester.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the background.
Combine harvester head tracks are typically made in three sections, a left section that conveys the cut crop inwardly from the left side of the harvesting head to the center of the harvesting head, a right section that conveys the crop inwardly from the right side of the harvesting head to the center of the harvesting head, and a center track that receives the crop from the left and right sections and guides it rearward into the feeder house of the agricultural harvester. The left and right sections are typically formed as endless or spliced flexible tracks supported at their inner end and their outer end on elongate rollers mounted to the frame of the agricultural harvesting head. These tracks have a forward edge that is tilted downward toward the ground immediately adjacent to the cutting head in order to catch all of the cut crop material as it falls onto the harvesting head immediately behind the cutting head. These tracks have a rear edge that is elevated above the front edge. As a result, the upper surface of the track is tilted. The tilt of the track permits grain in the cut crop material to roll down the track until it reaches the forward edge of the track adjacent to the reciprocating knife or cutter. If the grain reaches the forward edge of the track, it eventually falls through gaps between the track and the frame of the harvesting head and onto the ground where it is lost.
Past attempts to solve this problem involved placing a retaining rib below the feeding track, just above the cutter. This solution prevents grain from falling transversely over the cutter by catching the grain at a bottom portion of the track. However, grain located at the bottom portion of the left and right-side tracks is more often lost than grain in the middle of the track, while being transferred to the central track. The present description describes a feeding track for an agricultural harvesting head that reduces the ability of the grain to roll down the surface of the track.
In operation, and by way of overview, combine 100 illustratively moves through a field in the direction indicated by arrow 146. As it moves, header 102 engages the crop to be harvested and gathers it toward cutter 104. After it is cut, the crop can be engaged by reel 103 that moves the crop to feeding tracks 154, 156 (shown in
Grain falls to cleaning shoe (or cleaning subsystem) 118. Chaffer 122 separates some of the larger material from the grain, and sieve 124 separates some of the finer material from the clean grain. Clean grain falls to an auger in clean grain elevator 130, which moves the clean grain upward and deposits it in clean grain tank 132. Residue can be removed from the cleaning shoe 118 by airflow generated by cleaning fan 120. That residue can also be moved rearwardly in combine 100 toward the residue handling subsystem 138.
In one example, combine 100 has a tailings system where tailings can be moved by tailings elevator 128 back to thresher 110 where they can be re-threshed. Alternatively, the tailings can also be passed to a separate re-threshing mechanism (also using a tailings elevator or another transport mechanism) where they can be re-threshed as well.
Cleaning shoe loss sensors 152 illustratively provide an output signal indicative of the quantity of grain loss by both the right and left sides of the cleaning shoe 118. In one example, sensors 152 are strike sensors which count grain strikes per unit of time (or per unit of distance traveled) to provide an indication of the cleaning shoe grain loss. The strike sensors for the right and left sides of the cleaning shoe can provide individual signals, or a combined or aggregated signal. It will be noted that sensors 152 can comprise only a single sensor as well, instead of separate sensors for each shoe.
Separator loss sensor 148 provides a signal indicative of grain loss in the left and right separators. The sensors associated with the left and right separators can provide separate grain loss signals or a combined or aggregate signal. This can be done using a wide variety of different types of sensors as well. It will be noted that separator loss sensors 148 may also comprise only a single sensor, instead of separate left and right sensors.
Each of these two feeding tracks 154, 156 is supported on rollers (not shown) at the opposite ends of the track. Each of the two feeding tracks 154, 156 recirculate about its corresponding rollers. The direction of movement of the upper guiding surface of each feeding track is indicated by arrows 164, 166 and 168.
Center feeding track 158 likewise has an endless track supported on rollers at opposite ends of the track and about which the track recirculates. The center endless track 158, however, moves in a direction parallel to the direction of travel 146 of combine 100. The upper surface of center feeding track 158 moves rearwardly to carry cut crop material received from left feeding track 154 and right feeding track 156 and to carry it rearwardly into feeder house 107 and thence into combine 100 itself.
Feeding tracks 154,156 can have a base layer comprising a thin web of elastomer-impregnated (e.g. rubber) fabric having constant thickness. This base layer is approximately 1-1.5 meters in width. The base layer of the side feeding tracks is approximately 8-15 meters in length. The ends of these base layers are spliced or cured together at their opposing ends to form a continuous loop. The feeding tracks can, of course, be made differently as well.
To the outer surface of this base layer, several elongate cleats 170 (also called ridges or ribs) are fixed. In one example, cleats 170 are straight, evenly spaced apart and extend perpendicular to the direction of travel of the tracks. These cleats 170 extend upwardly from the surface of the flat base web of the tracks. In one example, the spacing of adjacent cleats 170 is approximately 30 cm, however, the spacing could be greater or less than 30 cm. Cleats 170 function to engage the cut crop mat that falls upon the upper surface of the tracks, and to help move the left and right crop mats inwardly to the middle of the head 102 and then rearwardly into the feeder house 107.
Rear edge 202 of feeding track 200 is disposed above front edge 204 of the track, and thus grain falling out of the cut crop mat traveling on top of the track 200 will fall on to the web of the track between the cleats 170 and will tend to roll in the downward direction 254 (e.g. from edge 202 to edge 204).
In
Rear edge 302 of the feeding track 300 is disposed above the front edge 304 of the track, and thus grain falling out of the cut crop mat traveling on top of the track will fall on to the web of the track between the cleats 170 and will tend to roll in the downward direction 354 (e.g. from edge 302 to edge 304). An example grain 350 and its path 352 are illustrated in
As shown in
The rear edge 402 of the feeding track 400 is disposed above the front edge 404 of the track, and thus grain falling out of the cut crop mat traveling on top of the track will fall on to the web of the track between the cleats 170 and will tend to roll in the downward direction 454 (e.g. from edge 402 to edge 404).
An example grain 450 and its path 452-1,452-2 is also shown. The grain 450 acting under the force of gravity will travel in the downward direction 454 as indicated by path portion 452-1. The grain's path in the downward direction 454 is impeded by a horizontal portion 406-1. The inertia of grain 450 may shift grain 450 in a direction opposite the direction of the track direction 456 as indicated by path portion 452-2. However, grain 450 does not fall off protrusion 406 as its motion is impeded by vertical portion 406-2.
The feeding tracks of
Agricultural feeding tracks are different from those in other applications. These feeding tracks are tilted at a downward angle such that objects are inclined to fall transversely across the track. Also, these feeding tracks are located on a mobile agricultural machine that has frequent motion in all different directions. This jarring further compounds the problems associated with the downward angle.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
The present application is a continuation of U.S. Provisional Application Ser. No. 62/518,557, filed Jun. 12, 2017, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
137224 | Mansfield | Mar 1873 | A |
810510 | Robins, Jr. | Jan 1906 | A |
874982 | Norton | Dec 1907 | A |
1817037 | Mattison | Aug 1931 | A |
D312718 | McIlwain | Dec 1990 | S |
5768986 | Arnold | Jun 1998 | A |
6371280 | Lindner | Apr 2002 | B1 |
9635810 | Leys et al. | May 2017 | B2 |
20020175055 | Ryde | Nov 2002 | A1 |
20040148919 | Dunn | Aug 2004 | A1 |
20110094201 | Bomleny et al. | Apr 2011 | A1 |
20140165526 | Leys | Jun 2014 | A1 |
20150086690 | Kodali | Mar 2015 | A1 |
20170094899 | Webermann | Apr 2017 | A1 |
20180352742 | Hasenour | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
102015117787 | Apr 2017 | DE |
2769612 | Aug 2014 | EP |
D1216108 | Oct 2003 | JP |
D1486685 | Jun 2013 | JP |
Entry |
---|
EP Application No. 18176566.0 Extended European Search Report, dated Nov. 15, 2018, 9 pages. |
PVC/PU Conveyor Belt with Different Surface Pattern, https://www.okorder.com/p/pvc-pu-conveyor-belt-with-different-surface-pattern_1050348.html, 6 pages. Accessed Mar. 21, 2018. |
General Belts, http://www.betolar.co.uk/General_Belts.html, 3 pages. Accessed Mar. 21, 2018. |
http://www.stantonbelting.co.uk/belts/the-belts-and-joining-methods/1#ad-image-0, 2 pages. Accessed Mar. 21, 2018. |
Conveyor Belting http://capitalbearingsupplies.com.au/conveyor-belting/, 7 pages. Accessed Mar. 21, 2018. |
http://www.directindustry.com/prod/tempo-international/product-78801-720937.html, 11 pages. Accessed Mar. 21, 2018. |
Conveyor Belt Surfaces http://www.brendma.com.au/portfolio/surfaces/ 15 pages. Accessed Mar. 21, 2018. |
Number | Date | Country | |
---|---|---|---|
20180352743 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62518557 | Jun 2017 | US |